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Abstract. This paper reports the specification of a sound concept for themobility of
network-channel-types in KRoC.net. The syntax and semantics of KRoC.net have
also been modified in order to integrate it more seamlessly into theoccam-π lan-
guage. These new features are currently in the process of being implemented. Recent
developments inoccam-π and KRoC (such as live/dead channel-type-ends and mo-
bile processes) are described, together with their impact on KRoC.net. This paper
gives an overview of the recent developments in KRoC.net, and presents its proposed
final semantics, as well as the proposed interface between the KRoC.net infrastructure
and the KRoC compiler.

1 Introduction and Motivation

Distributed applications are increasingly important in today’s world. Infrastructures such as
the Grid [1, 2, 3] are specifically designed for the distribution of large computational tasks
onto decentralised resources. Many systems supporting the development of distributed appli-
cations are built on the paradigm of remote process or method calls. This applies to systems
such as CORBA [4], or the Globus Toolkit [5, 6], which is built on Grid technology to pro-
vide a basic infrastructure for metacomputing. Other architectures are built on distributed
shared memory or tuple spaces, for instance Linda [7] and Java PastSet [8]. Another com-
mon approach for developing distributed applications is the Message Passing Interface [9],
implemented for instance in the popular LAM/MPI library [10].

KRoC.net is the networking extension of KRoC, the Kent Retargetableoccam Com-
piler [11]. KRoC has been developed at the University of Kent. The programming language
it compiles isoccam-π, the new dynamic version of the classicaloccam1 [12]. Originally
targeted at transputer platforms, it was specifically designed for the efficient execution of
fine-grained, highly concurrent programs.

The dynamic features ofoccam-π [13, 14] offer a new way of distributed application
development. A well-designed parallel programming language likeoccam-π can naturally
capture the highly parallel ‘real world’. This is particularly so if it enables the programmer to
use the same concurrency mechanisms for local and distributed applications. Networked ser-
vices in KRoC.net are represented bynetwork-channel-types (NCTs). These are networked
versions ofoccam-π’s mobile channel-types. Thus, distributedoccam-π applications can
be designed and programmed in the same way as local ones.

KRoC.net has gone through a number of development cycles [15, 16, 17]. Reported here
is the planned support for the mobility of NCTs. Supporting this feature, NCTs will be fully
transparent in their use; the programmer can communicate over them and move them around
just like their local equivalents. We are also incorporating various recent developments in
occam-π (such as live/dead channel-type-ends and mobile processes) into KRoC.net.

1occam is a trademark of ST Microelectronics.
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The syntax and semantics of KRoC.net have been modified in order to integrate it
more seamlessly into theoccam-π language. We have now specified a final semantics for
KRoC.net and the interface between the KRoC.net infrastructure and the compiler. Support-
ing mobility, network-channel-types will be fully exchangeable with their local equivalents
so far as the processes using and moving them are concerned (i.e. the networking will be
transparent). The final step in the development of KRoC.net will be the completion of the
implementation of the KRoC.net infrastructure and its full integration with the KRoC com-
piler, so that KRoC.net can be part of a future KRoC release.

Section 2 discusses some new features inoccam-π that have influenced the design of
KRoC.net. Section 3 explains KRoC.net’s basic architecture. Section 4 introduces the new
concept of network-handles. Sections 5 and 6 discuss KRoC.net’s new features in detail.
Section 7 summarises the paper and identifies areas for future work.

2 Related Extensions

We have proposed, and partly already implemented, various new features foroccam-π. This
section gives a summary of those of the new features that have had an impact on the design
of KRoC.net in one way or another.

2.1 GATE, HOLE and Dead Channel-Type-Ends

These have been proposed by Welch [18] (and may be added to KRoC in the near future) to
tackle a drawback arising from the new dynamic features inoccam-π. The classical static
occam fixed the design of its process networks (and the channels between the processes) at
compile time. It was always obvious over which ‘interface’ a process would communicate
with its environment. With the recently introduced mobile channel-types [13], we have unfor-
tunately also introduced the possibility of hidden communication routes that are not declared
in the interface (i.e. the header) of the process.

Previously, the ways in which a process interacted with its environment (e.g. through
channels and barriers) could be statically and explicitly listed in the process header. In-
troducing mobile channel-types means that the set of possible interactions for any process
can grow at runtime, so that interactions can take place that were not declared by its inter-
face. This raises specification and security issues that are similar to those found in common
OO languages (where aliasing is endemic and the opportunities for object interaction exceed
those declared by their public interfaces [19, 20]).

Within our research group at Kent, the following rules have been proposed, for which we
now invite feedback from the community. They ensure that there are no hidden interactions
between a process and its environment — a property which we call ‘structural integrity’ —
despite the mobility of channel-types:

Definition:

(a) Channel-type-end parametersmaybe qualified as beingGATE or HOLE. GATE andHOLE
parameters arelive.

(b) All other channel-type-ends aredead(i.e. locally declared channel-type-end-variables
and parameters not qualified asGATE or HOLE).2

2This property of channel-type-ends isstatic — each variable is eitheralwaysGATE or alwaysHOLE or
alwaysdead.
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Usage:

(c) A process may not communicate over a dead channel-type-end.

Assignment/Communication:

(d) GATE channel-type-end parameters haveVAL semantics — they may not be changed
inside the process in whose header they are declared.

