
Communicating Process Architectures 2004 85
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

Active Serial Port: A Component for
JCSP.net Embedded Systems

Sarah CLAYTON and Jon KERRIDGE
School of Computing, Napier University, Edinburgh, Scotland

Abstract. The javax.comm package provides basic low-level access between Java
programs and external input-output devices, in particular, serial devices. Such
communications are handled using event listener technology similar to that used in
the AWT package. Using the JCSP implementation of active AWT components as a
model, we have constructed an active serial port (ASP), using javax.comm, that
gives a channel interface that is more easily incorporated into a distributed JCSP.net
collection of processes. The ASP has been tested in a real-time embedded system
used to collect data from infrared detectors used to monitor the movement of
pedestrians. The collected data is transferred across an Ethernet from the serial port
process to the data manipulation processes. The performance of the JCSP.net based
system has been compared with that supplied by the manufacturer of the detector
and we conclude by showing how a complete monitoring system could be
constructed in a scalable manner.

1. Introduction and Motivation

For some time research has been pursued to investigate the use of low-cost infrared
detectors to monitor the path of pedestrians as they move through a space [1]. Of particular
interest is the microscopic changes of direction people make as they interact with each
other in a confined space. Such data is important when designers of spaces are considering
the layout to ensure that movement is as efficient, pleasant and as free from conflict as
possible.

The detectors we have investigated, manufactured by a British company IRISYS Ltd [2,
3], have a maximum field of view of 4m square and thus, to monitor a large area, a number
of such detectors are required. Each detector generates a serial output data stream, which
contains image data, counts of pedestrians crossing user defined datum lines and the
instantaneous location of all the pedestrians in the field of view. The detector comprises a
16 by 16 pixel array and has an associated Digital Signal Processor, which undertakes
image processing functions to fit an ellipse to each pedestrian that is then used to determine
counts of pedestrians across datum lines and the sub-pixel location of each person.

The data output by the detector can be restricted to a subset of the available data. For
the particular application we require only the location of each target in the field of view.
The detector outputs serial data, with no flow control, equivalent to a frame rate of 30
frames per second. Each target in the field of view generates 34 bytes of data. Each frame
of data requires a further 23 framing bytes. Thus the total data transfer for each frame of
data comprises 23 + (n * 34) bytes where n is the number of people in the field of view of
the detector. For normal spaces a suitable maximum value for the number of people, n,
would be 10. Thus the total data transfer required for a single detector would be 10860

86 S. Clayton and J. Kerridge / Active Serial Port

bytes per second. In more normal situations, we have rarely seen more than 6 people in the
field of view at any one time, which gives a data rate of 6780 bytes per second. The serial
communication port on the detector operates at 115k baud and thus the serial port should
operate at about half its capacity.

2. Process Structure of the Data Collection System

Previous work undertaken by Kerridge had shown that it was possible to build a multi-
process system using the JCSP Network Edition (JCSP.net) [4] that was capable of tracking
the path of pedestrians as they move through a corridor, monitored by three detectors [5].
In this case, the data was read from files of data that had been captured by the detector
manufacturer’s software systems. The data was then read from the files at the equivalent of
real-time using a JCSP CSTimer built into the system. This paper will not concern the
design of that part of the system, except to confirm that we could deal with three detectors
operating at an equivalent speed of 30 frames per second on an 850MHz processor. The
system had been designed so that processes that accessed the detectors directly could
replace the file reading processes. At the simplest level therefore the process architecture
associated with a single detector is shown in Figure 1. This is broken down into two distinct
parts. The first part, called the Detector Part, is concerned with receiving data from the
detectors, parsing this into data objects that can then be transmitted over TCP/IP using
JCSP.net. The second part is the Process Target Data (PTD) part. This receives the data sent
across the Ethernet and then passes it on to the software that extract pedestrian trajectories
from the data.

