
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

147

Observing Processes

A.E. Lawrence
Department of Computer Science, Loughborough University, Leicestershire LE11 3TU, UK.

Abstract. This paper discusses the sorts of observations of processes that are ap-
propriate to capture priority. The standard denotational semantics for CSP are based
around observations of traces and refusals. Choosing to record a little more detail al-
lows extensions of CSP which describe some very general processes including those
that include priority. A minimal set of observations yields a language and seman-
tics remarkably close to the standard Failures-Divergences model of CSP which is
described in a companion paper [1]. A slightly richer set of observations yields a
somewhat less abstract language.

1 Introduction

The characterisation of processes by their externally observable behaviour is fundamental
in CSP. It is a general principle that processes that cannot be distinguished by observation
ought to be identified. An attempt to extend the language should entail a precise elucidation
of the nature of observations. The amount of detail in observation determines the level of
abstraction.

Once an observational model is established, the way is opened for a process algebra de-
fined by a denotational semantics. The operators of the process algebra are defined composi-
tionally by describing the observations or behaviours in terms of those of their components.
This is a mapping from syntax to a representation of behaviour. The accompanying paper [1]
is an example forCSPP, a CSP like language which includes priority.

The sort of observation envisaged, and the amount of detail included, determines many of
the characteristics of the resulting theory. Glabbeek has demonstrated this clearly in a series
of papers: [2], [3] and [4]. He produces a taxonomy of various semantics, classified by the
sort of observations admitted.

This issue is particularly acute in extending CSP because the semantics for the standard
theory uses observations that collect insufficient information to capture priority. Extending
the observational model is crucial in adding priority to CSP. In Fidge’s approach [5], the
standard description of the behaviour of a process was augmented with apreferencesfunc-
tion. preferences(P) is a set of partial orders among events and captures the extra information
about priority. However, there is no explicit discussion in [5] about the observational status
of preferences. Can processes with differentpreferencesalways be distinguished? What ob-
servations are needed to fully characterize such processes? In Lowe’s thesis, [6], a timed and
prioritised CSP is presented. The behaviours have the form (τ,v, s) wherev is also essen-
tially a partial order on events, at least at any instant. In Lowe’s approach,v carries much
of the semantic information: it determines which events can be performed by a process at
any instant as well as the extra information needed to capture priority. However, the status of
observation is not entirely clear.
CSPP is an attempt to produce an initially untimed simple and intuitive extension of

CSP particularly for use in hardware compilation. It is based upon a denotational approach
called acceptances which is fundamentally observational, although a thorough examination
of its observational status was not conducted initially. Since the semantics is a mapping to



148 A.E. Lawrence/ Observing Processes

observations, the nature of the observations must be clearly established. Then the operators
can be defined in terms of the observational behaviours. This paper addresses the first stage:
the companion paper [1] shows one version of the second stage.

Following this programme has been very fruitful: examining the observations appropriate
for CSPP throws light on the approaches by Fidge and Lowe above. More importantly, it
became evident thatCSPP can describe afar wider class of processes that those that can be
described by priority. It also allowed a simplification and clarification of the axioms.

This paper is intended to be largely self-contained, although many readers will be familiar
with CSPP from previous papers in this conference series. Some previous exposure to CSP
is assumed.

2 Observations

In CSP and most process algebras, the primary notions are those of an event and an envi-
ronment. Events are observable: that already implies that they are communications with the
environment. In CSP there is usually a stronger intuition that an event requires the active
participation of the environment. The idea of internal events also arises, but the very term
signals that they are not directly observable.

Processes as abstract models of systems are to be characterised by their behaviour: the
circumstances in which they perform, or perhaps fail to perform, events needs careful ex-
amination. Such behaviour is often formulated in terms of ideal experiments. A process is
somehow started, events performed perhaps as the result of some actions by the observer,
and the results recorded. Just what is recorded, or what the observer is supposed to be able to
distinguish, determines, among other things, the level of abstraction. A thorny issue is that of
livelock. How can this be recognised? The halting problem shows that a real observer could
never determine in all cases whether a system was in an infinite loop. Nevertheless, we need
to represent livelock in decidable cases, so we envisage ideal ‘infinite experiments’ which
can detect this situation.

