
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

157

Triples

A.E. Lawrence
Department of Computer Science, Loughborough University, Leicestershire LE11 3TU UK.

Abstract. The most abstract form of acceptance semantics for a variant ofCSPP is
outlined. It encompasses processes which may involve priority, but covers a much
wider class of systems including real time behaviour. It shares many of the features of
the standard Failures-Divergences treatment: thus it is only a Complete Partial Order
when the alphabet of events is finite.

1 Introduction

CSPP is a close relative of the process algebra CSP: [1], [2], [3]. It was designed originally
to capture priority in the context of hardware compilation using aoccam-like language. Its
development has been informed by the work of the WoTUG community, and explorations of
various sorts have been presented regularly in this conference series: [4], [5] [6], [7], [8], [9],
[10], [11] and [12]. The intuition and core ideas have not changed and are transparent.

Theoccamcommunity does not need any convincing that CSP is extremely simple and
elegant: it well understands that this theoretical underpinning is responsible for the simplicity
and power ofoccam. CSPP aspires to have the same simplicity and elegance, and to achieve
that in the same way: by being properly defined by a mathematical theory. One motivation for
its development was to provide the same sort of theoretical underpinning for futureoccam-
like languages for co-design.

As with standard CSP, the routine use of the language is quite simple. But setting up a
rigorous mathematical theory which covers all the obscure corners is a substantial task. Yet
without that theory, we cannot be certain that there is no serious unrecognised trouble waiting
to cause disaster.

The mathematical theories underlying process algebras are generally of three sorts: alge-
braic, operational and denotational. The characteristic flavour of CSP derives from the fact
that the first full semantic models were denotational rather than operational: algebraic seman-
tics also played an important role in the development as is evident in [1]. The denotational
theories are still regarded as canonical, even though operational semantics have subsequently
been developed. [2] gives a comprehensive account of many theories and their interplay.

Denotational semantic theories generally take the form of a mapping from syntax into
a mathematical description of behaviour: behaviour which, in principle, is observable. The
sorts of observation are not always carefully examined, but in CSP that is usually taken
seriously, and can also be regarded as one of the roots of its power and simplicity. The
companion paper, [13], is an examination of the observational model underlyingCSPP.

The scrutiny of the observational basis ofCSPP has been fruitful: the scope of the lan-
guage has been extended far beyond systems that exhibit priority or neutrality. The language
can now describe almost any system that can be understood to communicate what events it
is prepared to perform in any given situation as described in [13]. One might question the
relevance of this power in the context of the original design aims forCSPP: a foundation for
concrete language design. The answer is that the aims have been widened: CSP is probably
used mainly to describe and explore the properties of systems which have not themselves

158 A.E.Lawrence/ Triples

been designed with CSP.CSPP may eventually be able to play the same role for a wider
class of behaviour.

The explicit examination of the observational model also helped elucidate the various
denotational approaches that have been explored forCSPP. It shows how much detail should
be recorded in order to achieve a particular level of abstraction in the resulting dialect. Some
readers will see the analogy with, say, the traces and failures models for standard CSP.

This paper presents the most abstract version ofCSPP based on these developments. The
main components of the underlying theoretical model are included.

1.1 The basic ideas

Readers familiar withCSPP may wish to omit this introductory material. There are three
elementary processes in CSP and so also inCSPP. Stopis the process which does nothing
at all, not even terminate. It is usually an error such as deadlock, but as will be abundantly
apparent below, it appears very frequently in examples because it so simple.

Skipis the second of the elementary processes and represents termination. In the seman-
tics of CSP,Skip is treated as a process which autonomously performs a special event ‘X’.
But in the semantics ofCSPP, X is treated as a ‘token’ rather than as a first class event: it
is never ‘performed’ by a process, instead it is regarded as a signal to the external world. In
CSPP, it is rather appropriate to say that ‘Skipdoes nothing, but does it successfully’.