IR Detector Serial
Port

Extract
and

Frame

Receiving
Process PTD

UART Byte stream
Framed

Data
Framed

Data
Framed

Data

Ethernet

Detector Part PTD Part

Figure 1: Initial System Design

The structure shown in Figure 1 assumes that there is a direct connection between each
detector and the process that is going to analyse the target information. In practice, this
would be a very limiting design, as each detector would need its own processor. Further,
when a pedestrian leaves the field of view of a detector the path taken (as a series of [x,y]
co-ordinates) has to be passed to an adjoining process where the pedestrian is likely to be
observed next. For this to be efficient, it is better to have several Process Target Data
processes in the same processor. If we have a large number of detectors it is also difficult
to connect many serial ports to the same processor. In addition there is a limit to the length
of a serial cable, which will limit the placement of the detectors and the processing system.
A revised design was therefore proposed in which a relatively small number of detectors
would be connected to a simple single board computer, which then used wireless
technology to transfer packets of data to the processor dealing with the Process Target Data
processes as shown in Figure 2.

The system comprises a number of Single Board Systems each connected to a number of
detectors mounted physically close to the detectors. Data is read from the detector by
means of the Active Serial Port process and a stream of data values are passed to the
Extract and Frame process, which processes the data stream to extract the individual
numbers that make up the data frame for each target (pedestrian) in the field of view of the

S. Clayton and J. Kerridge / Active Serial Port 87

detector. This data for each target is placed into a data frame object. The data frame from
each of the detectors is packed into a single object for those detectors connected to the same
single board system. It is this packed data that is sent across the network. Once the data
has been received it is unpacked and each data frame is then communicated to the
appropriate process that processes the target data from that detector.

Irisys Detector

Irisys Detector

Irisys Detector

Serial Port
Process

Serial Port
Process

Serial Port
Process

UART

UART

UART

Extract
and

Frame

Extract
and

Frame

Extract
and

Frame

Byte
stream

Byte
stream

Byte
stream

Packer

Framed Data

Framed
Data

Framed Data

Packed
Data UnpackerPacked

Data

Offset 0

Offset 1

Offset n

Framed
Data

Framed Data

Offset 0

Offset 1

Offset n
...

...
Ethernet

Deframe

Deframe

Deframe
To file

To file

To file

Framed Data

Figure 2: Overall System Design

3. Design and Implementation of Active Serial Port

The javax.comm API, released by Sun Microsystems and available as a download,
provides Java with serial and parallel port functionality. Although this is often considered
as an unfinished API by Java developers, it still provides all the necessary functionality for
proper serial communications. In order to make the API portable across platforms, the API
defines an abstract SerialPort class. This class is then subclassed and platform specific
functionality is implemented in the subclassed object. For example on the Microsoft
Windows platform, the class that implements the functionality is called
Win32SerialPort. This concrete class then interacts with a Dynamic Link Library
(DLL) file through the Java Native Interface (JNI). The applications programmer need
have no knowledge of platform specific issues in managing serial communications, as these
are provided through the concrete implementation of the abstract SerialPort class. Once
a SerialPort object has been created, communications through the physical port are
conducted through standard InputStream and OutputStream objects. These streams
send and receive information as bytes, integers or arrays of bytes.

The SerialPort listener, the SerialPortEventListener, communicates 10
possible serial port events specified by the SerialPortEvent class.

According to Niemeyer and Knudsen [6]:

“Swing and AWT events are multicast; every event is associated with a single
source but can be delivered to any number of receivers. When an event is fired, it
is delivered individually to each listener on the list.”

This is not true of the classes in the javax.comm API. The SerialPort object is
limited to only one listener, of one type, SerialPortEventListener. As Niemeyer and
Knudsen [6] continue:

“If an event source can support only one event listener (unicast delivery), the add
listener method can throw the java.util.TooManyListenersException.”

88 S. Clayton and J. Kerridge / Active Serial Port

JCSP does not approve interaction between processes (i.e. active objects running in their
own threads) other than through its various channel mechanisms (or other CSP-based
synchronization primitives, such as multiway events). This is at odds with standard
practices in OOP. In an event-driven context, the listener mechanism, or more strictly
implicit invocation by the Java Event Thread, is the standard method for separate objects to
respond to events. The architecture of Java is built entirely on these principles. Therefore,
there is an architectural mismatch between the process-oriented JCSP and standard Java.
This leaves the question of how to leverage the wealth of existing Java classes so that they
can work as processes in a JCSP design. An answer is given by the JCSP AWT classes,
provided with the JCSP API. These extend the Java AWT classes, allowing them to be run
as processes, providing User Interface elements to JCSP applications. Insight into how the
developers of JCSP overcame these problems was gained through decompilation of the
JCSP AWT classes and from discussion with Welch [7]. The design patterns used have then
been applied in the implementation of the serial port process.