One of the simplest sort of observation is that of a trace. The only thing that an observer
records is the events that a process performs, and the sequence in which they happen. In
the context of CSP, the environment must have been willing to perform the recorded events.
Indeed, if the trace records are to be useful to describe the process, then all possible offers
must be available. If

P = (a→ a→ Stop) ¤ (b→ b→ Stop)

was not offered the possibility of performingb events, then we would have an incomplete
record. Here we have

traces(P) = {〈〉, 〈a〉, 〈aa〉, 〈b〉, 〈bb〉} .
Notice that the empty trace〈〉 is included, although one might wonder whether that qualifies
as an ’observation’ here. Clearly the experimeter has performed at least two experiments:
there was one while a copy of the process performed the maximal trace〈aa〉 and another for
〈bb〉. Was this done with the ‘same’ process? Presumably there were experiments in which
other events,c perhaps, were offered. Otherwise, it might be that the process being observed
was actually

Q = (a→ a→ Stop) ¤ (b→ b→ Stop) ¤ (c→ Stop) .

So the circumstances of the experiments need clarification. What events are offered? To
which copies of the process are offers made? Can a process, especially a quantum process,



A.E. Lawrence/ Observing Processes 149

always be duplicated? When and how may a process silently undergo internal transforma-
tions? Is it possible to ‘freeze’ internal activity? How long are events offered before it is
concluded that the process cannot perform an event? In the untimed theories, there is an as-
sumption that if a process can perform an event then it will be accepted eventually. The need
to offer an event and maintain that offer until it is either accepted or rejected becomes an im-
portant issue in implementing an untimed process. Can an offer be made and then withdrawn
and another made?

This paper examines the sorts of observations that are suitable for capturing the behaviour
of a class of processes including those which involve the use of priority.

3 Failures

The standard denotational semantics for CSP is based on Failures. These, like traces, are
observations of events. The traces are recorded as before, but now the recording is enriched
by noting which offers were made and rejected. This is enough to distinguish

P = (a→ Stop) ¤ (b→ Stop) from Q = (a→ Stop) u (b→ Stop)

which share the traces{〈〉, 〈a〉, 〈b〉}. A Failure is a pair (s,R) wheres is a possible trace of
the process in question andR is a refusal set. That is, it is an offer that the processmay
refuse after it has performeds. SoQ can refuse the offer {a} initially, that is, on the trace〈〉:
recording the empty trace is now necessary. ButP cannot refuse{a}.

Notice that the information recorded is sparse: only the traces, andonly the offers that
are refused after a particular trace. This is just enough information to distinguishP from Q
above, and accounts for the very abstract nature of CSP. This leads to results like

(a→ Stop) ¤ (b→ Stop) u (a→ Stop) u (b→ Stop) = (a→ Stop) u (b→ Stop) (1)

in standard CSP. The presence of the external choice on the left hand side cannot be unam-
biguously detected in the presence of the internal choices by such observations.

The standard model for CSP does also record when a process can livelock, or diverge.
We admit ideal infinite experiments as a sort of ‘observation’ to permit that.

4 Priority

Priority is a way of expressing a preference when more than one course of action is available.
In the context of process algebra, this involves a selection when more than one event is
possible.

Any general theory of shared events which includes priority must address the issue of
contention. The decision of whether an event may be performed in general requires arbitra-
tion or negotiation: information must be exchanged before an event happens. There must
be

1. a declaration;

2. arbitration or negotiation;

3. and a possible action.

A full theory cannot abstract entirely from these matters. In particular, useful systems will
normally connect compliant processes to those that employ priority. A compliant process
is one which is neutral with respect to available events: it will conform to the preference



150 A.E. Lawrence/ Observing Processes

expressed by a partner. More importantly, compliant processes offer a choice of events to the
environment. And since an environment is no more than a way of capturing the behaviour of
parallel partners, a theory without compliant processes is deficient. If an enviroment can offer
a choice, that must come about because there are processes which can do the same. Clearly
the observations must be sufficient to distinguish and characterise compliant processes as
well as those which express priority. In this sense, observations of a process have to include
some elements of the declaration phase.

The observations of acceptances below seem to be as sparse as possible while fulfilling
these requirements. Actually, the declaration phase can be inferred for some classes of pro-
cesses. The experiments to be performed are similar to those described earlier, but now more
details are recorded. The events actually performed are still recorded as traces, but now the
offers are also recorded in every case, not just those that are refused. But there is more: in
addition, the response is also recorded. That is the records take the form of triples (s,X,Y)
whereX is an environmental offer made after the process has performed the traces, andY
is the response. It is most natural to assume thatY is directly observable, and this a very
reasonable view of both hardware and software systems that employ priority. However, this
is not strictly necessary for one can conduct additional experiments and observe which events
can be performed afters and the offer X provided a suitable replication facility is available.
This is necessary because nondeterministic processes may have more than one response in
the sense that (s,X,Y1) and (s,X,Y2) may both be possible, and it must be possible to reliably
‘freeze and replicate’ if these two responses are to be distinguished properly. The reason why
this is not an unreasonable expectation will be clearer in a moment. But it is far simpler and
entirely realistic to assume that the responsesY1 andY2 are directly observable which we
assume below.

