
Communicating Process Architectures 2004 127
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

A Comparison of Three MPI
Implementations

Brian VINTER1

University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
John M BJØRNDALEN1, Otto J ANSHUS and Tore LARSEN

University of Tromsø, N-903700 Tromsø, Norway

Abstract. Various implementations of MPI are becoming available as MPI is
slowly emerging as the standard API for parallel programming on most platforms.
The open source implementations LAM-MPI and MPICH are the most widely used,
while commercial implementations are usually tied to special hardware platforms.
This paper compares these two open-source MPI-implementations to one of the
commercially available implementations, MESH-MPI from MESH-Technologies.
We find that the commercial implementation is significantly faster than the open-
source implementations, though LAM-MPI does come out on top in some
benchmarks.

1. Introduction

MPI is becoming synonymous with parallel programming, and while far more powerful and
advanced models such as HPF[1], JCSP.net[2] and PastSet[3] exist, the performance of
MPI implementations are crucial to the overall application performance on clusters. Since
most applications are based on MPI, several commercial applications are available only in
MPI versions. A search for “MPI programming” on Amazon.com yielded 593 books on the
subject. A custom MPI implementation is always delivered with dedicated supercomputers,
but for cluster-computers, home-built and brand-name systems alike, one must choose from
a variety of MPI implementations where MPICH[4] and LAM-MPI[5] are the best known
since they are open-source distributions.

Several commercial MPI implementations are also surfacing, where the best known
products are ScaMPI from SCALI[6] and MPI/Pro from MPI-Softtech Solutions[7]. The
commercial products often claim improved performance over MPICH and a high level of
support as the primary reasons why one needs a commercial MPI implementation[6][7].

One newcomer on the commercial MPI scene is MESH-MPI from MESH-
Technologies[8]. MESH-MPI is promoted purely on improved performance and is thus an
obvious candidate for a comparative study against the open-source implementations. This
study is a quantitative performance comparison that determines if and where MESH-MPI
improves the performance over MPICH and LAM-MPI.

This paper is organized as follows. Section 2 introduces MPI and section 3 describes the
experiment environment: the cluster and various MPI implementations. In section 4, the
benchmarks are presented and, in section 5, the experiment results are presented and
analyzed. Finally, we draw our conclusions in section 6.

1 This author is also associated with MESH-Technologies

B. Vinter et al. / A Comparison of Three MPI Implementations128

2. Message Passing Interface

The Message Passing Interface, MPI[12], is a controlled API standard for programming a
wide array of parallel architectures. Though MPI was originally intended for classic
distributed memory architectures, it is used on various architectures from networks of PCs
via large shared memory systems, such as the SGI Origin 2000, to massive parallel
architectures, such as Cray T3D and Intel paragon. The complete MPI API offers 186
operations, which makes this is a rather complex programming API. However, most MPI
applications use only six to ten of the available operations.

MPI is intended for the Single Program Multiple Data (SPMD) programming paradigm
– all nodes run the same application-code. The SPMD paradigm is efficient and easy to use
for a large set of scientific applications with a regular execution pattern. Other, less regular,
applications are far less suited to this paradigm and implementation in MPI is tedious.

MPI's point-to-point communication comes in four shapes: standard, ready, synchronous
and buffered. A standard-send operation does not return until the send buffer has been
copied, either to another buffer below the MPI layer or to the network interface, (NIC). The
ready-send operations are not initiated until the addressed process has initiated a
corresponding receive-operation. The synchronous call sends the message, but does not
return until the receiver has initiated a read of the message. The fourth model, the buffered
send, copies the message to a buffer in the MPI-layer and then allows the application to
continue. Each of the four models also comes in asynchronous (in MPI called non-
blocking) modes. The non-blocking calls return immediately, and it is the programmer's
responsibility to check that the send has completed before overwriting the buffer. Likewise
a non-blocking receive exist, which returns immediately and the programmer needs to
ensure that the receive operation has finished before using the data.

MPI supports both group broadcasting and global reductions. Being SPMD, all nodes
have to meet at a group operation, i.e. a broadcast operation blocks until all the processes in
the context have issued the broadcast operation. This is important because it turns all group-
operations into synchronization points in the application. The MPI API also supports
scatter-gather for easy exchange of large data-structures and virtual architecture topologies,
which allow source-code compatible MPI applications to execute efficiently across
different platforms.