To convert event-driven Java objects for use in JCSP, replace the listener and configure
mechanisms with channel communications. For example, in JCSP AWT classes:

• the listener interface is implemented in a (hidden) event handler class, which
communicates events through the JCSP AWT class’ (published) output channel.
This event handler class is added as a listener to the JCSP AWT class’ superclass.

• a class based mechanism for configuring the JCSP AWT class at run time is
provided via its (published) configure channel.

One of the concerns about JCSP was that, once a process had started, there was no
obvious way of configuring that process; it would simply execute its run() method until it
terminated. However, the designers of JCSP provided their JCSP AWT classes with inner
interfaces called Configure: to configure, simply send them a Configure-implementing
object along their configure channels.

The ActiveSerialPort (ASP) process cannot be implemented in quite the same way as the
JCSP AWT [7] classes because SerialPort is an abstract class, thus it cannot be
instantiated directly or derived from. It therefore has to be added to ASP as an attribute.

The need for the propagation of events in this context is far more straightforward than in
a User Interface setting. Although the fact that SerialPort only supports one listener is
often a matter of complaint among programmers using the javax.comm API, for our
purposes there is no need for these events to be propagated beyond the ASP class itself.
Therefore ASP implements the SerialPortEventListener interface itself, in addition
to CSProcess, rather than this being delegated to a concrete event handler as in JCSP
AWT. The UML class diagram for ASP is shown in figure 3.

ActiveSerialPort

«interface»
CSProcess

SerialPort

«interface»
SerialPortEventListener

Figure 3: UML Diagram for ASP

S. Clayton and J. Kerridge / Active Serial Port 89

The JCSP AWT classes, in general, had a single input channel and a single output
channel. The situation in this case is more complicated however. In the final design, ASP
has three channel interfaces: configure channel (configure), input channel (input) and
an output channel (output). These are shown in the process diagram given in Figure 4.

ActiveSerialPort

input

byte[]

configure

ActiveSerialPort.Configure

output

int

Figure 4: Process Diagram for ASP

The configure channel of an ActiveSerialPort is a One2OneChannel that
expects an ActiveSerialPort.Configure object. It was decided early in the design
process that configuration information and data input to ASP should be sent along separate
channels. This is in line with the standard practice of separating control information and
data. The design pattern, of specifying a Configure interface for the process, similar to
that used in jcsp.awt classes, is implemented here. The SerialPort class requires a
combination of settings that set flow control, baud rate, parity and stop bits. These need to
be set up correctly for communication to proceed. It was decided, in order to avoid the
returning of erroneous data from ASP, that no data should be sent from it until the object
had been configured once.

On its own, ASP does not represent an API. Its workings as a process are summarized in
Figure 4; it has a pure channel interface. However, as stated above, serial ports require a
great deal of configuration information to work correctly. In addition to this, there are many
separate notification options available to the programmer. Although in our application these
are not used, the Irisys detectors employ a ‘naïve’ communications protocol with no flow
control, the java.comm API lists some nine different notification events. These range from
notify on ring indicator to notify on framing error, and encompass a number of events
relevant to flow control. In order to make these available when using ASP, an
ASPConfigure object was created, that inherits from ActiveSerialPort.Configure.
This takes flow control, baud rate, parity, stop bit and notification information as
parameters in its constructor. Once initialized, it can be communicated to the ASP’s
configure channel. As shown in the listing below, it is relatively simple to implement
and to use.

 public class ASPConfigure implements ActiveSerialPort.Configure
 {

 int notify;
 int baud;
 int databits;
 int stopbits;
 int parity;

 public ASPConfigure(int baud, int databits, int stopbits, int parity)
 {

this (baud, databits, stopbits, parity, 0);
 }

90 S. Clayton and J. Kerridge / Active Serial Port

 public ASPConfigure (int baud, int databits, int stopbits,
 int parity, int notify)
 {

this.baud = baud;
this.databits = databits;
this.stopbits = stopbits;
this.parity = parity;
this.notify = notify;

 }

 public void configure (ActiveSerialPort s)
 {

s.setPortParameters (baud, databits, stopbits, parity);
if (notify != 0)
 s.setNotify (notify);

 }

 }

The input channel of an ActiveSerialPort is also a One2OneChannel that expects
data sent along it to be an array of bytes. SerialPort’s OutputStream can then write
out that array of bytes to the port using one method call.