The last process is written asdiv in CSP and in all except the most recent presentations
of CSPP. We have recently taken to calling itSpinbecause there are technical connotations
of div as the most undefined process which are inappropriate inCSPP. But whatever it
is called, it represents livelock, a process that is in an uncontrollable sequence of internal
actions, usually a loop. In the companion paper, [13], it is explained that in the semantics of
CSPP, but not in CSP, we introduce a second ‘token’, which we write as✗, which we pretend
can be ‘seen’ by an external observer in an ideal infinite experiment.

Stop does nothing at all, not even terminate.

Skip terminates: hands control on to successor.

Spin does nothing at all externally: but it is active internally. Calleddiv in CSP.

Prefixing provides a simple way to build more complex processes fromStop, Skipand
Spin. So

• a→ Stopis a process that performs the eventa before stopping;

• a→ Skipperforms the eventa before terminating; and

• a→ Spindoesa before typically looping internally for ever.

Another simple way to define a process using prefixing is to writeP = a → P. It is easy
to see that this defines a process that will engage in an endless sequence ofa events. It is
also pretty clear thatQ = a → Q must define the same process. But can we be sure? We
may wonder exactly how we might establish that. What aboutP = P? This does not impose
any constraint onP except the implied assumption thatP is a process: it is evident thatevery
process is a solution. These recursive definitions are at two extremes of a spectrum: one
clearly defines a unique process, and the other is satisfied by any process. One may worry
about intermediate cases, especially when the recursive equations get complicated. How do
we know when there are solutions? Is there some special solution that we should pick when

A.E.Lawrence/ Triples 159

there are several? We can’t answer such questions properly without some sort of underlying
theory: the more technical later parts of this paper describe one approach.

Note that our examples of recursion above could all be written in the formP = f (P) where
f is a function from processes to processes. In the context ofCSPP, we might write its type
asf : CSPP → CSPP. So thatP = a→ P matchesf (P) = a→ P. Solutions tof (P) = P are
fixed points.

There is a standard mathematical notation for a fixed point of a functionf : it is µ f or
µP • f (P). CSP andCSPP use the same notation. Thus the solution ofP = a→ P is written
µP • a → P. Perhaps the most important task in building a theory for any sort of CSP is
establishing that fixed points exist with the right properties. Almost all non trivial uses of
CSP involve recursion.

Abstraction in the sense of being able to ignore irrelevant or internal detail is a crucial
tool for humans. CSP and its derivatives have the powerful notion ofhiding, examined at
length in [12]. The notation isP \ H representing a processP where events in the setH are
hidden: events from H performed byP become internal, invisible to, and thus uncontrollable
by, the outside world. It should be no surprise then that

(µP • a→ P) \ {a} = Spin,

which shows how these operations interlock.
There are only 4 basic operations of CSP left. The first is a generalisation of prefixing.

(a → Pa) ¤ (b → Pb) is a process which is prepared either to perform the eventa and then
behave likePa or to performb and then behave asPb. This is where the nature of events
as joint actions between partners must be covered. A processP is understood as interacting
with its environment, primarily by engaging in events which require the cooperation of both
parties. Thusa → Stopcannot perform the eventa until such time as the environment
cooperates. This single concept covers a typical outermost passive observer who is willing
to observe any event as well as parallel partners who may block certain events. The idea
of blocking, that is synchronised, communication enters into the semantics of the parallel
operators in a crucial way. The real point however is to capture the meaning of a process by
external interaction with an agent as in [13].

The choice betweena andb in Q = (a→ Pa)¤(b→ Pb) is controlled by the environment
in the sense that if it chooses one or the other that fixes the subsequent the behaviour ofQ. Of
courseQ blocks the environment if that only offers another eventc initially. For these reasons
¤ is called external choice. The next operation arises from hiding and external choice and
demonstrates more interlocking:

((a→ c→ Stop) ¤ (b→ d→ Stop)) \ {a,b} = (c→ Stop) u (d→ Stop) .

u is called internal choice. The environment of the process above has no control over whether
the process is prepared to performc or d: that was determined by whether the eventa or b
happened internally. In general,P1 u P2 may behave like eitherP1 or like P2, but the
environment has no influence over the choice.