(e) GATE, HOLE and dead channel-type-ends may be freely assigned/communicated to each
other as long as this does not break Rule (d).3

Parameter-Passing:

(f) Arguments forGATE parameters may only be live variables — unless the process is be-
ing FORKed. If the process is beingFORKed, both live and dead arguments are allowed,
as long as this does not break Rule (d).4

(g) Inside the scope of aCLAIM, a claimedSHARED channel-type-end may be passed as an
argumentonly to a non-sharedGATE parameter of a process that is not beingFORKed.5

(h) HOLE parameters are initially undefined when a process starts. Arguments forHOLE

parameters may be outerHOLE parameters of matching type which must be currently
undefined, or the keywordHOLE. The latter may only be supplied toFORKed processes.
HOLE parameters have no return value (i.e. for the calling process they are still unde-
fined when the callee process terminates).

(i) Arguments for dead parameters may be dead orHOLE variables — unless the process
is beingFORKed. If the process is beingFORKed,GATE variables are also allowed as
arguments, as long as this does not break Rule (d).

The aim of these rules is that processes only interact with their environment through for-
mally declared live parameters. In the case ofHOLE parameters, what they are bound to may
change dynamically, but only by explicit action of the processes themselves (by internally as-
signing or communicating a newly acquired channel-type-end to one of itsHOLE parameters).
But the external shape of a process does not change — we have structural integrity. There
are no undeclared routes into or out from the process.

Additional issues arise fromFORKing. It is proposed to restrict forking so that a process
cannot fork off another process without the calling process being aware of it. This could
be implemented by introducing a ‘FORKS’ keyword after which a process would declare all
possible processes that it (or any subsequently called processes) might fork off (similarly to
exceptions and the ‘throws’ keyword in Java). Since this might be a rather heavy burden
for the programmer, we will probably go for a lighter approach. This could be a marker by
which a process could be marked as a ‘FORKING PROC’. Only FORKING PROCs would then
be allowed to fork off other processes or subsequently call otherFORKING PROCs.

3It would, for instance, be possible to assign aSHARED GATE parameter to a dead variable, but it would
not be possible to assign a non-sharedGATE parameter to another variable because this would leave theGATE
parameter undefined, which is not allowed. Nothing can be assigned/communicated to aGATE.

4Note that the semantics of passing arguments to parameters ofFORKed processes is anyway that of com-
munication. So, this clause conforms with Rule (e).

5This forces conformity to the existing rule that inside aCLAIM, a live parameter may only be used for
communication; it technically becomes non-shared and its value frozen.
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For KRoC.net, the new live/dead property of channel-type-ends is important when it
comes to moving NCT-ends. An NCT-end may be allocated on one node, and then passed
on to several different nodes before it is actually used for communication. We will be able
to increase the performance of KRoC.net by only setting up the network infrastructure and
the Generic Protocol Converters (GPCs) [16] for an NCT if an NCT-end is assigned to a live
variable. The network infrastructure and the GPCs will not be set up as long as it is assigned
to a dead variable, which may be passed on to several different nodes before it ends up in a
live variable that actuallyis used for communication.

2.2 Mobile Processes

occam-π’s new mobile processes are planned to be supported by KRoC.net as well. That
is, it will be possible to move mobile processes to remote nodes via networked channels.
The semantics of mobile processes has changed quite significantly compared to the first
proposals. Details about these changes and the first steps of their implementation can be
found in [14].

Particularly important for KRoC.net is the following:

The header of aMOBILE PROCess may only contain ‘synchronisation objects’
like channels, barriers, etc., as well asGATE or HOLE channel-type-ends. It may
notcontain data items or dead channel-type-ends.

This provides a clean interface when it comes to moving mobile processes to remote
nodes. When a mobile process, including its workspace, is moved to a remote node, also
channel-type-ends stored in this workspace must be moved to the new destination. This
would be done in exactly the same way and using the same mechanics as if they were moved
directly over a networked channel carrying channel-type-ends (i.e. channel-types may be
stretched between nodes). After moving both the mobile process and the channel-type-ends
it contains to the new location,6 all pointers in the process’ workspace to channel-type-ends
would be updated — the compiler knows where they are in the new location’s mobilespace.

3 Architecture

We introduce here some terms used in the rest of this paper:

• A nodeis anoccam-π program which is using KRoC.net, i.e. whose main process has
declared a network-handle (see Section 4).

• A network-channel-type (NCT)is a channel-type that connects several nodes, i.e.
whose ends are on more than one node. Anetwork-channelis the networked version
of a ‘classical’occam channel.

• A group of nodes forms a logicalapplication. In the non-networked world, node and
application would be congruent. In the networked world, an application is made up
of several nodes. Nodes can only communicate over NCTs that belong to the same
application as they do, and accordingly, each NCT can only connect nodes of the same
application.

6Note that this only applies to dead andHOLE variables.GATE parameters are re-assigned anyway when the
mobile process is invoked the next time, therefore it would be pointless to move them to the new location.
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• A Channel Name Server (CNS)is an external server that administrates applications,
nodes and NCTs. Each application has a name that is unique within the CNS by which
it is administrated. Within the application, each node and each NCT has a unique name
or automatically assigned ID. Each node has to register with a CNS before it can do any
network communication. NCTs are either allocated under an application-unique name
explicitlyvia the CNS, orimplicitly by moving ends of locally allocated channel-types
to remote nodes.

• The network-typeis the type of a network infrastructure used by KRoC.net. Every
network-type has its ownKRoC.net Manager(the process managing KRoC.net’s net-
work connections). If a node declares a network-handle of a particular network-type,
an instance of the respective KRoC.net Manager will be started. Details can be found
in Section 4. Currently, TCP/IP is the only supported network-type. However, adding
support for others will be relatively easy, as the front-end of the KRoC.net Manager
(which the compiler interfaces) is the same for all network-types; just the back-end
(the ‘network driver’) needs to be exchanged.