The output channel is One2OneChannelInt. The reason for using an int carrying
channel requires some explanation, which will be given here. JCSP channels, other than the
int channels, are typed so that only Objects may be sent along them. All Java classes,
including arrays, are derived from java.lang.Object. However, as the serial port,
potentially, produces an unlimited amount of new data, the manner in which this is returned
requires some thought. According to Lindholm and Yellin [8]:

“There are three kinds or reference types: the class types, the interface types, and
the array types. An object is a dynamically created class instance or an array. […]
An object is created in the Java heap, and is garbage collected after there are no
more references to it. Objects are never reclaimed or freed by explicit Java
language directives.”

The SerialPort’s underlying InputStream is able to read data from the port either
as an array of bytes, or one byte at a time. While it is possible to declare new arrays at each
read, this can very quickly use up system resources. As stated above, the reclamation of
these resources is not within the control of the Java programmer. It is governed entirely by
the Java Virtual Machine’s (JVM) garbage collector. The garbage collector is a low priority
thread that from time to time is activated and searches the Java heap for objects that no
longer have any references to them within scope. Object creation involves the allocation of
resources on the heap, and the creation of a reference on the stack. In Java, objects are often
referenced in more than one place. If, however, there are no references to the object within
scope, the garbage collector reclaims these resources when it is run.

C++, in comparison, does not have this problem because class destructors can be
specified, the delete keyword will invoke its operand’s destructor to reclaim resources.
However, this must be done explicitly, and any oversight in this regard leads to memory
leaks, where orphaned objects stay on the heap without any reference to them on the stack.
The aim of the Java garbage collector, a system that has been adopted for other languages
such as C#, is to remove responsibility from the programmer for object deletion and
resource reclamation.

S. Clayton and J. Kerridge / Active Serial Port 91

A simple solution to this dilemma is to completely avoid object creation at the outset.
This is particularly important in this situation. The target platform for this software is an
embedded machine, with limited resources in terms of either processor time or memory.
Venners [9] also states:

“Heap fragmentation occurs through the course of normal program execution.
[…] On an embedded system with low memory, fragmentation could cause the
virtual machine to ‘run out of memory’ unnecessarily.”

The One2OneChannelInt interface provides an immediate solution to this problem.
Unlike all other JCSP channels, the Int channels send only integer values. These are sent
by value, not by reference. Primitive data types, such as byte, int, float, double and so
forth, are created and allocated resources on the stack. These resources are automatically
reclaimed when they pass out of scope. The heap is entirely unaffected.

Testing showed the software ran sufficiently quickly that, even when the serial port was
running at 115200 baud, that there was no blocking when using simple integers rather than
arrays of bytes to send data from ASP.

Only the input channels are dealt with entirely in ASP’s run() method, as is consistent
with JCSP programming principles. They form the guards in a pri.select() of an
Alternative as shown in the following code snippet:

 public void run ()
 {

 Guard[] guards = {configure, input};
 final int CONFIGURE = 0;
 final int INPUT = 1;
 Alternative alt = new Alternative (guards);

 while (true)
 {
 switch (alt.priSelect())
 {
 case CONFIGURE:
 handleConfigure ();
 break;
 case INPUT:
 handleSerialWrite ();
 break;
 }
 }

 }

The output channel is not handled directly in the run() method, however. It is only
used when the readFromSerial() method is invoked, which only happens when the
DATA_AVAILABLE SerialPortEvent is generated. The SerialPort object, running in
the Java Event Thread, calls this method implicitly through the listener mechanism,
whenever data is available. A criticism often levelled against Java’s thread model, by
Welch[10] and Hansen[11] amongst others is that threads can access an object’s methods
and data irrespective of whether or not it is ready to service that request. Objects become
vulnerable to arbitrary requests at any time, irrespective of their state. For our purposes
however, this makes ASP extremely efficient at reading from the serial port. The code is
shown in the following snippets.