The remaining ways of composing processes are to place them in parallel, or run them
in sequence.P1‖

E
P2 is the parallel composition where any events in the setE must be jointly

performed byP1 and byP2: any other events are interleaved.P1 # P2 is the process which
behaves likeP1 until such time, if ever, that it terminates. IfP1 does terminate, subsequently
P1 # P2 behaves likeP2. Thus (a→ Skip) # (b→ Stop) = a→ b→ Stop.

160 A.E.Lawrence/ Triples

a→ P performsa when the environment is willing, and then behaves likeP.

µP • f (P) covers recursion.

P \ H has the events inH hidden, internalised.

P1 ¤ P2 is external choice: controlled by the environment.

P1 u P2 is internal choice.

P1‖
E
P2 is parallel composition with synchronisation setE.

P1 # P2 is sequential composition.

1.2 CSPP and acceptances

CanN = (a → Stop) ¤ (b → Stop) favour a rather thanb? Ordinary CSP abstracts away
from such issues. The observations on which its semantics are based do not collect sufficient
information to answer the question. Both Fidge’s approach in [14] and Lowe’s in [15] use
order relations which can determine thata has greater priority thanb.
CSPP is based on a more fundamental observational approach called acceptances. It

examines environmental offers and their consequences as described in [13]. But the idea
is extremely simple: if we want to know whetherN prefersa rather thanb, we offer the
process both simultaneously, and see which it chooses. The offer is thus{a,b} and if the
implementation ofN is biased in favour ofa, it will reply with {a}. ConsequentlyCSPP has
a prioritised version of external choice and

AB = (a→ Stop)
←−
¤ (b→ Stop)

is the process that always gives priority toa. The semantics is captured in the response
to offers as{a,b} Ã {a}, {a} Ã {a}, {b} Ã {b}, and ∅ Ã ∅ which we can summarise as
X Ã {a}J a ∈ X I X ∩ {b}. There is really only this one simple idea inCSPP and its defin-
ing acceptance semantics. Everything else is just following through the consequences.

Notice thatAB is a possible implementation ofN in that it is natural to think ofN as
defined by{a}Ã {a}, {b}Ã {b} and∅Ã ∅. The response to{a,b} is left partially open: we
know that at least one or other ofa andb is possible, andAB is one way of satisfying that
requirement. ThusAB is better defined thanN and its behaviour we suppose is one of those
of N. That isAB refines Nwhich is writtenN v AB. N might be regarded as a specification
andABa possible implementation.

We must now come clean and say that there is more than one way of interpretingN in
CSPP. But to understand that, we need to introduce neutral orcompliantprocesses. As first
pointed out by Bill Roscoe, most CSP practitioners who do not useoccam think of N as a
neutral process. So far we have only produced a biased version of¤. This is whereCSPP
begins to show that it has a far wider scope than just priority. What is the response of a neutral
version ofN to the offer {a,b}? The answer is{a,b} again: it is happy to do either. SoCSPP
also has

←→
¤ which can be used to write

S= (a→ Stop)
←→
¤ (b→ Stop)

with {a,b}Ã {a,b}, {a}Ã {a}, {b}Ã {b}, and∅Ã ∅. As noted in [13], it isincoherentto
have a theory of priority which does not also cover compliance. This is because priority is

A.E.Lawrence/ Triples 161

only of relevance when an environment offers more than one choice of event simultaneously.
But what is it that can offer several events? In a theory that only includes biased processes,
the answer is nothing. InCSPP, the simple answer is, of course, a compliant process. Since
the theory extends beyond simple compliance and simple priority, a more correct answer is a
process which is at least partially compliant.

The idea of compliance carries with it the notion ofenvironmentalor externalnondeter-
minism. If an environment offers a choice of{a,b}, it is nondeterministic about which is to
be performed. Just as a compliant process is nondeterministic about which event the envi-
ronment selects from its response.CSPP thus distinguishesinternal nondeterminismwhich
arises mainly fromu andexternal nondeterminismwhich is necessary in order for priority to
be meaningful. Indeed, priority is precisely a means of resolving external nondeterminism.

