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Abstract. Process algebras such as CSP or the Pi-calculus are theories to reason
about concurrent software. The Pi-calculus also introduces channel passing to address
specific issues in mobility. Despite their similarity, the languages expose salient diver-
gences at the formal level. CSP is built upon trace semantics while labeled transition
systems and bisimulation are the privileged tools to discuss the Pi-calculus seman-
tics. In this paper, we try to bring closer both approaches at the theoretical level by
showing that proper trace semantics can be built upon the Pi-calculus. Moreover, by
introducing locations, we obtain the same discriminative power for both the trace and
bisimulation equivalences, in the particular case of early semantics. In a second part,
we propose to develop the semantics of a slightly modified language directly in terms
of traces. This language retains the full expressive power of the Pi-calculus and most
notably supports channel passing. Interestingly, the resulting equivalence, obtained
from late semantics, exhibits a nice congruence property over process expressions.

1 Introduction

CSP [1] and the Pi-calculus [2] are two well-developed theories to reason about concurrent
software. Both approaches expose similar concepts, notablyinterleaving semanticsandsyn-
chronous communication. They also diverge in some important areas. First of all, CSP is
arguably richer and of higher-level than Pi. It provides various forms of parallel, choice and
sequential constructs; it is also open to a rich set of datatypes. The Pi-calculus, on the other
hand, only provides minimalistic forms of parallel and choice constructs; and it only sup-
ports the datatype ofnames. However, the Pi-calculus offers an interesting form of mobility
through name/channel passing which is not present in CSP.

The divergence between the two language amplifies at the level of the underlying seman-
tics. The Pi-calculus semantics are (generally) proposed throughlabeled transition systems
whereas CSP mostly builds on top oftrace semantics. It is our opinion that the latter, denot-
ing set-based equivalences, are easier to deal with than the former, relying on more complex
bisimulationequivalences. It is often stated, however, that“Bisimulation equivalence dis-
criminates more processes than trace semantics”[3]. In this paper we show that mobile
calculi close to the Pi-calculus can be analyzedwith full precisionusing techniques similar
to the ones developed within the CSP framework, namelytrace equivalence. We hope that
this preliminary step could help (re)conciliating the two approaches that have a lot in com-
mon. Strikingly enough, mobile channel types are now implemented in many CSP-based
programming languages and implementations [4, 5, 6].

In section 2, we present a minimal language of concurrent sequential processes with a
channel-passing form of mobility. The language is almost identical to the Pi-calculus. It
can also be seen as a subset of CSP extended by channel passing. We further propose to
characterize the operational semantics of this language, in two complementary ways. First,
in section 3, we show that by insertinglocationsat well-chosen positions in terms (mostly
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Table 1: A common syntax for mobile calculi

<expr> ::= 0 inert
| (<expr>) precedence
| <prefix>.<expr> sequence
| ν(x) <expr> restriction
| [x = y] <expr> match
| [x 6= y] <expr> mismatch
| <expr> + <expr> choice
| <expr> ‖ <expr> parallel
| ∗<expr> replication

<prefix> ::= c!y output
| c?(x) input
| τ silent

around parallel and choice sub-terms), we can provide a linear-time form of Pi-calculus that
retains all the features of its branching-time counterpart. We then prove that the LTS-based
semantics can be equated to CSP-like trace semantics thus allowing reasoning based on both
these complementary approaches. As a second contribution, developed in section 4, we take
the counterpoint of developing CSP-like trace semantics directly, without having to construct
a LTS first, on a slightly modified version of the language. Interestingly, this complementary
development allows us to characterize a trace-based equivalence that enjoys a congruence
property on process expressions which is not present in the “traditional” semantics for the
Pi-calculus. A panorama of related work, a conclusion and a selection of references follow.

2 A Concurrent Language with Channel Passing

Several theories for concurrency have been developed during the past twenty years. Some
of these theories, often designed asprocess calculior process algebras, focus oncomposi-
tional semantics. In such approaches, the behavior of high-level components are explained
in terms of their lower-level sub-components and the way they interact. Successful members
of this compositional family include theCommunicating Sequential Processes(CSP) work
introduced by Hoare [1], theCalculus of Communicating Systems(CCS) by Milner, further
developed in its mobile counterpart thePi-calculus[2], and theAlgebra of Communicating
Processesby Bergstra and Klop [7]. Empirically, one can say that all these languages allow
to express the behavior of concurrent and sequential processes that can communicate with
each other. In this section we give the minimalistic syntax of such a process calculus, which
is almost identical to the Pi-calculus but with an additional – and intentional – CSP “feel”.

In Table 1 we give the BNF syntax of the proposed language. Concurrent processes are
expressed as terms separated by the parallel construct (noted here‖ as in the CSP). The
following example is a canonical communication system:

c!e.0 ‖ c?(x).P (x)

Following the process algebra terminology, we can distinguish theprefixand thecontinuation
of both processes. For example, the prefix of the left-side process isc!e (for emitting the value
e on the channelc) and its continuation is0 (for terminating the process). The prefix of the
right-side process isc?(x) which denotes the reception of a value through the channelc. The
value is bound to namex in the continuationP (x). So the rewrite we expect from such a
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term may be informally noted as follows:

c!e.0 ‖ c?(x).P (x) → 0 ‖ P (e)

The 0 (inert) process of the Pi-calculus indicates a process termination. Since there is no
sequential composition operator, it is not possible to synchronize on termination as in CSP.
That is why trailing0’s may generally be omitted in terms, which might seems unfamiliar for
CSP experts. Note that synchronization on termination can be encoded in the Pi-calculus, for
example by introducing dedicatedend channels.