In summary, KRoC.net allows many network-types, each of which may be served by
many CNSes. Each CNS may administrate many different applications. Every application
may consist of many nodes which may be connected by many NCTs.

4 Network-Handles

KRoC.net will be released as a library bundled with KRoC. In order to be able to allocate
ends of network-channels and NCTs (see Section 5) inside a process, that process must de-
clare anetwork-handleas aGATE parameter in its header. A network-handle is the client-end
of the following channel-type declared in the KRoC.net library:

CHAN TYPE NET.HANDLE
MOBILE RECORD

CHAN NET.HANDLE.REQ req?
CHAN NET.HANDLE.REPLY reply!

:

The KRoC.net Manager holds the server-end, the user-level program holds the client-end
of the ‘NET.HANDLE’ channel-type. Each communication with the KRoC.net Manager over a
network-handle is a sequence of a ‘req’uest and a ‘reply’. However, these communications
are not meant to be done in the user-level code; they are wrapped by special processes.

For all allocations of NCTs, the network-handle is required. This ensures structural in-
tegrity, since the calling process will be aware of the fact that the callee might allocate an
NCT-end.

4.1 Typing Network-Handles

If the process that declares the network-handle is themainprocess of anoccam-π program,
the compiler forks off an instance of the KRoC.net Manager to run in parallel with the main
process.

For each network-type, there is a separate KRoC.net Manager. In order to know which
one to use, the network-handle in the main process must be typed. The compiler can then
use the correct KRoC.net Manager depending on the type of the network-handle. Currently,
the only supported network-type is TCP/IP, but as the KRoC.net Manager is modular in its



112 M. Schweigler / Adding Mobility to Networked Channel-Types

design, other types could easily be supported by exchanging the back-end of the KRoC.net
Manager.

So, the following code:

PROC main (CHAN BYTE keyb, scr, err, GATE NET.HANDLE$TCPIP! net)
... do stuff using ‘net’

:

would have the semantics of:

FORKING PROC main (CHAN BYTE keyb, scr, err, HOLE NET.HANDLE! net)
NET.HANDLE? net.handle.svr:
SEQ

net.handle.svr, net := MOBILE NET.HANDLE
FORK kroc.net.mgr.tcpip (net.handle.svr)
... do stuff using ‘net’

:

The ‘$TCPIP’ refers to the network-type. The compiler would in this case use
‘kroc.net.manager.tcpip’ as the KRoC.net Manager. A network-handle of another
network-type could be declared accordingly:

PROC main (CHAN BYTE keyb, scr, err, GATE NET.HANDLE$OTHERTYPE! net)
... do stuff using ‘net’

:

would have the semantics of:

FORKING PROC main (CHAN BYTE keyb, scr, err, HOLE NET.HANDLE! net)
NET.HANDLE? net.handle.svr:
SEQ

net.handle.svr, net := MOBILE NET.HANDLE
FORK kroc.net.mgr.othertype (net.handle.svr)
... do stuff using ‘net’

:

When anon-mainprocess declares a network-handle, itmaybe typed, but it does not have
to be. If it is typed, the calling process may only pass a network-handle of the same type to
the callee. If a network-handle is not typed, the calling process may pass any network-handle
to this parameter, either typed or untyped. So, if a non-main process wants to allocate NCTs,
it would declare something like:

PROC my.proc (<...>, GATE NET.HANDLE! net, <...>)
... do stuff using ‘net’

:

where the ‘NET.HANDLE’ parameter (untyped in this example) could be at any position in the
parameter list. In a non-main process, the declaration of a network-handle wouldnot cause
the forking of the KRoC.net Manager. It is just a parameter to which the calling process can
pass its own ‘NET.HANDLE’ variable as an argument.
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4.2 Shared Network-Handles

Network-handles may beSHARED. The normal rules for sharing channel-type-ends apply. If
the main process declares aSHARED network-handle parameter:

PROC main (CHAN BYTE keyb, scr, err, SHARED GATE NET.HANDLE$TCPIP! net)
... do stuff using ‘net’

:

this would have the semantics of:

FORKING PROC main (CHAN BYTE keyb, scr, err, SHARED HOLE NET.HANDLE! net)
NET.HANDLE? net.handle.svr:
SEQ

net.handle.svr, net := MOBILE NET.HANDLE
FORK kroc.net.mgr.tcpip (net.handle.svr)
... do stuff using ‘net’

:

A SHARED network-handle may be passed to many parallel processes who may then use it
to call KRoC.net’s special processes (e.g. the allocation processes described in Section 5.4).
To do this, the network-handle must beCLAIMed first (cf. Rule (g) in Section 2.1). So, a
non-shared network-handle would be used in this way:

PROC my.proc (<...>, GATE NET.HANDLE! net, <...>)
... declarations
SEQ

... do stuff
<alloc-proc> (net, <...>)
... do more stuff

:

whereas aSHARED network-handle would be used in the following way:

PROC my.proc (<...>, SHARED GATE NET.HANDLE! net, <...>)
... declarations
SEQ

... do stuff
CLAIM net

<alloc-proc> (net, <...>)
... do more stuff

:

4.3 Restrictions

The programmer should use the ‘NET.HANDLE’ channel-type only in certain ways; this may
be enforced by the compiler later. To comply with the rules, user-level code mayonly de-
clare (possiblySHARED) GATE client-ends of that channel-type (which may be network-typed)
in the headers of processes. It is not allowed to declare ‘NET.HANDLE’ channel-type-end-
variables that don’t meet these criteria. A user-level process may not declare channels carry-
ing ‘NET.HANDLE’ channel-type-end-variables (which would not make much sense anyway,
since onlyGATE client-end-variables are allowed — into which communication is prohibited
anyway, cf. Rule (d) in Section 2.1).