These ideas percolate through many other operators. Although we have not introduced it
above, standard CSP has a more general form of prefixing in whiche : E→ P(e) is a process
which is prepared to do any of the events in the setE and then behave like the corresponding
processP(e) matching the particular eventeselected. This is really a form of external choice,
so there is a variety of possibilities for preference and lack of preference among the members
of E. A simple and useful case is when all the members ofE are available compliantly. That

is writtene :
←→
E → P(e).

We take a simple example,Q = e :
←→
E → Stop, to illustrate how we define the semantics

precisely. As in [13],Σ represents a universe of all events that we may wish to consider. We
assume here thatE ⊆ Σ, that is,E does not contain the tokensX or✗. InCSPP it is sometimes
convenient to permit those tokens to appear in a prefix set. BeforeQ has performed any
events, the only trace is〈〉. Then an offerX ⊆ Σ evokes the responseX∩E which is compliant
when more than one member ofE is in X. We write that as〈〉 : X Ã X ∩ E. The only traces
that can be performed thereafter are of the sort〈e〉 and then the process refuses everything:
〈e〉 : X Ã ∅. We specify all this precisely as the set

B (e :
←→
E → Stop) = {(〈〉,X,X ∩ E) |X ⊆ Σ }

∪
{(〈e〉,X, ∅) |e ∈ E ∧ X ⊆ Σ } .

(1)

B is the mapping from syntax to a set of behaviours, here triples: this is a denotational

semantics. It completely specifies the meaning ofe :
←→
E → Stop. All the definitions later in

this paper follow this style.
The other place where priority has a major effect is in the definition of the parallel op-

erations. InP1‖
E
P2, P1 andP2 may themselves express priority, but we are more concerned

here with the parallel constructor itself. Synchronised events inE are joint actions ofP1 and
P2 and their selection involves the preferences of the partners. But external nondeterminism
arises when bothP1 andP2 offer unsynchronised events: the situation is exactly the same as

for external choice. A parallel operator might always favourP1: soCSPP includes
←−‖
E

. One

can think of
←−‖
E

as behaving like
←−
¤ on unsynchronised interleaved events, but on every event

rather just the initials. The compliant version,
←→‖
E

, is likely to match the intuition of most

CSP practitioners. But notice that because CSP abstracts away from preferences, one should
really always make the most nondeterministic identification. Thus‖

E
in CSPP can have any

sort of bias or lack thereof and behave quite differently in that respect from event to event.
This is in the spirit of CSP as an abstraction, but in practical applications ofCSPP one nearly

always chooses the simpler versions like
←→‖
E

. It should be mentioned that Lowe in [15] uses

162 A.E.Lawrence/ Triples

a very restricted set of parallel operators with a very different semantics fromCSPP on the
synchronised events.

To summarise,P1
←→‖
E

P2 is simple and the most used parallel operator inCSPP. P1
←−‖
E

P2

is occasionally useful.P1‖
E
P2 is extremely chaotic in the sense that it permits any sort of

resolution or lack of resolution of external nondeterminism. When soft priority, see below in
section 3, is in force,‖

E
can be identified with the corresponding CSP operator.

1.3 Internal and external nondeterminism

The major insight inCSPP and acceptances is in distinguishing external from internal nonde-
terminism. We have seen that external nondeterminism is captured in multiple events present
in either an offer or a response (in the pairsX Ã Y).

Internal nondeterminism is captured in the usual way: by recording multiple behaviours.

ThusEx = (a→ Stop)
←→
¤ (b→ Stop) andIn = (a→ Stop) u ((b→ Stop) are represented by

the sets
B (Ex) = {(〈〉,X,X ∩ {a,b}) |X ⊆ Σ }

∪
{(〈x〉,X, ∅) |x ∈ {a,b} ∧ X ⊆ Σ }

and

B (In) =

{(〈〉,X,X ∩ {a}) |X ⊆ Σ }
∪

{(〈〉,X,X ∩ {b}) |X ⊆ Σ } = B (a→ Stop) ∪ B (b→ Stop) .
∪

{(〈x〉,X, ∅) |x ∈ {a,b} ∧ X ⊆ Σ }

In general, internal nondeterminism is represented by the union of behaviours:
B (P1 u P2) = B (P1) ∪ B (P2).