An important point is that the response from a process is reliable. A process that de-
clares to the environment which events it is prepared to perform and then does not honour the
commitment is of no use. Processes can be very nondeterministic, and resolve that nonde-
terminism partially or fully at any timeexceptbetween declaring a response and performing
one of the declared events. Processes that do not do that have no place in a system employing
priority. In this sense a process must freeze its internal activity between responding to an of-
fer and either performing an event or responding to a further offer. But if an offer is repeated,
the process need not give the same response.

Our standard example isAB = (a → Stop)
←−
¤ (b → Stop) which is represented by the

triples

{(〈〉, {a,b}, {a}), (〈〉, {a}, {a}), (〈〉, {b}, {b}), (〈〉, ∅, ∅),
(〈a〉, {a,b}, ∅), (〈a〉, {a}, ∅), (〈a〉, {b}, ∅), (〈a〉, ∅, ∅),

(〈b〉, {a,b}, ∅), (〈b〉, {a}, ∅), (〈b〉, {b}, ∅), (〈b〉, ∅, ∅)} ,

when the only events area andb. An alternative notation for the triple (s,X,Y) is s : X Ã Y,
so the triples above can be summarised as

〈〉 : X Ã {a}J a ∈ X I X ∩ {a,b}
〈a〉 : X Ã ∅
〈b〉 : X Ã ∅ .

AB gives priority to (a → Stop), so if it is given an offer X which includes botha andb, it
will respond with just{a}. It will only acceptb whena is not also offered.



A.E. Lawrence/ Observing Processes 151

Readers not familiar withCSPP may find helpful the contrast between the example of

the compliant variantC = (a→ Stop)
←→
¤ (b→ Stop) and

〈〉 : X Ã X ∩ {a,b}
〈a〉 : X Ã ∅
〈b〉 : X Ã ∅

When offered botha andb, it replies with the compliant{a,b}.
To illustrate the exchange of information, which in general may involve arbitration or

contention, considerC andAB running in parallel, synchronising on all events:AB ‖ C or
explicitly (

(a→ Stop)
←−
¤ (b→ Stop)

)
‖
(
(a→ Stop)

←→
¤ (b→ Stop)

)
. (2)

If the environment offers{a,b} the responses from the two components are{a,b} and{a}, so
a occurs. In fact the process in equation (2) is justABagain. In contrast,

(
(a→ Stop)

←−
¤ (b→ Stop)

)
‖
(
(a→ Stop)

−→
¤ (b→ Stop)

)
. (3)

the two components in equation (3) answer with{a} and{b} and there is a disagreement. So
we havecontentionand may needarbitration. Our observational model does not determine
the outcome of this priority conflict: that is a matter of the semantics of the operators, pri-
marily of ‖. One answer is given in the second paper [1]: it is deadlock. But there are other
versions ofCSPP in which the result is a nondeterministic choice.

In passing, note that Lowe has very different forms of parallel operators. His parallel
operators are always biased, even on shared – synchronised – events: this arises from his
desire to remove all except one form of nondeterminism in order to simplify the transition to
a probabilistic theory.

In both equations (2) and (3), it is clear that information must be exchanged between
the components and the environment to determine which events, if any, can be agreed by
the processes. Implementations may involve a scheduler which needs to discover which
processes are ready to do what, or arbitration hardware may be involved.

It is in this sense that we contend that there is a need for some abstract form of declaration
and arbitration or negotiation in general before events can be selected.

5 Experiments

Ideal experiments are performed on a process: it is made an offer and eventually produces a
response which is normally a set of events but may be instead an indication of termination
or (perhaps after an infinite wait) of livelock. The environment may now either change the
offer, or select an event from the response to jointly perform. If the environment takes the
former course and makes another offer, the first offer is termedhesitant. Hesitant offers
model situations where an environment negotiates with a process to find a mutually agreed
event. We noted earlier that the process must be stable when it produces a response in the
sense that it is prepared to perform any of the events in that response. But it is allowed to
undergo internal transitions when a new offer is made: hiding can produce processes which
are naturally understood in this way. Consequently a single copy of a process which has
performed a traces can be nondeterministic about the response to a given offer.