92 S. Clayton and J. Kerridge / Active Serial Port

 public void serialEvent (SerialPortEvent event)
 {
 switch (event.getEventType ())
 {
 case SerialPortEvent.BI:
 case SerialPortEvent.OE:
 case SerialPortEvent.FE:
 case SerialPortEvent.PE:
 case SerialPortEvent.CD:
 case SerialPortEvent.CTS:
 case SerialPortEvent.DSR:
 case SerialPortEvent.RI:
 case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
 break;
 case SerialPortEvent.DATA_AVAILABLE:
 readFromSerial ();
 break;
 }
 }

The readFromSerial() method shows how the data is read from the serial stream into
an integer variable and only written to the output channel if the SerialPort has been
configured. The output channel is connected to the Extract and Frame process.

 private void readFromSerial ()
 {
 int i = 0;
 while (inputStream.available () > 0)
 {
 i = inputStream.read ();
 if (configured)
 output.write (i);
 }
 }

4. Extract and Frame Process

The Extract and Frame process (EFP) is specific to this application but has a generally
applicable process structure shown in Figure 5.

Extract
and

Frame
Process

fromSerial

int

toSerial

byte[]

configure

ActiveSerialPort.Configure

toPacker

DataFrame

Figure 5: Process Diagram for Extract and Frame Process

EFP has one input channel, a One2OneChannelInt, that is unbuffered. It receives
integers from ASP, as discussed in the previous section, that carry the bytes returned from
the serial port.

S. Clayton and J. Kerridge / Active Serial Port 93

EFP has three output channels that are all unbuffered One2OneChannels. They are:

• toSerial: this sends an array of bytes to be written to the serial port by ASP;
• configure: this sends an ActiveSerialPort.Configure object to the

ActiveSerialPort process, which configures the ports settings;
• toPacker: this sends the parsed DataFrame object to the packer process.

The data sent by the sensor is limited to shorts and floats. The internal DSP uses the
IEEE 754 Floating Point Format. Extracting the data values from the input byte stream was
simply achieved by byte shifting to accommodate endian differences between Java and the
DSP and, for floating point values, a call to the Float.intBitsToFloat(int) method
to convert the resulting 32-bit pattern into a float. It was possible to do comparison
testing of the data by capturing the byte stream passing through the serial port of a machine
running Irisys’ proprietary software using a serial port logging application. The bytes
captured were then sent through the parser and the values returned were compared against
the results given by the Irisys software. The results showed that these were entirely in
agreement with each other and that the assumptions made about byte ordering and data
formats were correct.

As discussed previously, this software is intended for use on an embedded machine, and
therefore there is a need for reducing the amount of object creation to an absolute
minimum. EFP sends DataFrame objects, containing an array of TargetData objects,
through its output channel. The TargetData objects contain the parsed target data for each
target (if any) in the parsed packet. Potentially, this could involve a great deal of object
creation. As stated by Welch [10], JCSP channels (other than the Int channels) do not
transmit copies of classes, they transmit references to the classes. Consequently, the
sending and the receiving process can manipulate the same object at the same time and thus
two processes can then, potentially, use that object’s data and methods at the same time
while running concurrently. This is known as aliasing, which is an endemic problem in
Java, and in this situation would be a race hazard.

However, with careful thought and consideration, it can also be used to our advantage,
and it is used in EFP to implement a double buffer between EFP and the Pack process. This
is done as follows:

• an array of two DataFrame objects is declared and initialized in EFP;
• an index counter is also declared and initialized;
• before parsing, the active DataFrame is indexed from the array using the index

counter;
• the active DataFrame is cleared of all data, as are its constituent TargetData

objects;
• once the parsing is complete, the DataFrame is written out to the channel

connecting EFP to the Pack process;
• the index counter is changed to either 0 or 1, depending on its value. The next

parse then occurs using the other DataFrame object in the array.

To avoid aliasing race hazards downstream, we copy the received DataFrame in the
Pack process. For this, we have chosen to use static functions that have the prototype:

SomeClass.copy (SomeClass src, SomeClass dest);

94 S. Clayton and J. Kerridge / Active Serial Port

There are a certain number of advantages to using static functions in this way. Static
functions are defined at the class rather than the instance level. They do not require the
programmer to have a handle on the object to be called. Where data is being received
through channel communication, as in this case, it removes the need to declare and initialise
a reference pointer, and cast the input value to the correct type. This helps to make the code
more readable, as the example shown below shows. We read from each sensor by means of
a parallel read using JCSP’s ProcessRead. The values obtained are copied into a local
DataFrames vector and then added to the packedData object.