The Pi-calculus also provides channel mobility, which we can illustrate on the following
example:

c!e.0 ‖ c?(x).x!f.0 ‖ e?(y).Q(y)

The valuee we pass through the channelc from the left-side process to the one in the middle
is bound tox in the destination, which is then used as a channel. The expected rewrites for
the previous example are as follows:

c!e.0 ‖ c?(x).x!f.0 ‖ e?(y).Q(y)→ 0 ‖ e!f.0 ‖ e?(y).Q(y)
→ 0 ‖ 0 ‖ Q(f)

One may also employrestriction (ν construct) to encapsulate names/channels. Consider the
following variant of the previous example:

ν(e)(c!e.0) ‖ c?(x).x!f.0 ‖ e?(y).Q(y)

Here, the namee is restricted to the scope of the left process. This means that the namee in
the right process, which is a free name, is different from the bound occurrence ofe in the left
process. The rewrite we expect is as follows:

ν(e)(c!e.0) ‖ c?(x).x!f.0 ‖ e?(y).Q(y) → ν(e) (0 ‖ e!f .0) ‖ e?(y).Q(y)

The highlighted scope modification is called ascope extrusion, it will be discussed in the next
section. The difference with the previous example is that no more rewrite is possible since
we cannot extend further the scope ofe to the right-side process without renaming either the
restrictede (inside theν) or the free one (outside). Unlike CSP, the proposed language does
not provide a recursion operator. But such an operator can be encoded usingreplication (∗
operator) and communication (see [2]). Moreover, only the datatype ofnames(sometimes
considered as channels) is available. Names can solely be tested for (in)equality using the
match[x = y] andmismatch[x 6= y] operators.

As such, the proposed language, which is equivalent to the Pi-calculus, can be seen as
a severe restriction if compared to the CSP language. Except for communication prefixes
and generalized forms of parallel and choice operators, most of CSP is not supported. How-
ever, channel passing itself gives almost all its expressiveness to the Pi-calculus, as largely
exemplified in the literature (starting from [2]).

3 Linear-time Channel Passing

Bisimulationandtrace equivalencesare often opposed in the literature. Even in introductory
textbooks (such as [3]), the former is generally considered as afiner equivalence (i.e. it
discriminates more processes) than the latter.

Consider the following process expressions:

a!e.c!f + b!e.d!g anda!e.c!f + a!e.d!g
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c!f d!g c!f d!g

a!e b!e a!e a!e

Figure 1: Branching vs linear-time tree structures

These expressions can be represented as tree structures (cf. figure 1). The left tree represents
the behavior of the left process that can first perform either an output ona or an output onb,
non-deterministically. Ifa!e occurs, thenc!f follows, or if b!e occurs, thend!g follows. This
linear-timebehavior can be fully and naturally characterized with both trace and bisimulation
equivalences. This is not true for the right-side process expression which exhibitsbranching-
timesemantics. In that case, the first action that can occur is always an output of a namee
on a. Then, eitherc!f or d!g can follow. But thechoiceamong which of these should occur
is performed at the timea!e occurs. Trace equivalence will equate such process to a less
precisea!e.(c!f + d!g). Intuitively, you cannot discriminate the “left”a!e and the “right”a!e.
Bisimulation equivalence, in contrast, properly discriminates here.

3.1 A Linearized Language with Locations

Trace equivalencecan be extended withstable failuresand divergencesin order to obtain a
more precise equivalence [1]. However, the resulting model does not integrate channel pass-
ing. In this paper, we thus propose a complementary approach which consists in changing
slightly the language of section 2 so that trace semantics may be used even in the case of
branching-time behaviors (such as the “splitting” actiona!e in our example).

Table 2: The syntax enriched with locations

<expr> ::= [0]@l inert
| [(<expr>)]@l precedence
| [<prefix>.<expr>]@l sequence
| ν(x) [<expr>]@l restriction
| [x = y] [<expr>]@l match
| [x 6= y] [<expr>]@l mismatch
| [<expr>]@l1 + [ <expr>]@l2 choice (l1 6= l2)
| [<expr>]@l1 ‖ [<expr>]@l2 parallel(l1 6= l2)
| [∗<expr>]@l replication

<prefix> ::= c!y output
| c?(x) input
| τ silent

Our objective is to “linearize” the language and its semantics usinglocations. These are
simple positional informations inserted into terms. The updated syntax is presented in Table
2. In this variant, a processP must be written[P ]@l which means intuitively thatP “resides
at” locationl. Two processesP andQ, if composed in parallel, must reside at locations that
aredifferent. For instance, we write:

[P ]@l1 ‖ [Q]@l2 with l1 6= l2
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The only operation available on locations is to test their (in)equality,l1 = l2 or l1 6= l2. It is
important to note that locations are here abstract entities that do not only help at separating
concurrent processes. In fact, locations must also be used to disambiguate choice alternatives.
Suppose we decorate the branching trees with locations, as depicted on figure 2. In the
localized syntax, the two processes may be written as follows:

[a!e.[c!f ]@l3]@l1 + [b!e.[d!g]@l4]@l2 and[a!e.[c!f ]@l3]@l1 + [a!e.[d!g]@l4]@l2

b!e@l2a!e@l1

d!g@l4c!f@l3

a!e@l2a!e@l1

d!g@l4c!f@l3

Figure 2: Linearized tree structures with locations

On the right-side of figure 2 we can see that locations solve the branching-time vs. linear-
time issue. Now the choice of which among the “left” or “right”a!e should occur is captured
by the two distinct tracesa!e@l1 anda!e@l2.