User-level code may not communicate over network-handles directly. The only thing for
which network-handles may be used is passing them as arguments to parameters — either to
user-level processes (who on their part can do the same) or to KRoC.net’s special processes
(who thenwill use the network-handle to communicate with the KRoC.net Manager).
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5 Network-Channels and Network-Channel-Types

Network-channels and NCTs are the ‘backbone’ of KRoC.net. KRoC.net usesoccam-π’s
existing paradigm of channels and channel-types as an abstraction on which networked ser-
vices are built. Channel communication, embedded in the semantics of the CSP calcu-
lus [21, 22], is a powerful paradigm for concurrent applications. Therefore KRoC.net uses the
same paradigm for distributed applications — which are concurrent by nature. Theoccam-π
programmer will therefore be able to use network-channels and NCTs in the same way as
their local equivalents. This transparency is the key requirement in KRoC.net, outweighing
all other requirements.

There are two ways to allocate an NCT: explicitly via the CNS, under a name that is
unique within the application to which the nodes belong who allocate the NCT’s ends; or
implicitly, by allocating a channel-type locally, and then sending one of its ends to a remote
node. In the latter case, the NCT will be assigned an application-unique ID as soon as it
becomes networked. In both cases, no matter how the NCT-ends were originally allocated,
their usage (communication, claiming of shared ends, moving of ends) has the usual syntax
and semantics. This will all be transparent to the programmer.

5.1 Joining An Application

The first thing which a node must do in order to use KRoC.net is join an application on a
CNS. Each node belongs to exactly one application. To join an application, the following
process must be called:

PROC net.join.app (GATE NET.HANDLE! net, VAL []BYTE cns, app.name, node.name,
RESULT INT result, RESULT MOBILE []BYTE full.node.name)

• ‘net’ is the network-handle.

• ‘cns’ is the name or location of the CNS that administrates the application that the
node wants to join. If the string is empty, the default CNS is used. Otherwise, if the
string does not contain a ‘$’, it will be regarded as the name of a non-default CNS. If
the string has the form ‘<net-type>$<location>’, it will be used to find the CNS
directly (without looking at a configuration file).

• ‘app.name’ is the name of the application that the node wants to join. This can be any
name, containing any characters.

• ‘node.name’ is the name of the node. This can be any name that does not contain ‘$’.

• ‘result’ is the return value of the process. It is either an OK or an error message (e.g.
if the CNS is not available).

• ‘full.node.name’ is a return value that contains a unique identifier of the node. With
this mechanism, it is possible for identical nodes (with the same name) to join the same
application. This could be several ‘client nodes’ who want to communicate with the
same ‘server node’, or similar architectures. If several nodes with the same name try
to join the same application, the CNS will add a unique number to their name, so that
they can be distinguished. So, if three nodes named ‘darwin’ try to join the same
application, they will be named ‘darwin’, ‘ darwin$1’ and ‘darwin$2’ by the CNS.

The ‘net.join.app()’ process is implemented by the following sequence of communi-
cations over the network-handle:
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net[req] ! join.app; <cns>; <app-name>; <node-name>
net[reply] ? join.app; <result>; <full-node-name>

• ‘<cns>’, ‘ <app-name>’ and ‘<node-name>’ are ‘MOBILE []BYTE’ arrays. The param-
eters of the ‘net.join.app()’ process are used for these.

• ‘<result>’ is an ‘INT’; ‘ <full-node-name>’ is a ‘MOBILE []BYTE’ array. They are
used as the return values of the ‘net.join.app()’ process.

5.2 Extended Memory Structure For Channel-Types

The memory block of a channel-type, which is located in the dynamic mobilespace of the
node and to which the channel-type-end-variables point, is subsequently calledchannel-type-
block (CTB). A traditional (local) channel-type is made up of exactly one CTB. An NCT is
made up of several CTBs, namely one CTB on each node where there are end-variables of
that NCT. The CTBs of an NCT are connected by the KRoC.net infrastructure.

In order to accommodate the needs of NCTs, KRoC needs to extend the memory structure
of CTBs. Currently, a CTB contains the channel-words, the reference-count, and the client-
resp. server-semaphores ifSHARED. This needs to be extended by the following:

1. A state-flagthat has one of the following states:local, networkedor localised.

2. A live-reference-countwhich counts the number of channel-type-ends held by aGATE

or HOLE variable.

3. A connected-flagthat has one of the following states:disconnectedor connected.

4. A state-semaphorethat protects the state- and the connected-flag.

5. A pointer to theNCT-handle(an ‘NCT.HANDLE!’ client-end-variable).

6. A pointer to theclient-handle(a ‘CLI.HANDLE!’ client-end-variable).

7. A pointer to theserver-handle(a ‘SVR.HANDLE!’ client-end-variable).

The possible states of a CTB, as well as the newly introduced handles, are described in
the following sections.

5.3 States of a Channel-Type-Block

A CTB can be in several states. The simplest state is thelocal state. In this state, the CTB
is in no way connected to the KRoC.net Manager. Communication and claiming of shared
ends is done in the traditional way. A CTB can only be in local state if it has been allocated
traditionally:

THING! thing.cli:
THING? thing.svr:
thing.cli, thing.svr := MOBILE THING

In order to use the CTB as part of an NCT, it needs to be innetworkedstate. A CTB can
enter networked state in the following ways:
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• The CTB has been allocated by allocating its end-variable(s) as part of an NCT explic-
itly via the CNS. Details can be found in Section 5.4. In this case, the CTB starts its
life in networked state (it will never be in local state at all, but may become localised
— see below).