These ideal experiments include observations of infinite duration, and detection of live-
lock may require such. But some processes with knowledge of their internal construction can
immediately declare livelock in appropriate circumstances.



152 A.E. Lawrence/ Observing Processes

Replicate

✓

b

Enable

Available

Offer

Active

Select

a b c d

Figure 1: A machine which displays an acceptance matching an offer.

6 A Machine

In [4], [7] and particularly [2] R.J.Glabbeek describes and classifies a series of ideal machines
to capture observations of processes. Figure 1 shows a machine in this spirit for observing
CSPP processes. The machine has three rows: the first labelledAvailable, of lights; the
second labelledOffer, of switches; and the third labelledSelect, of buttons. Each column
matches an event. The top row of lights displays the events which can be performed in the
context of the second row switch settings. Valid processes will only display a light matching
a switch which is on. The top row is continuously updated to match the setting of the second
row switches while the process is waiting for the environment to initiate an event. That is
the function of the third row of buttons. Pressing a single button matching an illuminated
Availablelight results in that event happening. The display in this machine is largely redun-
dant, but it shows each event as it occurs as in Glabbeek’s machines. The machine has a
green light markedX. This illuminates when the process inside the machine is prepared to
terminate. No other light can be on at the same time as theX light. Pressing theEnable
button at such a moment will allow termination and end the experiment:X will be shown
on the display. Otherwise further offers can be explored. There is also a red light to indicate
internal activity: in Glabbeek’s machines, this light is green. TheReplicatebutton, present in
many of Glabbeek’s machines, produces a cascade of copies of the machine and its contents
in the current state.

It is a misuse of the machine to press aSelectbutton when the associated light is off: if
the button is so pressed, nothing will happen. The machine might be designed to lock buttons
at these times to eliminate this eventuality. If theReplicatebutton is pressed while the active
light is off, then the machine and its contents in its current state is copied.

It is clear that the switch setting corresponds toX and the state of the lights toY in
(s,X,Y). The machine is used as follows.

1. When a process starts, the active light is on. Eventually, a response is produced on the
event lights including theX light. The active light turns off at this point and enables a



A.E. Lawrence/ Observing Processes 153

refusal to be recognised. Livelock is recognised in an ideal infinite experiment by the
active light staying on.

2. The switches may now be updated in which case the active light turns on at least briefly,
and a new response displayed.

3. When a response is displayed and theActive light is off, a Selectbutton matching an
illuminated event light may be pressed: the event then happens. If theX light is on,
then theEnablebutton may be pressed to terminate the experiment. In an ideal infinite
experiment, theEnablebutton may be pressed after livelock has been detected: this
will also complete the experiment after another infinite time. Some processes with
knowledge of their internal construction can predict livelock, and an extra light could
be added to the machine to permit this to be passed to the environment as a normal
response in a similar way to theX light.

The recordings made in such experiments are just the (s,X,Y) trace–offer–response triples.
The number or order in which the offers are made at a particulars in an experiment is not
recorded.

If it is known that a system to be modelled does not involve hesitant offers, then a re-
stricted set of observations can be made. After an event has occurred, the new offer must
be set up instantly on the switches. Otherwise an additionalsamplebutton can be added to
introduce each offer. Clearly the set of acceptances collected in such observations will be a
subset of those when hesitant offers are included.

7 A Minimal Record: Triples

Recording only the triples as above provides the maximum abstraction with the minimum
assumptions about the nature of the processes being observed. Consider the processes

P1 =
←−−→{a,u} → ←−−→{b, v} → Stop

P2 = {[{a} > {u}]} → {[{b} > {v}]} → Stop

P3 =
←−−→{a,u} → {[{b} > {v}]} → Stop.

(4)

The notation
←→
E → P is an abbreviation for the compliant prefixingx :

←→
E → P which is a

process which is prepared to perform any of the events from the setE and thereafter behave
like the processP: its initial triples have the form (〈〉,X,X∩E). If it is offered several events
in E, it accepts all of them. SoP1 is a process which is always compliant: initially it is
prepared to perform eithera or u according to the wishes of its environment. On the next step
it will perform eitherb or v before stopping.

The notation{[{a} > {u}]} → P is an abbreviation for the biased prefixingx : {[{a} >
{u}]} → P which starts with a preference fora rather thanu, so its initial triples have the form
(〈〉,X, {a}J a ∈ X I (X ∩ {u})).