3.2 LTS-based Operational Semantics

We propose in this section the operational semantics of our channel-passing language using
labeled transition systems. The presentation is brief since it is not the purpose of this paper
to discuss precisely the LTS-based semantics, which are fully exposed in various documents
(e.g. [8]). It is common to develop two levels in the semantics:(i) a structural congruence
noted≡ (for now also noted≡(2)) which equates “trivially” equivalent processes, and(ii) a
set ofinference rules, presented in the structural operational semantics style, from which the
behavior of a process expression can be derived. We suppose the existence of two functions
over processesfn([P ]@l) and bn([P ]@l) respectively denoting thefree namesandbound
namesof P . Names can be bound in either input prefix or restriction scopes. Note that
locations are not considered as names and are thus “invisible” for these functions.

The structural congruence is defined by the axioms of Table 3. First, by rule(1), terms
are alpha-convertible as in the lambda-calculus. Rules(2), (3) and (4) allow to simplify
expressions by removing unnecessary locations. Parallel and choice operators expose com-
mon abelian monoid laws (commutativity, associativity and unit), as expressed by rules(5)
to (10). Rules(11) and (12) are elimination rules for the match and mismatch operators.
Rule (13) gives the semantics for replicated processes. Note that a fresh location must be
introduced here. The most interesting rules are the last ones: they “implement” the combina-
tion of channel passing and restriction. For example, rule(14) states that a restricted name (a
name in the scope of aν) can see its scopeextruded(if we read the equivalence from right-
to-left) or converselyintrudedwithin parallel constructs if there is no name conflict. More
precisely, if read right-to-left, the rule states that a namex with restricted scope[Q]@l2 can
see its scope extruded to[P ]@l1 ‖ [Q]@l2 if x is not a free name ofP . The remaining rules
(15) to (18) describe similar interactions with restricted names.

In the operational semantics defined in Table 4, the(Struct) rule establishes the connec-
tion with the structural congruence. The(In), (Out) and(Tau) rules relate the prefixes of
the languages to labels in the transition systems. The possible labels (or actions) area?u@l
(input),a!x@l (output),a!νx@l (bound output) andτ@L (silent step, with possible multiple
locations). Note that the labels are also localized, as suggested previously. We use theearly
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Table 3: Definition of structural congruence

(1) [P ]@l ≡(2) [Q]@l if P andQ are variants of alpha-conversion

(2) [[P ]@l2]@l1 ≡(2) [P ]@l2
(3) [[P ]@l2 ‖ [Q]@l3]@l1 ≡(2) [P ]@l2 ‖ [Q]@l3
(4) [[P ]@l2 + [Q]@l3]@l1 ≡(2) [P ]@l2 + [Q]@l3

(5) [P ]@l1 ‖ [Q]@l2 ≡(2) [Q]@l2 ‖ [P ]@l1
(6) ([P ]@l1 ‖ [Q]@l2) ‖ [R]@l3 ≡(2) [P ]@l1 ‖ ([Q]@l2 ‖ [R]@l3)
(7) [P ]@l1 ‖ [0]@l2 ≡(2) [P ]@l1
(8) [P ]@l1 + [Q]@l2 ≡(2) [Q]@l2 + [P ]@l1
(9) ([P ]@l1 + [Q]@l2) + [R]@l3 ≡(2) [P ]@l1 + ([Q]@l2 + [R]@l3)
(10) [P ]@l1 + [0]@l2 ≡(2) [P ]@l1

(11) [x = y][P ]@l ≡ [P ]@l if x = y, [0]@l either
(12) [x 6= y][P ]@l ≡ [P ]@l if x 6= y, [0]@l either

(13) [∗P ]@l1 ≡(2) [∗P ]@l1 ‖ [P ]@l2 with l1 6= l2

(14) ν(x)([P ]@l1 ‖ [Q]@l2) ≡ [P ]@l1 ‖ ν(x)[Q]@l2 if x 6∈ fn(P )
(15) ν(x)([P ]@l1 + [Q]@l2) ≡ [P ]@l1 + ν(x)[Q]@l2 if x 6∈ fn(P )
(16) ν(x)[u = v][P ]@l ≡ [u = v]ν(x)[P ]@l if x 6= u andx 6= v
(17) ν(x)[u 6= v][P ]@l ≡ [u 6= v]ν(x)[P ]@l if x 6= u andx 6= v
(18) ν(x)ν(y)[P ]@l ≡ ν(y)ν(x)[P ]@l

Table 4: Definition of transition rules

[P ]@l ≡ [P ′]@l [P ]@l
α−→ [Q]@l′ [Q]@l′ ≡ [Q′]@l′

[P ′]@l
α−→ [Q′]@l′

(Struct)

[P ]@l1
α−→ [P ′]@l′1

[P ]@l1 + [Q]@l2
α−→ [P ′]@l′1

(Sum)

[P ]@l1
α−→ [P ′]@l′1 bn(α) ∩ fn(Q) = ∅

[P ]@l1 ‖ [Q]@l2
α−→ [P ′]@l′1 ‖ [Q]@l2

(Par)

[c!y.P ]@l
c!y@l−→ [P ]@l

(Out)
[c?(x).P ]@l

c?u@l−→ [P ]@l{u/x}
(In)

[τ.P ]@l
τ@l−→ [P ]@l

(Tau)