• The CTB has originally been allocated traditionally, i.e. it was in local state at the be-
ginning. Then an end-variable of the CTB is moved to a remote node over a networked
channel. As soon as that happens, the state of the CTB changes to networked.

• The CTB starts its life when an end-variable of an NCT is received by our node (pro-
vided that no end-variables of that NCT were present on our node before). Like in the
first case, the CTB starts its life in networked state and will never be in local state. De-
tails about the movement of channel-type-ends over networked channels can be found
in Section 6.

The last state islocalised. If a CTB is in localised state, this means that it has been in
networked state before, but currentlyall end-variables of the NCT are on our node (i.e. the
CTB is currently the only one that the NCT is made up of). If this is the case, the claiming and
communication will be like in local state. However, previously set-up network infrastructure
and and GPCs will remain in place (hence the distinction between ‘local’ and ‘localised’). A
CTB can become localised in the following ways:

• The NCT to which the CTB belongs isone2one(i.e. it has a non-shared client-end and
a non-shared server-end). Our CTB was referred to by one of the ends. Either the other
end was not yet allocated and is now allocated on our node as well; or the other end
was on a remote node and now moves (maybe back) to our node.

• The NCT is eitherany2oneor one2any(i.e. it has oneSHARED and one non-shared end)
and has been allocated implicitly (not via the CNS). Only the non-shared end has ever
been on a remote node. Now the non-shared end moves back to our node.

Note that in any other case (any2anyNCTs, or explicitly allocated any2one or one2any
NCTs, or implicitly allocated any2one or one2any NCTs whoseSHARED end was on a remote
node before), the CTB cannot enter localised state, because our node can never be sure that no
end of this NCT is on a remote node. The reason is that new variables of aSHARED channel-
type-end can be created on a remote node at any time (by assigning/communicating existing
variables into new ones; or, in the case of explicitly allocated NCTs, by allocating new ones
via the CNS). Although it would theoretically be possible to devise a protocol to keep track
of these things, in practice this may be very complex and far outweigh the advantages of
having the localised state in the first place.

The connected-flag can be in two states:disconnectedor connected. It is used to de-
termine whether the network infrastructure and the GPCs have already been set up. If the
CTB is in local state, the connected-flag is always ‘disconnected’. As soon as the CTB enters
networked state, the run-time system will check the live-reference-count. If it is greater than
0, it will set the connected-flag to ‘connected’ and set up the network infrastructure and the
GPCs. If the live-reference-count was 0 when the CTB entered networked state, as soon it
increases the connected-flag will be set to ‘connected’ and the network infrastructure and the
GPCs be set up.

Once the connected-flag is ‘connected’, it will stay ‘connected’ as long as the CTB exists.
Even if the live-reference-count gets back to 0, the connected-flag will never change back to
‘disconnected’. This also means that once the network infrastructure and the GPCs have been
set up, they will remain in place until the CTB has been shut down.
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If the CTB’s state is ‘localised’, the connected-flag will not be changed even when the
live-reference-count changes. It will remain ‘connected’ or ‘disconnected’, whichever it was
before the CTB entered localised state. When the CTB goes back from localised to net-
worked state and the connected-flag is ‘disconnected’, the behaviour is the same as if the
CTB changes from local to networked state (checking the live-reference-count etc.) If the
connected-flag is ‘connected’ already when the CTB goes from localised to networked state,
the connection needs to be confirmed with the KRoC.net Manager. The reason for this, as
well as details on connecting CTBs and confirming the connection, can be found in Sec-
tion 5.6.

The state-semaphore protects the state- and the connected-flag. It must be claimed before
changing one of the flags, and during actions that depend on the state of the CTB. Details
will be given later in the paper when these actions are discussed.

5.4 Explicit Allocation of NCT-Ends

Explicit allocation of an NCT-end is made by invoking a process such as:

PROC net.alloc.one2one.client (GATE NET.HANDLE! net, <CT>! the.cli,
VAL []BYTE nct.name, RESULT INT result)

This allocates the client-end of a one2one NCT (an NCT with a non-shared client-end
and a non-shared server-end). Similar processes exist for the allocation of server-ends, and
for any2one, one2any and any2any NCTs.

The first parameter is the network-handle. If a process does not have one, it cannot
allocate an NCT-end. This further guarantees our notion of structural integrity — a process
cannot establish external connections unless explicitly given that capability. The network-
handle is that capability. The other parameters are the channel-type-end being networked,
the name for the NCT and a result code. Implementation requires external communication
with the CNS, which may fail. In this case the allocation process would return an error.

The full set of allocation processes and details of their parameters and implementation is
given in Appendix A.

5.5 Implementation of Network-Channels

Network-channels — i.e. networked single (classicaloccam) channels — will be imple-
mented as ‘anonymous’ NCTs that contain exactly one channel. This approach is similar to
the implementation of the anonymousSHARED channels discussed in [13].

The following declaration:

NET CHAN INT iw!: -- These network-channel-ends
NET CHAN BOOL br?: -- must be allocated before
SHARED NET CHAN BOOL sbw!: -- we can communicate over them!
SHARED NET CHAN INT sir?:
... allocate iw!, br?, sbw!, sir?
... use iw!, br?, sbw!, sir?

would have the semantics of:

CHAN TYPE $anon.INT -- compiler-generated type
MOBILE RECORD

CHAN INT x?: -- server-end holds reading-end
:
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CHAN TYPE $anon.BOOL -- compiler-generated type
MOBILE RECORD

CHAN BOOL x?: -- server-end holds reading-end
:

$anon.INT! iw$cli:
$anon.BOOL? br$svr:
SHARED $anon.BOOL! sbw$cli:
SHARED $anon.INT? sir$svr:
... allocate iw$cli, br$svr, sbw$cli, sir$svr
... use iw$cli, br$svr, sbw$cli, sir$svr
... resp. iw$cli[x], br$svr[x], sbw$cli[x], sir$svr[x]

where the server-end of the compiler-generated channel-type by definition holds the reading-
end of the channel. Before a process can communicate over a network-channel-end, that end
needs to be allocated. This is done by allocation processes similar to those for NCT-ends.
Details can be found in Appendix A.