1.4 Fixed points: the heart of a denotational semantics.

We have seen that CSP is elegant and sparse with very few operators.CSPP aims for the
same qualities, but the inclusion of priority means that some variant decorated versions of
the standard operators are needed. In both cases, recursion is the only way to produce non
trivial programs: all the other syntax only gives us finite length traces.

Accordingly recursion is at the heart of both theories. It is essential thatµP • f (P) is
well defined, and any restrictions on the functionf which may be used are identified. Let
P = a → b → P. Successively unwinding this recursion asP = a → b → a → b → P,
P = a → b → a → b → a → b → P, . . . can be thought of a sequence of more precise
specifications for P.P = a → b → P might potentially be satisfied by any process that at
least starts off like a→ b→ Next we admit the subset of those processes that start with
a → b → a → b → But these are successiverefinements. Each unwinding is getting
nearer to the final fixed point (if there is one). We are ‘converging’ towards a solution.
We can think of this as a succession of successive approximationsA0 v A1 v A2 So
it is no surprise to discover that we use the refinement partial order as a way to establish
that recursions are properly defined. Indeed this is usually the major task in setting up any
denotational semantics.

In ordinary convergence, there must be limit points available to which a sequence can
converge: that is the space is complete. In partial order theory, the corresponding property of

A.E.Lawrence/ Triples 163

the space is that it be a Complete Partial Order (CPO). Refinement is a partial order, and we
prove in section 8.15 that the variant ofCSPP below is a CPO under a certain condition. It
then follows from standard theorems that functions that are monotone in the refinement order
have a least fixed point. We show below that all theCSPP operators are indeed monotone.
If a function is in addition continuous (a partial order analogue of ordinary continuity), then
the fixed point of a function can be calculated in a simple way which is essentially the same
as we did above with the sequenceA0,A1,A2, Background can be found in [16] and [2]
among other places.

1.5 Differences from earlier versions ofCSPP

Earlier versions of the semantics allowedX and✗ to appear in a response mixed in with
ordinary events. So this appeared to offer an environment the possibility of making a choice
that might in effect steer a process either towards or away from termination or livelock. Both
tokens represent situations that are normally regarded as being outside environmental control,
so in the current versions, these tokens may only appear as singletons. In effect, external
nondeterminism in these tokens is converted into internal nondeterminism by this change. It
only affects some rather obscure situations.

As a result of the examination of the observational status documented in [13], the axioms
have been significantly weakened, and the scope of the language very considerably extended.
There are now no preconceived notions of how a ‘good’ process should behave: there is an
exception in section 8.16.4. The language is now based simply on observing what a system,
however bizarre, does. We only require that responses are reliable. There is some cost in
extra complexity of some of the semantic definitions, at least in the most abstract version
below.

There is a little freedom left in two areas: how much detail should be recorded in observa-
tions which determines the level of abstraction of the resulting dialect; and whether priority
conflict results in deadlock or is resolved nondeterministically.

For this paper, both choices have been made on the grounds of simplicity of the under-
lying semantics. That implies maximum abstraction and hard priority: conflict results in
deadlock. The first choice leads to a dialect which is arguably in the spirit of the Failures
models for standard CSP, but is a little too abstract for the author’s taste. The second is in the
spirit of occam, but complicates the congruence with standard CSP.

2 An abstract variant of CSPP

The companion paper, [13], examines the sorts of observations which can be made of pro-
cesses that can usefully participate in systems that employ priority. Any process that can
be regarded as capable of reacting to an environmental offer with a declaration of which
events can be accepted, and then reliably and jointly performing one of the accepted events
is included. This is a far wider class then just those that employ a straightforward notion of
priority.

This version of the language includes

P ::= Stop| Skip| Spin| a→ P | e : E→ P(e) | e : (α)→ P(e) | P # P

| P u P | P←−¤ P | P←→¤ P | P←−‖
E

P | P←→‖
E

P | P \ H | µP • f (P) | PJR K .

e : (α) → P(e) is a relational form of prefixing, and provides a syntax for capturing some
very irregular processes that are not described by either a priority or absence of a priority:
α is a relation. There is no> process in this version ofCSPP: it is useful in less abstract

164 A.E.Lawrence/ Triples

versions of the language.Spin is usually calleddiv in standard CSP: it is not the bottom of
the refinement order here, so the name has been changed to avoid confusion.