[P ]@l1
a?u@l1−→ [P ′]@l1 [Q]@l2

a!u@l2−→ [Q′]@l2

[P ]@l1 ‖ [Q]@l2
τ@{l1,l2}−→ [P ′]@l1 ‖ [Q′]@l2

(Com)

[P ]@l1
α−→ [P ′]@l′1 x 6∈ α

ν(x)[P ]@l
α−→ ν(x)[P ′]@l′1

(Res)
[P ]@l1

a!x@l1−→ [P ′]@l1 a 6= x

ν(x)[P ]@l
a!νx@l1−→ [P ′]@l1

(Open)
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semanticsthat perform substitutions directly through instantiations of the(In) inference rule.
This rule relates a single input prefixa?(x) to an infinite number of transitions/labelsa?u for
every possible nameu that can be received. Thelate semanticsdelay substitutions in instan-
tiations of rule(Com). But in the early case, it only matches pairs of input and output actions
to infer silent steps. The(Res) rule explains that restriction is preserved by transitions that
do not refer to the restricted name. Finally, the(Open) rule implements the communication
of a restricted channel as a bound output action.

3.3 Behavioral Equivalences

The labeled transition systems defined previously denote a “natural” bisimulation equiva-
lence that can be stated as follows:

Definition 1 The(strong early) bisimulation equivalenceof two processes[P ]@l and
[Q]@l is noted[P ]@l

.∼ [Q]@l. This is thelargest symmetricrelation such that:

if [P ]@l
α−→ [P ′]@l′, then∃Q′ such as[Q]@l

α−→ [Q′]@l′ and [P ′]@l′ .∼ [Q′]@l′

Intuitively, this relation equates the tree-like structure of process behaviors by ensuring
that both equivalent terms covers the same possible transition paths. In comparison with
more “traditional” definitions forearly bisimulation(cf. [8]), our variant only differs by the
introduction of locations. Only co-located process may be equated here.

As illustrated in [2] and many other works, such equivalence relations can be used in
various ways to derive semantic laws about the language. However, the CSP community
developed an arguably simpler equivalence in which processes are considered as equivalent
if they expose the same traces, which is a natural equality on sets of sequences. Thanks
to locations, we can reformulate the equivalence for the language proposed in section 2 in
similar terms. We first need to define the notion oftrace:

Definition 2 The (LTS-based)traceof a process[P ]@l, notedtr([P ]@l), is obtained induc-
tively by the following rules:

(i) tr([0]@l) = {〈〉}
(ii) if [P ]@l

α−→ [P ′]@l′ then〈α〉.tr([P ′]@l′) ⊆ tr([P ]@l)

We also define thetrace prefixing(. operator) on traces with the following rules:

(i) 〈α〉.{〈〉} = 〈〉.{〈α〉} = {〈α〉}
(ii) 〈α〉.{〈β〉} = 〈α, β〉
(iii) 〈α〉.A ∪B = 〈α〉.A ∪ 〈α〉.B

As discussed previously, the main issue with such connection between labeled transitions
and traces is that one may not distinguish traces corresponding to different transitions sharing
the same label. However, thanks to locations, we have the following important lemma:

Lemma 1 (Linear time)

if [P ]@l
α−→ [P ′]@l′ and[P ]@l

β−→ [P ′′]@l′′ with [P ′]@l′ 6 .∼ [P ′′]@l′′ thenα 6= β

The proof sketch for this lemma is as follows. First, only the choice and parallel operator
can lead to multiple transitions for similar actions. This non-determinism stems from the
interaction of the commutativity axiom for+ and‖, reflected in the semantics by the(Struct)
rule of Table 4, with the(Par), (Com) and(Sum) rules. We have to consider the cases of
expressionP corresponding to either[Q]@l1 ‖ [R]@l2 or [S]@l3 + [T ]@l4. By definition of
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the localized syntax, we havel1 6= l2 andl3 6= l4. And from distinct locations we may only
form distinct labels (e.g. a?u@l1 6= a?u@l2) so thatα 6= β �

We may now deduce an important reformulation for the equivalence of processes, under
the form of the following theorem:

Theorem 1 (Trace and bisimulation equivalences coincide)
[P ]@l

.∼ [Q]@l ⇐⇒ tr([P ]@l) = tr([Q]@l)

This theorem is a trivial consequence of lemma 1 on definitions 1 and 2 �
Note that this result does not translate to late semantics because of the more complex

bisimulation equivalence they denote. However, we can formulate similar results onobser-
vationalvariants of the semantics, which consist in disabling the silent steps (theτ actions)
when comparing processes. Given our two formulations for process equivalence, we have two
ways to define such observational variant. In the Pi-calculus,weak transitionsare introduced;
they are noted[P ]@l

α
=⇒ [P ′]@l′. These transitions are transitive closures onτ steps around

non-silent actions, which may be noted[P ]@l(
τ@L−→)

∗
[P1]@l1

α−→ [P2]@l2(
τ@L′−→)

∗
[P ′]@l′.

From these weak semantics we can define aweak (early) bisimulation equivalence. But we
can also propose an observational variant directly based on the trace-equivalence of theorem
1. We define a functionotr of observational tracesover processes as:

otr([P ]@l) = {S ∈ tr([P ]@l) | ∀L, τ@L 6∈ S}
This is the set of tracestr([P ]@l) in which we filter out all silent steps. We could also provide
a model closer to the CSP trace model by makingotr closed over prefixes, which we note
otr∗ and define as follows:

∀S.T ⊆ otr([P ]@l), S ⊆ otr∗([P ]@l)

We may finally introduce arefinement operatoron processes, notedv, as follows:

[P ′]@l v [P ]@l ⇐⇒ otr∗([P ′]@l) ⊆ otr∗([P ]@l)

Refinement techniques are largely exploited in trace-based semantics such as CSP. It is
a very practical tool to reason in a top-down manner from specifications to actual imple-
mentations. Refinement is harder to define in terms of labeled transition systems [9]. This
illustrates the advantage of the proposed model in which both semantics coincide.