Occurrences of network-channel-ends in user-level code are replaced by the compiler
by the appropriate generated variables. In parameters, network-channel-ends are replaced
by the generated channel-type-end (e.g. ‘br?’ is replaced by ‘br$svr’). When used for
communication, they are replaced by the actual channel-field (e.g. ‘iw ! 5’ is replaced by
‘iw$cli[x] ! 5’).

5.6 Connecting a Channel-Type-Block

As pointed out in Section 5.3, the connected-flag stores whether the network infrastructure
and the GPCs for the CTB have already been set up. As soon as the live-reference-count
becomes greater than 0 (which may be instantly after the allocation if the CTB is allocated
into a live variable), the CTB must be connected. This is done (automatically by the run-
time system) by first claiming the state-semaphore and updating the connected-flag, and then
carrying out the following sequence of communications over the NCT-handle stored in the
CTB:

nct.handle[req] ! connect; <chan-descs>; <cli-claimed>; <svr-claimed>
nct.handle[reply] ? connect; <cli-handle>; <svr-handle>;

<write-handles>; <read-handles>

• ‘<chan-descs>’ is a ‘MOBILE []CHAN.DESC’ array whose size equals the number of
channels in the CTB. ‘CHAN.DESC’ is the following record structure7:

DATA TYPE CHAN.DESC
RECORD

BOOL write.read:
:

– ‘write.read’ specifies whether the channel is a writing-end or a reading-end
from the point of view of the server-end of the CTB. It is either ‘NET.WRITER’ or
‘NET.READER’.

7We implement the channel descriptor as a record, even though it contains only one element at present, in
order to be able to easily extend it if necessary (e.g. to support the buffered channels planned foroccam-π in
the future).
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• ‘<cli-claimed>’ and ‘<svr-claimed>’ are ‘BOOL’s. They specify whether the client-
resp. server-end of the CTB is claimed at the moment when it is connected — which
can only be the case if the CTB was in local or localised state and has just entered
networked state (cf. Section 5.3).

• ‘<cli-handle>’ and ‘<svr-handle>’ are channel-type-ends of type ‘CLI.HANDLE!’
resp. ‘SVR.HANDLE!’, which will be stored in the CTB. The server-ends of the client-
and the server-handle are held by the KRoC.net Manager.

• ‘<write-handles>’ and ‘<read-handles>’ are dynamicMOBILE arrays whose size
equals the number of channels in the CTB. They contain channel-type-ends of type
‘WRITE.HANDLE!’ resp. ‘READ.HANDLE!’, who on their part contain the necessary
channels to be plugged into the GPCs. (For details on how the GPCs work, refer
to [17].) The server-ends of the write- and read-handles are held by the KRoC.net
Manager.

The runtime system will thenFORK off a DECODE.CHANNEL and anENCODE.CHANNEL
process for each channel in the CTB, and connect them to the reading- resp. writing-ends
of the channel-ends in the CTB on the one hand, and to the writing- resp. reading-handles,
that are connected to the KRoC.net Manager, on the other hand. When all this is done, the
state-semaphore can be released.

5.7 Confirming the Connection of a CTB

If the CTB is in localised state and is already connected, changing back to networked state
requires to ‘confirm the connection’ of the CTB (again, this is done automatically by the
runtime system). The reason is that when the CTB is in networked state and connected, the
KRoC.net Manager needs to know whether the client- resp. server-end of the CTB is claimed.
Confirming the connection is done immediately after changing the state to networked (while
the state-semaphore is still claimed), and implemented by the following communication se-
quence:

nct.handle[req] ! confirm.connect; <cli-claimed>; <svr-claimed>
nct.handle[reply] ? confirm.connect

5.8 Shutting Down a Channel-Type-Block

If the reference-count of a CTB becomes 0 (which means that all its end-variables have gone
out of scope or been overwritten), the runtime system will send a shut-down request to the
NCT-handle:

nct.handle[req] ! shut.down
nct.handle[reply] ? shut.down

The KRoC.net Manager will shut down the GPCs connected to the CTB and then send
the reply. When the reply is received, the CTB can be deallocated.

Similarly, the entire KRoC.net Manager as such will be shut down by sending a shut-
down signal to the network-handle at the very end of the main process.
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6 Mobility of NCT-Ends

6.1 Claiming and Releasing NCT-Ends

In order to communicate over NCT-ends, they must be claimed from the KRoC.net Man-
ager. This is done (automatically) by sending a request to the KRoC.net Manager over the
client- resp. server-handle. ForSHARED ends, this request will be generated at the beginning
of a CLAIM block, right after the CTB’s client- resp. server-semaphore has been success-
fully claimed. At the end of theCLAIM block, just before releasing the client- resp. server-
semaphore, a release request is sent to the KRoC.net Manager in order to release the end.

Non-shared ends are claimed when the CTB gets connected. They remain claimed as
long as they stay on the same node. When a non-shared end is sent to another node (see
below), theDECODE.CHANNEL process is responsible for releasing the end before it leaves the
old node. When the end is received by the destination node, theENCODE.CHANNEL process
immediately claims it again as soon as it arrives, provided that a connected CTB for that NCT
already exists on this node; otherwise the end will be claimed, as pointed out above, when its
new CTB gets connected.