The theory below useshard priority for simplicity. The price to be paid is that there is no
unique identification of standard external choice¤ which accordingly does not appear in the
syntax above. There are two maximal, but incompatible, identifications for¤:

P ¤ Q = P
←→
¤ Q u P

←−
¤ Q or P ¤ Q = P

←→
¤ Q u P

−→
¤ Q .

Both, of course, are compatible withoccam. Similarly, there is no unique identification for‖
E
.

However a‖
E

is defined below but it should not normally be identified with the corresponding

standard operator. In most circumstances, the standard operator would be identified with the

compliant version
←→‖
E

.

The semantics below is all straightforward but because some very irregular processes are
admitted few assumptions can be made. It becomes necessary to spell out some conditions in
detail. Hiding is by far the most difficult and subtle operator, and the possibility of irregular
behaviour needs careful consideration. The existence of least fixed points to define recursion
is established for a finite alphabet by showing thatCSPP is a Complete Partial Order (CPO)
under refinement. All operators are monotone, and most distribute overu. There is also a
metric so the usual Unique Fixed Point (UFP) theorems hold.

The purpose of this paper is to demonstrate that there is a very abstract version ofCSPP
with a semantics closely analogous to the standard Failures-Divergences model for CSP.

3 Hard and Soft priority.

Consider

(
(a→ Stop)

←−
¤ (b→ Stop)

)
‖
(
(a→ Stop)

−→
¤ (b→ Stop)

)
.

What happens when the environment offers{a,b}? Soft priority somehow resolves the con-
flict: some versions ofCSPP allow the system to ‘search’ for the largest sub-offers on which
the two processes can agree. When there is more than one such sub-offer, there is a non
deterministic choice between the options.

However, hard priority is simpler, and arguably more in the spirit ofoccam. In this case,

if the two processes cannot agree, the result is deadlock. A difficulty is that
←−
¤ and

−→
¤ can-

not simultaneously refine¤ since((a→ Stop) ¤ (b→ Stop)) ‖ ((a→ Stop) ¤ (b→ Stop))
cannot deadlock.

4 Alphabets and traces

There is a global alphabetΣ of ordinary events: this will be large enough to include all the
visible events of any process that we need to describe. Later we will need to restrict it to be
finite. We add the pseudo eventsX and✗ which only occur as singleton responses.

Traces are simply sequences, empty or finite, of events drawn fromΣ. 〈〉 is the empty
sequence. The set of all finite traces drawn fromΣ is written asΣ

∗
. Because we need〈〉,

it is convenient to label the elements of the other traces from 1: such a tracet has type
t : {1,2, . . . , n} → Σ and we can writet = 〈t(1), t(2), . . . , t(n)〉. In this context, it is sometimes
useful to implicitly identify〈〉 with the empty function∅: this is used below, for example in
definition 4 on page 166.

A.E.Lawrence/ Triples 165

t̂s represents the concatenation of two sequences, so〈a,b〉̂ 〈c,d〉 = 〈〉̂ 〈a,b, c,d〉 =

〈a,b, c,d〉 = 〈abcd〉: we may omit commas when there is no ambiguity.
We also make use of infinite traces which are of the sorts : N1 → Σ, but only to express

certain properties offinite traces.

5 Acceptances

As described in the companion paper, we specify the meaning of a process by describing
its responses after it has performed some trace of events. Traces are members ofΣ

∗
. Given

such a traces, we record the responseY to an offer X. We sometimes write that asX Ã Y or
s : X Ã Y as an equivalent way of expressing the triple (s,X,Y). The offer X is some subset
of the alphabetΣ: that isX ⊆ Σ. And a responseY is a subset ofΣ or {X} or {✗}.

Definition 1

• When X⊆ Σ, XX denotes X∪ {X} and XX✗ denotes X∪ {X,✗}.

• The lone sets of X are
X✗

L (X) ≡ {{X} | X ∈ X} ∪ {{✗} | ✗ ∈ X}.