4 Congruent Channel-passing

The equivalences defined in the previous sections raise important issues we propose to ad-
dress now. First, there is some inconvenience in the fact that we defined trace equivalence
upon LTS for process expressions. One has to build the transition system before being able
to apply the trace model. Also, the equivalence relations of section 3 only coincide in early
semantics, in which input prefixes denote impractical infinite branching. We would like to
obtain similar results with late semantics. But more importantly, both the equivalences are
not preserved by input prefixes. Consider the following example:

[d!e]@l1 ‖ [c?(x)]@l2
.∼ [d!e.[c?(x)]@l2]@l1 + [c?(x).[d!e]@l1]@l2 (1)

This corresponds to theinterleaving semanticsas implemented by the semantics proposed in
the previous section. This equivalence is true for bisimulation equivalence (see [8]) and also
for trace-equivalence since both match. However, we can also prove that:

[b?(d).([d!e]@l1 ‖ [c?(x)]@l2)]@l 6 .∼ [b?(d).([d!e.[c?(x)]@l2]@l1 + [c?(x).[d!e]@l1]@l2)]@l



F. Peschanski / Linear Time Congruent Channel-passing 47

Table 5: The revised syntax

<expr> ::= [0]@l inert
| [(<expr>)]@l precedence
| [<prefix>.<expr>]@l sequence
| [<expr>]@l1 + [ <expr>]@l2 choice (l1 6= l2)
| [<expr>]@l1 ‖ [<expr>]@l2 parallel (l1 6= l2)
| [∗<expr>]@l replication

<prefix> ::= c!y output
| c?(x) input
| τ silent
| ν(c) restriction
| [x = y] match
| [x 6= y] mismatch

Here, the named is bound through the input prefixb?(d) and the equivalence is infirmed for
the substitution{c/d} (remember that input prefixes denote all the possible substitutions for
d in early semantics). This tells that the equivalence relation is not a congruence on process
expression. The proposed language is thus not truly compositional, at least with the proposed
equivalences.

4.1 A Syntax with Substitutables and Fresh Occurrences

Let us consider again the issue raised by example(1) in the previous section. The problem is
that we do not know in advance if the named is susceptible to be captured by a binder (either
an input prefix or a restriction) in some context. In the variant of the semantics we define in
this section, if we writed?(x) or d!y, then both the namesd andy arenot substitutableat all.
In that case, the equivalence becomes trivially a congruence but by the same occasion, we
lose the ability to communicate or restrict names and channels ! To circumvent this limitation,
we modify the language syntax in two ways, as described on Table 5.

First, we remove the syntax rules for restriction and match/mismatch (in Table 2) and
introduce dedicated prefixes. We do this because we need specific rules for these constructs.
The second modification involves two new kinds of names that are defined as follows:

Definition 3 Thesubstitutableof a namex, notedλx, is a name that can be bound by either
an input prefixd?(x) (for any channeld) or a restrictionν(x). A fresh occurrenceofx, noted
νx (or νy provided thatνy is fresh), is a name used for substitution ofλx in a restriction
scopeν(x). Moreover,νx must be a fresh name, different from any other name.

In the new syntax, the prefixd!x expresses an output on a channeld that cannot be re-
ceived or restricted (i.e. it cannot be bound) in any context. More precisely, if the term
appears in a context where the named is bound, thend remains a free occurrence. On the
other hand, in the prefixλd!x, if d is bound (e.g. in eitherc?(d).λd!x or ν(d).λd!x), thenλd
may be accordingly substituted in the sub-term.

The freshness propertyof a fresh occurrenceνx states in particular that distinct restric-
tions must result in substitutions by distinctand uniquenames. For example, two restrictions
on the same namex, both notedν(x), will lead to substitutions by different names, such
asνx1 andνx2 with νx1 6= νx2. A sufficient condition is to consider fresh occurrences as
globally unique names (which is a reasonable assumption in practice).
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Table 6: The trace semantics of the Pi-calculus with substitutables and fresh names

(1) tr([P ]@l) = tr([Q]@l) if [P ]@l ≡(2) [Q]@l

(2) tr([0]@l) = 〈〉
(3) tr([τ.P ]@l) = 〈τ@l〉.tr([P ]@l)
(4) tr([ξ?(x).P ]@l) = 〈ξ?(x)@l〉.tr([P ]@l)
(5) tr([ξ!γ.P ]@l) = 〈ξ!γ@l〉.tr([P ]@l)
(6) tr([ν(x).P ]@l) = tr([P ]@l){νx/λx} with νx fresh
(7) tr([[ξ = γ].P ]@l) = tr([P ]@l) if ξ = γ, 〈〉 either
(8) tr([[ξ 6= γ].P ]@l) = tr([P ]@l) if ξ 6= γ, 〈〉 either

(9) tr([P ]@l1 + [Q]@l2) = tr([P ]@l1) ∪ tr([Q]@l2)
(10) tr([P ]@l1 ‖ [Q]@l2) = tr([P ]@l1)⊗ tr([Q]@l2)

4.2 Revised Operational Semantics

We may now define the operational semantics for the extension of the language proposed
in the previous section. We define these semanticsdirectly in term of traces, through the
functiontr over processes as defined inductively on Table 6.