The claim and release requests are (automatically) implemented as follows:

cli.or.svr.handle[req] ! claim
cli.or.svr.handle[reply] ? claim

cli.or.svr.handle[req] ! release
cli.or.svr.handle[reply] ? release

When the KRoC.net Manager receives a claim or a release request, it forwards it to the
administration nodeof the NCT. Initially, this is the first node that allocates an end of that
NCT. The CNS stores the administration node of each NCT. Should that node be shut down,
the administration of the NCT will dynamically be moved to another node that holds a CTB
that is part of the NCT.

The administration node holds FIFO queues of client-ends and server-ends that have made
a claim request. When a previously claimed end is released, the next end in the queue is
selected. When this happens, an acknowledgement is sent to the KRoC.net Manager of the
node on which the end is located. This acknowledgement contains the current location of the
opposite end of the NCT. The KRoC.net Manager then returns a reply over the client- resp.
server-handle.

The network link between the nodes of the claimed client-end and the claimed server-end
is established dynamically on demand.

6.2 Moving NCT-Ends

The movement of NCT-ends was inspired by the mobile channels in Muller and May’s Icarus
language [23]. However, implementing mobility for KRoC.net’s NCT-ends is more complex
because it needs to take into account the special properties of channel-types (e.g. that they
are bundles of channels, that the ends may be shared, etc.), as well as KRoC.net’s general
architecture with the CNS etc.

Moving a channel-type-end is a three phase approach, automated within the KRoC.net
infrastructure. Firstly, theDECODE.CHANNEL process reads the channel-type-end from the
user-level application. If the CTB is local or localised, it claims the state-semaphore and
changes the state to networked. If the state of the CTB was local, an implicit allocation is
done via the network-handle, similar to the mechanism for explicit allocation described in
Appendix A:
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net[req] ! alloc.implicit.sending; <x2x>; <c/s>; <ctb-pointer>
net[reply] ? alloc.implicit.sending; <nct-handle>

where ‘<c/s>’ specifies whether a client-end or a server-end is sent away. The other fields
have the same meaning as discussed in Appendix A. The KRoC.net Manager will contact
the CNS, where the new NCT will be registered under an application-unique ID. This ID is
a ‘$’ followed by a number. As with explicitly allocated NCT-ends, the live-reference-count
is checked and the CTB is connected/the connection confirmed if necessary when networked
state is entered.

In the second stage,DECODE.CHANNEL sends a release request to the KRoC.net Man-
ager if the end is non-shared and the CTB was already networked and connected. Then
DECODE.CHANNEL passes the ‘<ctb-pointer>’ to the KRoC.net Manager, together with a
flag which indicates that this pointer refers to a channel-type-end rather than a data item. The
KRoC.net Manager matches the ‘<ctb-pointer>’ with the name or ID of the NCT to which
the CTB belongs. Then it sends a special ‘data packet’ to the remote node, containing the
name of the NCT. On the receiving node, the KRoC.net Manager finds out whether an NCT-
end of that name is already located on the receiving node. If yes, it sets ‘<ctb-pointer>’
to the pointer of the matching CTB — otherwise it sets ‘<ctb-pointer>’ to 0. It sets
‘<is-localised>’ to the correct value (i.e.TRUE in the cases mentioned in Section 5.3).

In the last stage, the KRoC.net Manager passes ‘<nct-name>’, ‘ <ctb-pointer>’
and ‘<is-localised>’ to ENCODE.CHANNEL. ENCODE.CHANNEL checks whether
‘<ctb-pointer>’ is 0, in which case it allocates a new CTB and sets its initial state
to ‘networked’. Then it sends an ‘implicit allocation’ request via the network-handle:

net[req] ! alloc.implicit.receiving; <x2x>; <c/s>; <nct-name>; <ctb-pointer>
net[reply] ? alloc.implicit.receiving; <nct-handle>

where ‘<c/s>’ specifies whether a client-end or a server-end has been received. As with
explicitly allocated NCT-ends, the live-reference-count is checked and the CTB is connected
if necessary.

If the ‘<ctb-pointer>’ received from the KRoC.net Manager was not 0,
‘<is-localised>’ is checked. If it isTRUE, the state-semaphore of the (already existing)
CTB would be claimed, the state be set to ‘localised’, and then the state-semaphore be re-
leased. If the (already existing) CTB does not become localised, and if it was already con-
nected and the received NCT-end is non-shared,ENCODE.CHANNEL sends a claim request for
the received end to the KRoC.net Manager.

Once this is all done,ENCODE.CHANNEL communicates a channel-type-end pointing to
‘<ctb-pointer>’ to the user-level application.

7 Conclusions and Future Work

This paper has presented the specification of those of KRoC.net’s features that were still
missing in order for it to be fully transparent. The most important development was the
specification of KRoC.net’s mobility semantics. Other improvements have been made in
order to make the use of KRoC.net as simple and intuitive as possible for the programmer.
Wherever possible, we have used existingoccam-π syntax and avoided inventing new syntax
that would makeoccam-π more complicated. An example for this is the use of allocation
processes rather than the previously proposed new special keywords.

We welcome feedback on all these plans. So far, the basic infrastructure for KRoC.net’s
network communication has been implemented. The next task will be the implementation
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of the new features discussed in this paper. This includes both the KRoC.net library, imple-
mented inoccam-π, and the compiler-related parts, such as the extension of the CTBs and
the special compiler-generated processes.