3. Experiment Environment

3.1 Cluster

The cluster comprises 51 Dell Precision Workstation 360s, each with a 3.2GHz Intel P4
Prescott processor, 2GB RAM and a 120GB Serial ATA hard-disk2. The nodes are
connected using Gigabit Ethernet over two HP Procurve 2848 switches. 32 nodes are
connected to the first switch, and 19 nodes to the second switch. The two switches are
trunked3 with 4 copper cables, providing 4Gbit/s bandwidth between the switches, see
Figure 1. The nodes are running RedHat Linux 9 with a patched Linux 2.4.26 kernel to
support Serial ATA. Hyperthreading is switched on, and Linux is configured for Symmetric
Multiprocessor support.

2 The computers have a motherboard with Intel’s 875P chipset. The chipset supports Gigabit Ethernet over
Intel’s CSA (Communication Streaming Architecture) bus, but Dell’s implementation of the motherboards
use an Intel 82540EM Gigabit Ethernet controller connected to the PCI bus instead.
3 Trunking is a method where traffic between two switches is loadbalanced across a set of links in order to
provide a higher available bandwidth between the switches.

B. Vinter et al. / A Comparison of Three MPI Implementations 129

19 Dell WS 36032 Dell WS 360

Switches trunked with 4
Copper Cables

Figure 1: the experiment cluster

3.2 MPICH

MPICH is the official reference implementation of MPI and has a high focus on being
portable. MPICH is available for all UNIX flavors and for Windows, a special GRID
enabled version, MPICH-G2, is available for Globus[11]. Many of the MPI
implementations for specialized hardware, i.e. cluster interconnects, are based on MPICH.
MPICH version 1.2.52 is used for the below experiments.

3.3 LAM-MPI

Local Area Multicomputer-MPI, LAM-MPI, started out as an implementation for running
MPI applications on LANs. An integrated part of this model was ‘on-the-fly’ endian-
conversion to support different architectures to collaborate on an MPI execution. While
endian-conversion still is supported, it is no longer performed per default as it is assumed
that most executions will be on homogenous clusters. The experiments in this paper are
performed with LAM-MPI 7.0.5.

3.4 MESH-MPI

MESH-MPI is only just released and the presented results are thus brand-new. MESH-MPI
is ‘yet-another-commercial-MPI’, but with a strong focus on performance, rather than
simply improved support over the open-source versions. In addition to improved
performance, MESH-MPI also promotes true non-blocking operations, thread safety, and
scalable collective operations. Future versions have announced support for a special Low
Latency Communication library (LLC) and a Runtime Data Dependency Analysis (RDDA)
functionality to schedule communication. These functions are not available in the current
version which is 1.0a.

4. Benchmarks

This section describes the benchmark suites we have chosen for examining the performance
of the three MPI implementations. One suite, Pallas, is a micro-benchmark suite, which
gives a lot of information about the performance of the different MPI functions, while the
other, NPB, is an application/kernel suite, which describes the application level
performance. The NPB suite originates from NASA and is used as the basis for deciding on
new systems at NASA. This benchmark tests both the processing power of the system and
the communication performance.

B. Vinter et al. / A Comparison of Three MPI Implementations130

4.1 Pallas Benchmark Suite

The Pallas benchmark suite[9] from Pallas GmbH is a suite, which measures the
performance of different MPI functions. The performance is measured for individual
operations rather than on the application level. The results can thus be used in two ways;
either to choose an MPI implementation that performs well for the operations one uses, or
to determine which operations performs poorly on the available MPI implementation so
that one can avoid them when coding applications. The tests/operations that are run in
Pallas are:

• PingPong

The time it takes to pass a message between two processes and back
• PingPing

The time it takes to send a message from one process to another
• SendRecv

The time it takes to send and receive a message in parallel
• Exchange

The time it takes to exchange contents of two buffers
• Allreduce

The time it takes to create a common result, i.e. a global sum
• Reduce

The same as Allreduce but the result is delivered to only one process
• Reduce Scatter

 The same as Reduce but the result is distributed amongst the processes
• Allgather

The time it takes to collect partial results from all processes and deliver the data
to all processes

• Allgatherv

Same as Allgather, except that the partial results need not have the same size
• Alltoall

The time it takes for all processes to send data to all other processes and receive
from all other processes – the data that is sent is unique to each reciever

• Bcast - the time it takes to deliver a message to all processes

4.2 NAS Parallel Benchmark Suite

The NAS Parallel Benchmark, NPB, suite is described as:

The NAS Parallel Benchmarks (NPB) are a set of 8 programs designed to
help evaluate the performance of parallel supercomputers. The benchmarks,
which are derived from computational fluid dynamics (CFD) applications,
consist of five kernels and three pseudo-applications. The NPB come in
several flavors. NAS solicits performance results for each from all sources.
[10]

NPB is available for threaded, OpenMP and MPI systems and we naturally run the MPI
version. NPB is available with five different data-sets, A through D, and W which is for
workstations only. We use dataset C since D won’t fit on the cluster, and also since C is the
most widely reported dataset.