The first rule(1) relates the trace functiontr to a structural congruence noted≡(2). This
is the equivalence≡ (cf. Table 3) in which we remove all rules related to the “old” restriction
and match/mismatch constructs (i.e. we remove the rules(11),(12), and(14) to (18) in Table
3). The rules(2) to (8) give the semantics of the language prefixes. The occurrencesξ
andγ of names in these rules can represent either regular namesx, substitutablesλx, or
fresh occurrencesνx. This is to reduce the number of cases where the difference among
name categories does not intervene. Of particular interest are rules(4) and(6) respectively
for input prefix and restriction. In contrast to the LTS trace semantics given previously, the
traces for input prefixes does not account for all (infinite) possible substitutions. The rule for
restrictionν(x) involves the substitution ofλx by a fresh occurrenceνx. The substitution
over process expressions trivially extends to traces, we thus have for any substitutionσ,
(tr([P ]@l))σ = tr(([P ]@l)σ). We finally propose a rule for the choice operator, which is the
union of traces for both the branches, and a rule for parallel which is obtained throughtrace
product and interleavingdefined as follows:

Definition 4 Thetrace productof two process tracesT1 andT2 is notedT1⊗T2. It produces
thetrace interleaving, notedT1⊕T2, in which communication steps are correctly substituted.
It is defined inductively as follows:

T1 ⊗ {〈〉} = T1 and{〈〉} ⊗ T2 = T2 and{〈〉} ⊗ {〈〉} = {〈〉} or
T = T1 ⊗ T2 with ∀〈α〉.T ′

1 ⊆ T1 and∀〈β〉.T ′
2 ⊆ T2 then

(i) if α = c!γ@l1 or α = λd!γ@l1 andβ = c?(x)@l2 or β = λe?(x)@l2
then〈τ@{l1, l2}〉. (T ′

1 ⊗ T ′
2{γ/λx}) ∪ (T1 ⊕ T2) ⊆ T

(ii) if α = νc!γ@l1 andβ = νc?(x)@l2
then〈τ@{l1, l2}〉. (T ′

1 ⊗ T ′
2{γ/λx}) ⊆ T

(iii) or T1 ⊕ T2 = 〈α〉. (T ′
1 ⊗ T2) ∪ 〈β〉. (T1 ⊗ T ′

2 ) ⊆ T
The definition above is relatively complex since it mixes trace interleaving (case(iii) ) and

communications with substitution. Let us illustrate these semantics on some basic examples,
starting with the canonical communication system written as follows:

[c!e]@l1 ‖ [c?(x).P (λx)]@l2
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Note that we now use a substitutableλx to denote the possible substitution of the bound
namex. In contrast to the language and semantics of section 2, the plain namex cannot be
substituted anymore. The semantics of the previous example are traces defined as follows:

T = tr([c!e]@l1 ‖ [c?(x).P (λx)]@l2) = tr([c!e]@l1)⊗ tr([c?(x).P (λx)]@l2)

From the rules of Table 6 we have:
[

tr([c!e]@l1) = 〈c!e@l1〉
tr([c?(x).P (λx)]@l2) = 〈c?(x)@l2〉.tr([P (λx)]@l2)

These traces can only be matched by case(i) in the definition of⊗, from which we infer:

T = 〈τ@{l1, l2}〉. ({〈〉} ⊗ tr([P (λx)]@l2){e/λx})
∪ {〈c!e@l1〉} ⊕ (〈c?(x)@l2〉.tr([P (λx)]@l2))

This may be simplified by applying the interleaving operator⊕ as follows:

T = 〈τ@{l1, l2}〉. ({〈〉} ⊗ tr([P (λx)]@l2){e/λx})
∪ 〈c!e@l1, c?(x)@l2〉.tr([P (λx)]@l2) ∪ 〈c?(x)@l2, c!e@l1〉.tr([P (λx)]@l2)

Finally, we end up with the following semantics:

T = 〈τ@{l1, l2}〉.tr([P (e)]@l2)
∪ 〈c!e@l1, c?(x)@l2〉.tr([P (λx)]@l2)
∪ 〈c?(x)@l2, c!e@l1〉.tr([P (λx)]@l2)

Intuitively, the meaning of the program is that either the communication depicted occurs or
we take into account the fact that someone else could resolve the communication on channel
c through composition. Consider now the variant with a restriction onc as follows:

[ν(c). ([λc!e]@l1 ‖ [λc?(x).(λx)]@l2)]@l

We use the substitutableλc becausec itself cannot be restricted since it cannot be substituted.
From rule(6) of Table 6, we derive the trace semanticsT of this example as follows:

T = tr([λc!e]@l1 ‖ [λc?(x).P (λx)]@l2){νc/λc} with νc fresh
= tr([νc!e]@l1 ‖ [νc?(x).P (λx)]@l2)

We are now in the case(ii) of the definition for the trace product, from which we obtain:

T = 〈τ@{l1, l2}〉. ({〈〉} ⊗ tr([P (λx)]@l2){e/λx})
And finally: T = 〈τ@{l1, l2}〉.tr([P (e)]@l2)

We finally illustrate channel passing using the following example:

[c!e]@l1 ‖ [c?(x).λx!f ]@l2 ‖ [e?(y).P (λy)]@l3

The associativity of‖ allows us to treat the left or right composition in any order. Moreover,
there are many possible executions in which the two communications we are interested in
do not occur. We will thus only give the sub-tracesT ′ of this expression in which the com-
munication occur. For the left-side process which is an instance of the first example with
P = λx!f , we are left with the sequence :〈τ@{l1, l2}, e!f@l2〉. We see here that the passed
namee is used as a channel in a subsequent trace. When combined with the traces of the
right-side process, we can deduce the trace〈τ@{l1, l2}, τ@{l2, l3}〉.tr([P (f)]@l3).
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4.3 Revised Trace-equivalence