Finally, when the implementation of KRoC.net will be fully completed, its performance
needs to be examined by a new series of benchmarks.
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Appendix A: Allocation Processes

Allocation Processes for NCTs

To explicitly allocate an NCT-end, one of the following allocation processes must be called:

PROC net.alloc.one2one.client (GATE NET.HANDLE! net, <CT>! the.cli,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.any2one.client (GATE NET.HANDLE! net, SHARED <CT>! the.cli,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.one2any.client (GATE NET.HANDLE! net, <CT>! the.cli,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.any2any.client (GATE NET.HANDLE! net, SHARED <CT>! the.cli,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.one2one.server (GATE NET.HANDLE! net, <CT>? the.svr,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.any2one.server (GATE NET.HANDLE! net, <CT>? the.svr,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.one2any.server (GATE NET.HANDLE! net, SHARED <CT>? the.svr,
VAL []BYTE nct.name, RESULT INT result)

PROC net.alloc.any2any.server (GATE NET.HANDLE! net, SHARED <CT>? the.svr,
VAL []BYTE nct.name, RESULT INT result)

The process names are fairly self-explanatory. ‘one2one’ means that the NCT has a non-
shared client-end and a non-shared server-end; ‘any2one’ means that the NCT has aSHARED
client-end and a non-shared server-end; etc.

• The first argument is the network-handle; the second argument is a (SHARED or non-
shared, depending on the ‘<...>2<...>’ part of the process name) client- or server-
end ofanypossible channel-type that is in scope.

• ‘nct.name’ is the name of the NCT. This can be any name that does not start with ‘$’.

• ‘result’ is the return value of the process. It is either an OK or an error message (e.g.
if the ‘x2x’ type is different from a previously allocated NCT-end of the same name, or
if one is trying to allocate more than one non-shared end).

Each allocation process is implemented by the following communication sequence:

net[req] ! alloc; <x2x>; <c/s>; <phash>; <nct-name>
net[reply] ? alloc; <result>; <ctb-pointer>; <is-localised>

[ net[req] ! confirm.alloc; <ctb-pointer>
net[reply] ? confirm.alloc; <nct-handle> ]

• ‘<x2x>’ is the ‘x2x’ type of the channel-type, and carries one of the following
constants: ‘NET.ALLOC.ONE2ONE’, ‘ NET.ALLOC.ANY2ONE’, ‘ NET.ALLOC.ONE2ANY’ or
‘NET.ALLOC.ANY2ANY’.

• ‘<c/s>’ specifies whether we want to allocate a client-end or a server-end. It is either
‘NET.CLI’ or ‘ NET.SVR’.

• ‘<phash>’ is an ‘INT’ carrying the protocol-hash of the channel-type. It is determined
using the ‘PROTOCOL.HASH()’ function described in [17].

• ‘<nct-name>’ is a ‘MOBILE []BYTE’ array carrying the name of the NCT.
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• ‘<result>’ is an ‘INT’ and will be returned as the result of the allocation process. In
order for the result to be an OK, the ‘x2x’ type and the protocol-hash must be the same
as for any previously allocated NCT-ends of the same name. This is checked in the
CNS, where these values are stored. Also, the client/server property must make sense;
e.g. only one client-end can be allocated for a one2x channel-type etc.

• ‘<ctb-pointer>’ is an ‘INT’ carrying the pointer to the CTB of the channel-type. If
on our node there is already a CTB connected to a channel-type of the same name, the
KRoC.net Manager will return the pointer to it. If not, it will return 0.

• ‘<is-localised>’ is a ‘BOOL’ returned by the KRoC.net Manager. If
‘<ctb-pointer>’ is 0, ‘<is-localised>’ is ignored. Otherwise, if
‘<is-localised>’ is TRUE, the state-semaphore of the (already existing) CTB
would be claimed, the state be set to ‘localised’, and then the state-semaphore be
released. The only case when this can happen is if the NCT is one2one, and one end
has already been on the same node.

• If the ‘<result>’ was an OK and the returned ‘<ctb-pointer>’ was 0, the compiler-
generated code would allocate a new CTB, set its initial state to ‘networked’, and send
its pointer back to the KRoC.net Manager.

• The KRoC.net Manager would then return the NCT-handle, which would be stored in
the CTB. This handle will then be used to communicate with the KRoC.net Manager
with regards to this particular CTB.

The allocation process returns a channel-type-end pointing to ‘<ctb-pointer>’.

Allocation Processes for Network-Channels

These are the allocation processes for network-channels-ends:

PROC net.alloc.one2one.writer (GATE NET.HANDLE! net, <NCE> the.writer!,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.any2one.writer (GATE NET.HANDLE! net, SHARED <NCE> the.writer!,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.one2any.writer (GATE NET.HANDLE! net, <NCE> the.writer!,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.any2any.writer (GATE NET.HANDLE! net, SHARED <NCE> the.writer!,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.one2one.reader (GATE NET.HANDLE! net, <NCE> the.reader?,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.any2one.reader (GATE NET.HANDLE! net, <NCE> the.reader?,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.one2any.reader (GATE NET.HANDLE! net, SHARED <NCE> the.reader?,
VAL []BYTE nc.name, RESULT INT result)

PROC net.alloc.any2any.reader (GATE NET.HANDLE! net, SHARED <NCE> the.reader?,
VAL []BYTE nc.name, RESULT INT result)

‘<NCE>’ is a ‘NET CHAN’ network-channel-end as described in Section 5.5. The network-
handle, network-channel-name and result parameters are the same as in the allocation pro-
cesses for NCT-ends. The ‘.writer’ processes are the equivalent of the ‘.client’ pro-
cesses; the ‘.reader’ processes are the equivalent of the ‘.server’ processes.