 ProcessRead[] processReads = new ProcessRead[toPacker.length];

 for (int i = 0; i < toPacker.length; i++)
 processReads[i] = new ProcessRead (toPacker[i].in());

 CSProcess p = new Parallel (processReads);

 while (running)
 {
 p.run ();
 for (int i = 0; i < toPacker.length; i++)
 {
 DataFrame.copy((DataFrame) processReads[i].value, dataframes[i]);
 packedData.addFrame (dataframes[i]);
 }
 toNet.write (packedData);
 }

This Pack process simply outputs the packed DataFrames saved in packedData over
the Ethernet connection to an Unpack process in the main processing system, thence to be
passed to the subsystem that processes target data.

Although effective, this does not represent a solution to the problem intrinsic to JCSP, in
that two processes are potentially free to use references to the same object at the same time.
For our design, that freedom is curtailed by the synchronisations forced by JCSP channel
communications to make it safe. All EFP processes have two (DataFrame) buffers, which
they use alternately. Having sent one to this Pack process, they work on their other buffer.
When filled, they commit to send it to this process, but that blocks until this process takes
them (p.run). That won’t happen until this process has copied, packed, forwarded and
finished with the first buffers from the EFPs, and looped around. In each cycle, Pack and
the EPF processes work on different sets of DataFrame buffers – with the switch-over
safely coordinated by the p.run communications.

5. Performance Evaluation of ASP

In order to test the software adequately, a number of outputs were added to the processes in
the application. Figure 6 shows the outputs from each component.

The EFP process has two outputs: a binary output, which records every byte received
from the ASP process, and a parsed data file, which records the result of the parsing
operation. Pack records the metrics of three operations: parallel reading from all its
channels, the time taken to copy the data into the PackedData object, and the time taken
to write the PackedData object to the One2NetChannel. The Deframe process merely
streams out to file all the data it receives.

S. Clayton and J. Kerridge / Active Serial Port 95

IR Detector
Active
Serial
Port

Extract
and

Frame
UnPack

UART
Byte

stream
Framed

Data
Packed

Data
Framed

Data

Ethernet

Detector Part PTD Part

De
framePack

Packed
Data

binary
output

parsed
data timings parsed

data

Figure 6: Test Outputs from the Software

If the system is working correctly, the parsed data output by the EFP process should be
exactly the same as the data recorded by its analogous Deframe process. In this way, the
correctness of the Ethernet channel communications can be tested. This does not test the
parsing process itself, which was proved to be correct through comparison testing with
Irisys’ own software. For the sake of clarity, figure 6 shows only one set of ASP, EFP and
Deframe processes. The intended system will have an arbitrary number of these running in
parallel. As such, the tests defined in Table 1 all involve reading from between 3 to 4 serial
ports.

Table 1: Allocation of Processes and Detectors to the Available Processors

2 Ghz Athlon 400Mhz Pentium Detector 1 Detector 2

Test 1 DetectorPart
PTDPart - 4 ports -

Test 2 DetectorPart
PTDPart - 2 ports 2 ports

Test 3 DetectorPart PTDPart 4 ports -

Test 4 DetectorPart PTDPart 2 ports 2 ports

Test 5 PTDPart DetectorPart 3 ports -

Test 6 PTDPart DetectorPart 2 ports 1 port

The machines used for testing are a 2 Ghz Athlon with 1Gb RAM running Windows XP
Pro and a 400MHz Pentium with 128Mb RAM running Windows 2000. Serial cable
splitters were used, so that one detector could potentially be connected up to four serial
ports. Although the Athlon could be upgraded to four serial ports, the Pentium could only
be upgraded to three. This is reflected in Table 1, which gives an overview of the tests that
were carried out. Two separate Irisys detectors of the same model were used. Splitting the
signal from one detector to two or more ports has the effect of stressing the serial port and
parsing processes, as they will all receive data at the same time. At the same time, this is
also a good test of parallelism in action. Processing the outputs from two or more detectors
is a good test of the efficacy of the Pack process, as this must handle inputs from three to
four EFP processes in parallel. The binary output file, that recorded every input from the
serial port process, permitted comparison between ports that received data from the same
detector. Where parse errors occurred, it was possible to check the binary output and rule
out errors in the parser itself.