ThusP2 has the same traces and possible events asP1, but on the first step it gives priority
to a and on the second priority tob. P3 is like P1 on the first step, and then behaves likeP2.
Now considerP1 u P2. If our only observations are of triples, thenP1 u P2 can behave like
P3. So

P1 u P2 = P1 u P2 u P3 .

The reason that these processes cannot be distinguished is that the only ’history’ in our triples
are the traces, andP1,P2 andP3 share these. ShouldP1 u P2 be allowed to behave like



154 A.E. Lawrence/ Observing Processes

P3? We may have processes which defer the resolution of internal indeterminism so that the
behaviour after each event is only selected at that point, perhaps according to the outcome
of a radio-active decay. Then one might argue that a specificationP1 u P2 should permit a
behaviour matchingP3. A less abstract view in which a richer set of records is included is
described below. That distinguishesP1 u P2 from P1 u P2 u P3 while still permitting the
extreme form of late resolution of nondeterminism to be properly described.

The very abstract approach using just triples is in the spirit of the Failures-Divergences
model of standard CSP, has most properties in common, but includes priority. In fact, it goes
far beyond processes that can be described with priority or compliance. It describes almost
any process that can respond to an offer, produce a reliable response and perform events.

The version ofCSPP based on triples constrains processes in the least possible way. The
set of triples representing a processP is written asB (P). The triples have type

A = {(s,X,Y) | s ∈ Σ
∗ ∧ X ⊆ Σ ∧ (Y ⊆ X ∨ Y = {X} ∨ Y = {✗})} . (5)

Σ is the set of all possible events, excluding the ‘tokens’X and✗ which are used to represent
termination and livelock.Σ

∗
is the standard notation for the set of all finite traces, including

〈〉, drawn fromΣ. B (P) ⊆ A ensures that the responseY to an offerX is either a subset of the
events offered inY, or is an indication of termination or livelock. The axioms are intended to
be minimal:

1. 〈〉 ∈ traces(P).

2. There is a triple (s,X,Y) ∈ B (P) for each offerX.

3. Traces and responses match properly:
ŝ〈x〉 ∈ traces(P) ⇔ ∃(s,X,Y) ∈ B (P) • x ∈ Y∩ Σ.

The requirementB (P) ⊆ A might be regarded as an additional axiom.

8 Recording History: Behaviours

Recording only the triples (s,X,Y) gives a very abstract form ofCSPP which turns out to
closely mirror the standard Failure-Divergence semantics of standard CSP. However, there
are some slightly disturbing features of the model: in particular, several of the operators
including some forms of parallel and sequential composition and hiding fail to distribute
overu. This can be understood as a side effect of recording only the traces that lead up to
a particular offer and response. Recording a little more information, namely the history of
an experiment as the set of responses along a trace turns out to have several advantages. We
collectbehavioursfor each experiment. An experiment follows a process along some trace.
At each point in the evolution a record of the responses is made. That is, we have a relation, a
set of pairs (X,Y) at each point along some traces. This means that a behaviourb, the record

of the evolution along some traces, is a functionb : ↓s →
(
PΣ↔

X✗

P ΣX✗

)
. The downset

↓s = {t | t 6 s} is the set of all prefixes ofs: this is a standard notation from the theory of

partial orders [8].PS is the power set:PS = {U ⊆ S}, and
X✗

P Sadds the sets{X} and{✗} so
X✗

P S = PS∪ {{X}, {✗}}. The set of of binary relations between setsSandT is writtenS↔ T

so it is an alias forP(S× T), [9]. ThusPΣ↔
X✗

P ΣX✗ is the set of relations consisting of pairs
(X,Y) with X ⊆ Σ andY which is either also a subset ofΣ, in our caseY ⊆ X, or may be one

of the singleton sets{X} and{✗}. Henceb : ↓s→
(
PΣ↔

X✗

P ΣX✗

)
records the history of the



A.E. Lawrence/ Observing Processes 155

observations of an experiment which ended after the{(X,Y)} offer-response relation onswas
recorded. A process is characterised as a set of such behaviours.

Once again, the sort of process to be described is not artificially constrained. The axioms
are now

1. t ∈ ↓s ⇒ ↓t C b ∈ B (P).

2. ŝ〈x〉 ∈ traces(b)⇒ ∃(X,Y) ∈ bs• x ∈ Y
and
s ∈ traces(b) ∧ ∃(X,Y) ∈ bs• x ∈ Y⇒
∃b′ ∈ B (P) • traces(b′) = ↓(ŝ〈x〉) ∧ b < b′.