As illustrated in the previous section, the proposed language, if not equivalent, retains the
major features of the Pi-calculus such as channel-passing. Moreover, we integrate locations
and as such preserve the results of section 3. Thereupon, we can deduce from the previous
semantics, directly expressed as traces, a precisetrace equivalenceas follows:

Definition 5 Thetrace equivalenceof two processes[P ]@l and [Q]@l,
which is noted[P ]@l ∼ [Q]@l, is defined as the equality of the implied traces:
[P ]@l ∼ [Q]@l ⇐⇒ tr([P ]@l) = tr([Q]@l)

In comparison to the equivalence proposed in section 3, this revised version is based on
late semantics. Moreover, we can state a very important lemma about the revised equivalence:

Lemma 2 (∼ is preserved by input prefixes)
if [P ]@l ∼ [Q]@l then∀ξ, ∀γ, ξ?(γ).[P ]@l ∼ ξ?(γ).[Q]@l

We have[P ]@l ∼ [Q]@l ⇐⇒ tr([P ]@l) = tr([Q]@l) by definition of trace equiva-
lence. From the semantics for input prefixes, as defined by rule(4) in Table 6, we also have
tr(ξ?(γ).[P ]@l) = 〈ξ?(γ)@l〉.tr([P ]@l), which trivially equates〈ξ?(γ)@l〉.tr([Q]@l) �

Now we can move on to the generalization of the congruence property of the proposed
trace equivalence. We first need to establish the following lemma:

Lemma 3 (⊗ left-preserves equality)
LetT1, T2 andT3 be traces, we then haveT1 = T2 =⇒ T1 ⊗ T3 = T2 ⊗ T3.

The proof sketch for this lemma is by structural induction on traces, following the scheme
for the definition of⊗ (cf. definition 4). For the base case, in whichT1 = T2 = 〈〉, the
lemma is trivially verified since we have by definition〈〉 ⊗ T3 = T3. Now we are left with
the three inductive cases(i), (ii) and (iii) of definition 4. In each case, we only have to
look at the left trace since we only prove the preservation of equality on the left side of
the⊗ operator (the right-side case is handled through commutativity of‖). In the inductive
cases, we defineTi =

⋃
α,T ′i 〈α〉.T ′

i (i ∈ {1, 2, 3}). By the hypothesis of induction, we have
∀U , T ′

1 ⊗ U = T ′
2 ⊗ U . So, in particular,∀γ, λx, T ′

1 ⊗ T ′
3{γ/λx} = T ′

2 ⊗ T ′
3{γ/λx}.

Finally, equality on sets is trivially preserved by both the union and prefixing relations (and
also by⊕ which is a composition of union and prefixing) so that we have〈τ@{l1, l2}〉.((T ′

1 ⊗
T ′

3{γ/λx}) ∪ (T1 ⊕ T3)) = 〈τ@{l1, l2}〉.((T ′
2 ⊗ T ′

3{γ/λx}) ∪ (T2 ⊕ T3)). This covers the
three inductive cases and thus concludes the proof �

Theorem 2 (∼ is a congruence on processes)
For all termsE in which [P ]@l appears, if[P ]@l ∼ [Q]@l, thenE ∼ E{[P ]@l/[Q]@l}

The proof for this theorem is by structural induction on the language constructors. First,
structural congruence is a congruence by definition. Moreover, we can generalize lemma 2
for input, output and silent prefixes. For such a prefixα and a processP , we have the same
basic fact thattr([α.P ]@l) = 〈α@l〉.tr([P ]@l). Match and mismatch may reduce to the
empty trace, but this does not impact the congruence property. The restriction semantics also
involve substitutions by fresh (and free) names. Letσ andσ′ be two substitutions on the same
domain. Through alpha-conversion, we havetr([P ]@l) = tr([Q]@l) =⇒ tr([P ]@l)σ =
tr([Q]@l)σ′ which is enough to cover the congruence property of the restriction prefixes.
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Now consider the case of the choice operator. Suppose two processesP andP ′ such as
[P ]@l1 ∼ [P ′]@l1, which meanstr([P ]@l1) = tr([P ′]@l1). The semantics of[P ]@l1+[Q]@l2
aretr([P ]@l1 +[Q]@l2) = tr([P ]@l1)∪ tr([Q]@l2). From simple properties of set union, we
havetr([P ]@l1) ∪ tr([Q]@l2) = tr([P ′]@l1) ∪ tr([Q]@l2) sincetr([P ]@l1) = tr([P ′]@l1).
So we have[P ]@l1 + [Q]@l2 ∼ [P ′]@l1 + [Q]@l2. We can follow a similar scheme to
prove the congruence property for the parallel operator. But for this we have to prove that if
tr([P ]@l1) = tr([P ′@l1]) thentr([P ]@l1)⊗ tr([Q]@l2) = tr([P ′]@l1)⊗ tr([Q]@l2). This is
true by lemma 3. �

The simple but fundamental corollary of theorem 2 is that unlike most Pi-calculus vari-
ants, the language we propose in this paper is trulycompositional. This removes the burden
of reasoning based on contextual informations, unavoidable in most behavioral equivalences
on Pi-calculus processes [8].