96 S. Clayton and J. Kerridge / Active Serial Port

Each test was run for two minutes. The metrics collected are presented here as average
times, in milliseconds, for each packet to be parsed and each PackedData object to be
written out to the Ethernet. The parsed data output file generated by each EFP process
could be directly compared, byte for byte, with the file generated by its analogous Deframe
process. In all of the tests, the files were exactly identical. The sharing of buffers between
the EFP processes and the Pack process might allow for some data to be corrupted, if that
sharing were not properly synchronised by the channel communication of their references.
As all the output data files were identical, this shows that this never happened during any of
the tests. Parse errors were only detected in the last test, where two detectors were
connected to the slower 400Mhz Pentium. No other parse errors were reported.

Metrics were calculated for the parsing of each target in the byte stream, for each port.
They were also calculated for the operations of the Pack process. Tables 2 and 3 shows the
average time in milliseconds for each of the operations. There is a striking similarity in the
network performance between the slower Pentium and the Athlon. However, as expected,
the average parse operations were significantly slower.

Table 2: Average times for the Extract and Frame Process in milliseconds

Port 1 Port 2 Port 3 Port 4
Test 1 29.217 29.217 29.213 29.213
Test 2 30.531 30.516 29.362 29.362
Test 3 31.947 31.947 31.947 31.947
Test 4 31.510 31.509 32.579 32.579
Test 5 34.693 34.707 34.696 -
Test 6 35.683 35.729 35.706 -

In Test 1 and Test 2, the time taken to read from all the channels in parallel was
significantly higher than all the other tests. This is explained by the fact that, as these tests
were conducted using the loopback address, network operations were only on average 3.77
milliseconds. Therefore, the process would have been waiting on input from its channels.
As Table 3 shows, the times taken by the Pack process were overall very similar. From this
we can conclude that the determining factor is the speed at which the detector sends its
data, rather than the overhead of the network operation itself.

In Test 4 and Test 6, where two detectors were attached through serial cable splitters to
each machine, the resulting time taken was exactly the same on the Athlon as the Pentium.
This suggests that the difference between detector 1 and detector 2 sending their data
accounts for the greater time taken in packing the data for transmission across the Ethernet.

Table 3: Average times for the Pack process in milliseconds

Parallel
read Pack Data Write to

Ethernet Total

Test 1 28.447 0.0339 3.841 32.322
Test 2 28.515 0.0376 3.718 32.271
Test 3 11.630 0.0294 20.679 32.338
Test 4 15.279 0.0870 19.785 35.151
Test 5 14.298 0.0711 19.663 34.032
Test 6 15.279 0.0870 19.785 35.151

S. Clayton and J. Kerridge / Active Serial Port 97

6. Building a Scalable System

The test results given above demonstrate that a system with multiple detectors can be
constructed and that the data can be transmitted over an Ethernet to a processing subsystem.
The design is thus inherently scalable. The limit to scalability will in fact be determined by
the number of people in the field of view of the detectors and the effect this has on the
accuracy of the system in terms of the number of frames that will be lost and the effect this
has on the performance of the system in tracking individuals from one detector’s field of
view to that of an adjacent one. Calculations suggest that if there are more than 10 people
in the field of view then the time taken to transfer the data over the serial link is longer than
the time available when the detector is working at 30 frames per second. From the
evidence above, this would seem to be a more pressing limit to scalability than the
performance of the underlying processing system.

The likely scenario would be a number of sensors connected, by wire, to an embedded
system that undertakes initial data capture and immediate processing and then sends the
data across a wireless network. The increasing availability of plug in wireless components
that can be attached to the Ethernet port of such embedded Java based systems means that
the size of the sensor layout is limited only by the coverage of the wireless network in the
area to be monitored.