B. Vinter et al. / A Comparison of Three MPI Implementations 131

The application kernels in NPB are:

• MG – Multigrid
• CG – Conjugate Gradient
• FT – Fast Fourier Transform
• IS – Integer Sort
• EP – Embarrassingly Parallel
• BT – Block Tridiagonal
• SP – Scalar Pentadiagonal
• LU – Lower Upper Gauss-Seidel

5. Results

In this section we present and analyze the results of running the benchmarks from section 3
on the systems described in section 2. All the Pallas benchmarks are run on 32 CPUs (they
run on 2x sized systems) as are the NPB benchmarks except BT and SP which are run on 36
CPUs (they run on X2 sized systems).

5.1 Pallas Benchmark Suite

First in the Pallas benchmark is the point to point experiments, the extreme case is the
concurrent Send and Recv experiments where MPICH uses more than 12 times longer than
MESH-MPI, but otherwise all three are fairly close. MPICH performs worse than the other
two and the commercial MESH-MPI loses only on the ping-ping experiment.

The seemingly large differences on ping-pong and ping-ping are not as significant as
they may seem since they are the result of the interrupt throttling rate on the Intel Ethernet
chipsets which – when set at the recommended 8000, discretises latencies in chunks of
125us, thus the difference between 62.5 us and 125us is not as significant as it may seem
and would probably be much smaller on other Ethernet chipsets.

0

20

40

60

80

100

120

140

160

180

200

PingPong PingPing SendRecv Exchange

tim
e

(u
s) MESH

LAM
MPICH

Figure 2: point-to-point latencies from Pallas 0B messages.

B. Vinter et al. / A Comparison of Three MPI Implementations132

Switching to large messages, 4MB, the picture is more uniform and MPICH consistently
looses to the other two. LAM-MPI and MESH-MPI are quite close in all these experiments
and are running within 2% of each other. The only significant exception is in the ping-ping
experiment where LAM-MPI outperforms MESH-MPI with 5%.

363107 us

746178 us

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

PingPong PingPing SendRecv Exchange

tim
e

(u
s) MESH

LAM
MPICH

363107 us

746178 us

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

PingPong PingPing SendRecv Exchange

tim
e

(u
s) MESH

LAM
MPICH

Figure 3: point-to-point latencies from Pallas 4MB messages.

In the collective operations, the small data is tested on 8B (eight bytes) rather than 0B
because 0B on group-operations are often not performed at all and resulting times are
reported in the 0.05us range, thus to test the performance on small packages we use the size
of a double precision number. The results are shown in Figure 4.

In the collective operations, the extreme case is Allgatherv using LAM-MPI which
reports a whopping 4747us or 11 times longer than when using MESH-MPI. Except for the
Alltoall benchmark where LAM-MPI is fastest, MESH-MPI is consistently the faster,
and for most experiments, the advantage is significant, measured in multiples rather than
percentages. The Bcast operation, which is a frequently used operation in many
applications, shows MESH-MPI to be 7 times faster than MPICH and 12 times faster than
LAM-MPI.

2800 us 4747 us

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Allreduce Reduce Reduce
Scatter

Allgather Allgatherv Alltoall Bcast

tim
e

(u
s) MESH

LAM
MPICH

2800 us 4747 us

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Allreduce Reduce Reduce
Scatter

Allgather Allgatherv Alltoall Bcast

tim
e

(u
s) MESH

LAM
MPICH

Figure 4: collective Operations latencies from Pallas 8B messages.

B. Vinter et al. / A Comparison of Three MPI Implementations 133

For large messages, the results have been placed in two Figures, 5 and 6, in order to fit
the time-scale better. With the large messages, MESH-MPI is consistently better than both
open-source candidates, ranging from nothing, -1%, to a lot: 11 times. On average MESH-
MPI outperforms LAM-MPI with 4.6 times and MPICH with 4.3 times. MESH-MPI is on
average 3.5 times faster than the best of the two open-source implementations.

0

200000

400000

600000

800000

1000000

1200000

Allreduce Reduce Reduce Scatter Bcast

tim
e

(u
s) MESH

LAM
MPICH

Figure 5: collective Operations latencies from Pallas 4MB messages.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

Allgather Allgatherv Alltoall

tim
e

(u
s) MESH

LAM
MPICH

Figure 6: collective Operations latencies from Pallas 4MB messages.

5.2 NPB Benchmark Suite

While micro-benchmarks are interesting from an MPI perspective, users are primarily
interested in the performance at application level. Here, according to Amdahl’s law,
improvements are limited by the fraction of time spent on MPI operations. Thus the runtime
of the NPB suite is particularly interesting, since it allows us to predict the value of running
a commercial MPI, and it will even allow us to determine if the differences at the operation
level performance can be seen at the application level.