5 Related Work

To our knowledge, there exist few works that aim at bringing CSP and the Pi-calculus closer
at the formal level. Yet, many CSP-based programming languages and implementations such
as Kroc/Linux [4], Icarus [5] or JCSP Network Edition [6] introduce channel-passing exten-
sions. These works do not discuss, though, the influence of the new constructs on the formal
semantics of the language. We hope that our propositions could be used as foundations for
such mobile variants.

Testing theories can be used to compare trace-based and bisimulation-based equivalences
for both static and channel-passing calculi. It is usual to associate bisimulation and trace
models with respectivelymayandmust testing equivalences[10]. In this work, we show
that for a particular language, a variant of the pi-calculus with explicit locations and early
semantics, both definitions coincide. There also exist transition-based models for CSP, for
example in [11]. But channel passing is not discussed.

Various process algebras and programming language semantics have been recast and
compared in theunifying theories of programmingby Hoare and Jifeng [12]. Given a single
denotational tool, namely relations and associated operators, most programming language
concepts can be expressed and compared in this unifying framework. In contrast, our work
focuses on operational semantics and discusses slight extensions making the departing worlds
of bisimulation and trace equivalence coincide. Interestingly enough, trace equivalence on its
own seems sufficient to characterize the category of language proposed in the paper. In the
light of Hoare and Jifeng’s unification work, it is probable that more profound coincidences
exist. The fact that channel-passing may be expressed in more denotational terms, however,
remains an open (and intriguing) question.

In this paper, we define a trace model that is an extension of a subset of the traditional CSP
semantics (as defined in [1]) without prefix closure. Moreover, we integrate the silent steps to
model the generalized choice operator of the Pi-calculus. In order to adapt the very practical
refinement techniques of CSP, we must exhibit the prefix closure of the traces in which silent
steps are filtered out. It is thankfully very easy to derive such semantics, notedotr∗ in the
paper. Stable failures and divergences are important tools we have not yet taken into account
in the proposed model. The reason is that we capture the branching-time semantics and thus
provide a precise equivalence we would like to investigate furthermore.

Explicit locations are introduced for a variant of the CCS language in [13] to discuss
fairness models. Locations in this work are much more precise than ours. An order rela-
tion is introduced whereas we only rely on (in)equality. We may also remark that in both
approaches, the frontier between safety and liveness properties is not as strongly delimited
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as usual. Moreover, the expressive power of localized variants does not seem to suffer much
from the addition of locations. While this is not needed for the results presented, we may
relax the semantics by proposing a weakest form of equivalence in which processes need not
to be co-located in order to be compared. An interesting weaker variant is to only maintain
(in)equality of locations among traces. For example the trace{〈α@l1, β@l2〉} with l1 6= l2
would be equivalent to{〈α@l3, β@l4〉} iff l3 6= l4.

There are many discussions on the basic syntax for Pi-calculus terms, and there exist
in fact many variants of the language. In this paper, most of the language constructors are
prefixes. In [8], the fact that most constructs of the Pi-calculus can be expressed in purely
operational ways is discussed. For example, the restriction operator can be seen as an action
through dedicated open and close rules. But it is then difficult to produce normal forms of
terms, which is an important step for most proofs on congruence properties. It is notable that
normalization is less prominent when the semantics are expressed in terms of traces. In fact,
we do not rely on any normal form in our proposition.

From all characterizations of Pi-calculus semantics, our proposition is probably closest
to theopen bisimulationby Sangiorgi [14]. This is to our knowledge the only fully com-
positional characterization of the Pi-calculus semantics. To achieve this, open bisimulation
integrates the quantification over all substitutions in its definition. In our proposition, the
quantification occurs directly in the semantics, because substitutable channels can always be
used for communication. This leads to an arguably simpler characterization of behavioral
equivalence. Moreover, the mismatch operator remains available whereas no simple defini-
tion of open bisimulation with mismatch is known [8].

6 Conclusion

In this paper, we tried to illustrate that there were not always suchwell delimitedfrontiers
between process algebras that are often considered as intrinsically dissimilar, for example
CSP on one side and the Pi-calculus on the other side. As a matter of fact, we think that the
activity of bringing things closer, by opposition of exhibiting differences, should be also of
primary importance.

The difference between linear-time/branching-time semantics, the may/must testing di-
chotomy, or even the lack of precision of trace equivalence if compared to bisimulation, all
these disappear with the surprisingly simple adjunction oflocations. This does not seem to
involve unbearable loss in terms of expressive power; though this issue should be further
investigated.

Likewise, the often accepted idea that a channel passing language retaining all the features
of the Pi-calculus may not be fully compositional seems, at least, unsatisfactory. Our propo-
sition, once again, only involves a thin extension, namely thesubstitutablenames, in order
to obtain the most expected congruence property. Additionally, locations and substitutables
may be treated separately. A motivating future work would be to define a congruent form of
Pi-calculus, characterized through labeled transition systems and bisimulation exclusively.

Our main motivation, however, is to bring closer the CSP semantics and the Pi-calculus
language. And there is a lot more to investigate in that direction. First, we should provide
higher-level abstractions, most notably a richer set of datatypes. Distribution and explicit ma-
nipulation of locations ought to be explored as well. Termination of process is also somewhat
neglected by Pi-calculus experts. On the semantic side, further experiments with the CSP-
like refinement model are needed. For now, the translation to the proposed channel-passing
calculus has been but roughly sketched. Later on, we wish that the proposed model could be
used as foundations for practical languages and tools for the development of mobile systems
with an emphasis on safety and assisted verification.
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