7. Conclusions and Further Work

The ASP described in this paper has been designed specifically for the infrared sensor
application using PCs rather than embedded systems. For it to be used in a genuine
embedded system some modifications would be needed because reporting errors on
System.out is not feasible. However the modification is in fact quite simple. An
additional output channel from ASP is introduced to the application process connected to it.
This channel is used to send error values, which can then be interpreted by the application
process. The package javax.comm defines most of the required error values and all that
would be required are some additional error values pertaining to initialization and
configuration.

This paper has demonstrated that it is possible to construct real-time systems using
JCSP.net, which operate under constraints imposed by the devices that are connected to the
system. Furthermore, the system is inherently scalable and with advances in modern
embedded systems technology and the use of wireless network technologies the
applicability of the approach is not limited to applications that rely on wired connections
between components.

The next stage in the development is to use a number of sensors working together to
monitor a larger area. This however, is not a problem for the input of the data from the
sensors because we have demonstrated its feasibility. The challenge in the next phase is to
track a person as they move from one field of view to that of another detector. We have
achieved this in a corridor application, where the movements of pedestrians are confined,
essentially to one direction [5]. When monitoring a rectangular area the complexity of
processing increases and yet again we would expect to deploy parallel processing
techniques to solve this problem

98 S. Clayton and J. Kerridge / Active Serial Port

Acknowledgements

IRISYS Ltd, the manufacturers of the infrared detector, have given us access to confidential
information concerning the internal operation of their detector, which we gratefully
acknowledge. Sarah Clayton acknowledges the funding provided by the Student Awards
Agency for Scotland, who paid her tuition fees for the undergraduate degree of which, the
work reported in this paper formed her final year project. Discussions with colleagues,
Alistair Armitage, David Binnie, Frank Greig and Tim Chamberlain are gratefully
acknowledged. This research has been, in part, supported by a grant from the UK
Department of Transport in the LINK programme Future Integrated Transport with the
project PERMEATE (GR/N33706).

References

[1] A. Armitage, T.D. Binnie, J.M. Kerridge and L. Lei, “Measuring Pedestrian Trajectories with Low Cost
Infrared Detectors: Preliminary Results”, Pedestrian Evacuation and Dynamics – 2003, Galea, E.R. (ed),
University of Greenwich, London, UK. 2003.

[2] M.V. Mansi, S.G. Porter, J.L. Galloway and N. Sumpter, “Very low cost infrared array based detection
and imaging systems” (SPIE) Aerosense 2001, Orlando, Florida USA, 17-19 April 2001

[3] N. Stogdale, S. Hollock, N. Johnson and N. Sumpter (2003), “Array based infrared detection: an
enabling technology for people counting, sensing, tracking and intelligent detection”, SPIE, USE 3,
5071-94

[4] Quickstone Ltd. “An Introduction to the JCSP Network Edition”. Retrieved November 20, 2003 from:
http://www.quickstone.com/xcsp/jcspnetworkedition/ . 2003.

[5] J.M. Kerridge, A. Armitage, T.D. Binnie and L. Lei, “Monitoring the Movement of Pedestrians Using
Low-cost Infrared Detectors: Initial Findings”. 2004 Transportation Research Board, Washington,
January 2004, paper 2185. 2004.

[6] P. Niemeyer and J. Knudsen, J. “Learning Java (2nd ed.)”. Sebastopol: O’Reilly. 2002.
[7] P.H. Welch, private communication, January 2004, by email, concerning the structure of JCSP AWT

components confirming a proposition sent to him.
[8] T. Lindholm and F. Yellin. “The Java Virtual Machine Specification”. Reading: Addison-Wesley. 1997.
[9] B. Venners. “Inside the Java Virtual Machine”. London: McGraw-Hill. 1998.
[10] P.H. Welch. “Process Oriented Design for Java: Concurrency for All”. Retrieved, October 2003, from:

http://www.cs.kent.ac.uk/projects/ofa/jcsp/jcsp.ppt . 2002.
[11] P. Brinch-Hansen. “Java’s Insecure Parallelism”, ACM SIGPLAN Notices, Volume 34, Issue 4, 1999,

Pages: 38 – 45. 1999.

	Introduction and Motivation
	Process Structure of the Data Collection System
	Design and Implementation of Active Serial Port
	Extract and Frame Process
	Performance Evaluation of ASP
	Building a Scalable System
	Conclusions and Further Work