B. Vinter et al. / A Comparison of Three MPI Implementations134

The results are in favour of the commercial MPI; MESH-MPI finished the suite 14.5%
faster than LAM and 37.1% faster than MPICH. Considering that these are real-world
applications doing real work and taking Amdahl’s law into consideration, this is significant.

522

597

716

0

100

200

300

400

500

600

700

800

MESH LAM MPICH

tim
e

(s
)

Figure 7: runtime of the NPB benchmark

If we break down the results in the individual applications the picture is a little less
obvious and LAM-MPI actually outperforms MESH-MPI on two of the experiments; the
FT by 3% and the LU by 6%. Both of these makes extensive use of the Alltoall operation
where MESH-MPI has the biggest problems keeping up with LAM-MPI in the Pallas tests.

0

5000

10000

15000

20000

25000

BT CG EP FT IS LU MG SP

Benchmark

M
O

PS

MESH
LAM
MPICH

Figure 8: runtime of the individual NPB benchmarks

6. Conclusions

Overall the commercial MPI implementation from MESH-Technologies seems strong and
yields results as much as 12 times better than the open source implementations, and at
worst 30% worse. The really interesting part is when testing the application level

B. Vinter et al. / A Comparison of Three MPI Implementations 135

performance, and a 14.5% improvement over the best open-source alternative is significant.
Now, MESH-MPI is a commercial product and the obvious question to ask is what is the
value of this MPI implementation compared to other computing costs?

If we look at the experiment cluster used in this work the nodes are priced at € 1428 per
node. Thus the intrinsic value of a 14.5% improvement in performance is € 206 and € 530
with the improvement of 37.1% in the case of MPICH. Taking the electricity consumption
into consideration with each node using 210W and another 25% for cooling the value rises
to € 292 and € 749 in Norway and € 386, respectively € 991 in Denmark.

206 €

292 €

386 €

530 €

749 €

991 €

0 €

100 €

200 €

300 €

400 €

500 €

600 €

700 €

800 €

900 €

1,000 €

Value in system Value including power N Value including power DK

Va
lu

e
(E

ur
o)

LAM
MPICH

Figure 9: the calculated value of the commercial MESH-MPI per node

Acknowledgements

The authors would like to thank MESH-Technologies for the donation of MESH-MPI for
the new cluster installation at the computer science department at Tromsø University. We
would also like to thank Morten M. Pedersen for his numerous and detailed comments to
this work.

References

[1] An Introduction to High Performance Fortran, John Merlin and Anthony Hey, ftp://ftp.

vcpc.univie.ac.at/vcpc/jhm/jnl/hpf.ps.gz.
[2] CSP networking for java (JCSP.net). P.H.Welch, J.R.Aldous, and J.Foster. In P.M.A.Sloot, C.J.K.Tan,

J.J.Dongarra, and A.G.Hoekstra, editors, Computational Science - ICCS 2002, volume 2330 of Lecture
Notes in Computer Science, pages 695-708. Springer-Verlag, April 2002. See also
http://www.quickstone.com/xcsp/jcspnetworkedition.

[3] Brian Vinter, Otto J. Anshus and Tore Larsen. PastSet A Distributed Structured Shared Memory System,
in the Proceedings of High Performance Computers and Networking Europe, Amsterdam April 1999.

[4] William Gropp and Ewing Lusk and Nathan Doss and Anthony Skjellum, High-performance, portable
implementation of the MPI Message Passing Interface Standard, Parallel Computing", Vol 22, no 6, 789-
-828, 1996.

[5] Greg Burns and Raja Daoud and James Vaigl, LAM: An Open Cluster Environment for MPI,
Proceedings of Supercomputing Symposium, 379--386, 1994.

[6] hhtp://www.scali.com/

[7] http://www.mpi-softtech.com/

[8] http://www.meshtechnologies.com

B. Vinter et al. / A Comparison of Three MPI Implementations136

[9] http://www.pallas.com/e/products/pmb/index.htm

[10] http://www.nas.nasa.gov/Software/NPB/
[11] http://www.globus.org/
[12] David W. Walker. The design of a standard message passing interface for distributed memory concurrent

computers. Parallel Computing, 20(4):657–673, March 1994.

	Introduction
	Message Passing Interface
	Experiment Environment
	Cluster
	MPICH
	LAM-MPI
	MESH-MPI

	Benchmarks
	Pallas Benchmark Suite
	NAS Parallel Benchmark Suite

	Results
	Pallas Benchmark Suite
	NPB Benchmark Suite

	Conclusions