The first axiom requires that we keep records of each prefix ofs as a separate experiment.C
is domain restriction. The second axiom requires that responses and traces match properly.
If the experiment ends when a real event could have been accepted, then there is another
behaviourb′ which describes the extension of the experiment. As before, the type constraint
onb ∈ B (P) may be regarded as an extra implicit axiom.

Recording the history of observations in this way now allows us to distinguishP1 u P2

from P1 u P2 u P3 where the processes are given by equation (4). Extreme processes that do
not resolve internal nondeterminism until the last moment can still be described, but now we
can tell when they are present.

9 Internal and External Nondeterminism

It is evident that the responseY to an offer X is a declaration by a process of which events it
is prepared to perform. Whenever the response contains more than one event, this is an invi-
tation to the environment to make a choice. This is an example ofexternalnondeterminism.
It is an essential feature of useful systems employing priority: it must be possible to arrange
synchronisation of events when one partner has a preference.

The tokensX and✗ have a special status here. It makes no sense to offer the environment
a choice between these pseudo-events and the ordinary ‘real’ events inΣ. Thus in all our
models and experiments, these tokens may only appear as a ‘response’ as the singletons{X}
and{✗}.

Internal nondeterminism is manifested when there is more that one response possible to
a given offerX. The standard examples are

E = (a→ Stop)
←→
¤ (b→ Stop)

I = (a→ Stop) u (b→ Stop)

The compliantE manifests external, andI internal, nondeterminism. Internal nondetermin-
ism is more extreme in that it is outside environmental control.

10 Conclusions

The status of observations which can capture very general processes including those which
can express priority have been examined. The minimal axioms that naturally arise for a
couple of levels of abstraction have been described. Versions ofCSPP based on such obser-
vations can describe a very wide class of real time systems: some rather irregular processes
which cannot be described by any conventional form of priority are included. The companion
paper [1], outlines the most abstract of these which bears a remarkable congruence with the
standard Failures-Divergence model of CSP.



156 A.E. Lawrence/ Observing Processes

References

[1] A. E. Lawrence. Triples. InCommunicating Process Architectures – 2004, volume 62 ofConcurrent
Systems Engineering, pages 157–184, Amsterdam, Sept 2004. IOS Press.

[2] R.J. van Glabbeek. The linear time – branching time spectrum II; the semantics of sequential systems
with silent moves (extended abstract). In E. Best, editor, ProceedingsCONCUR’93,4th International
Conference onConcurrency Theory, Hildesheim, Germany, August 1993, volume 715 of LNCS, pages
66–81. Springer-Verlag, 1993.

[3] R.J. van Glabbeek. What is branching time semantics and why to use it? In M. Nielsen, editor,The
Concurrency Column, pages 190–198.Bulletin of the EATCS53, 1994. Also available as Report STAN-
CS-93-1486, Stanford University, 1993, athttp://theory.stanford.edu/branching/, and in G.
Paun, G. Rozenberg & A. Salomaa, editors:Current Trends in Theoretical Computer Science; Entering
the 21st Century, World Scientific, 2001.

[4] R.J. van Glabbeek. The linear time – branching time spectrum I; the semantics of concrete, sequential
processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,Handbook of Process Algebra, chapter 1,
pages 3–99. Elsevier, 2001. Available athttp://boole.stanford.edu/pub/spectrum1.ps.gz.

[5] C.J. Fidge. A formal definition of priority in CSP.ACM Transactions on Programming Languages and
Systems, 15(4):681–705, September 1993.

[6] Gavin Lowe.Probabilities and Priorities in Timed CSP. D. Phil thesis, Oxford, 1993.

[7] R.J. van Glabbeek. What is branching time semantics and why to use it? In G. Paun, G. Rozenberg,
and A. Salomaa, editors,Current Trends in Theoretical Computer Science; Entering the 21st Century.
World Scientific, 2001. Also available as Report STAN-CS-93-1486, Stanford University, 1993, at
http://theory.stanford.edu/branching/, and in M. Nielsen, editor:The Concurrency Column,
Bulletin of the EATCS53, 1994, pp. 190–198.

[8] B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge University Press, 2nd

edition, 2002.

[9] M. J. Spivey. The Z notation: A reference manual. http://spivey.oriel.ox.ac.uk/˜mike/zrm/.

[10] C.A.R Hoare.Communicating Sequential Processes. Prentice Hall International, 1985.

[11] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998.