•
X✗

S (X) ≡ {∅}J X = ∅I
X✗

L (X) ∪ {X ∩ Σ | X ∩ Σ , ∅}

•
X✗

P X denotesP(X ∩ Σ) ∪
X✗

L (X).

•
X✗

M (X) denotes{∅}J X = ∅I
(X✗

P(X) − {∅}
)
.

Acceptances have typeΣ
∗ × PΣ ×

X✗

P ΣX✗, which we occasionally identify with

Σ
∗ ×

(
PΣ ×

X✗

P ΣX✗

)
. (2)

More specifically, acceptances are members of

A = {(s,X,Y) | s ∈ Σ
∗ ∧ X ⊆ Σ ∧ Y ∈

X✗

P(XX✗)} (3)

Thus we have a description which is a setBP of such acceptancesB (P) ⊆ A. [[P]] is the
usual notation for the semantic function describing the behaviour of the processP, butBP is
more intuitive here and avoids confusion with the renaming of equation (23) on page 178.

The set of traces of the process is

traces(P) = {s | ∃X,Y • (s,X,Y) ∈ BP} or traces(P) = domBP

when the type ofBP is taken from (2).
We identify a process directly with its acceptances where the context warrants.

166 A.E.Lawrence/ Triples

5.1 Acceptances determine traces

There are often simple patterns for triples (s,X,Y) representing a processP for a generals.
That is, whens ∈ traces(P) then the pattern (s,X,Y) ∈ B (P). It is sometimes intricate, error
prone and laborious to spell out explicitly whichs is a trace ofP. But that information is
already implicit in the acceptances, determined by the events inY.

Thus, takeB ⊆ A and define

B0 = {(〈〉,X,Y) ∈ B}
Bn+1 = {(ŝ〈e〉,X,Y) ∈ B | ∃X′,Y′ • (s,X′,Y′) ∈ Bn ∧ e ∈ Y′} for n ∈ N. (4)

The we define the inductive core,bBc by

bBc ≡ ∪{Bn | n ∈ N} . (5)

Since all traces are finite, whenB (P) ⊆ B, thenB (P) = bBc. In this context we can say that
acceptances determine the traces.

6 Some definitions

#s is the length of s: #〈〉 = 0 and #(t̂ 〈e〉) = #t + 1. We extend this notation to acceptances:
#A = max{#s | s ∈ traces(A)}which is well defined when the lengths are bounded. Otherwise
#A = ∞.

s º n just truncates a trace to a length no more than n whethers is finite or infinite:

Definition 2 s º 0 = 〈〉 and sº n = n C s wheren = {i | 1 ≤ i ≤ n}.
HereC is domain restriction: iff : X → Y is a function thenD C f : X ∩ D → Y is the
restriction off|D∩X with domainX ∩ D. So #(s º n) ≤ n.

If S is a set of tracesSº n contains only the truncated versions:

Definition 3 Sº n = {s º n | s ∈ S}.
We extend prefixing to allow comparison of a finite with an infinite trace:

Definition 4 Let s∈ Σ∗ and t∈ Σω. Then

(s≤ t) ⇔ (s = 〈〉 ∨ ∃ n ∈ N • s = n C t)

C above is domain restriction as before: the leadingn elements oft match a non-nullsabove.

Definition 5 s \ H is a trace composed of those elements not in the set H:

〈〉 \ H = 〈〉 ŝ〈x〉 \ H = s \ H J x ∈ H I (s \ H)̂x

We can extend trace hiding to infinite traces.

Definition 6 If w ∈ Σω then we write w\ H = s when

∀ n ∈ N • (w º n) \ H ≤ s and ∀ n ∈ N • ∃m ∈ N • s º n = (w º m) \ H .

Definition 7 The down-set↓s = {t | t ≤ s} is a standard notion from partial order theory.

If A : P
(
Σ
∗ × PΣ ×

X✗

P ΣX✗

)
is a set of acceptances thenA ºº n just represents the accep-

tances no longer thann:

A.E.Lawrence/ Triples 167

Definition 8
A ºº n = {(s,X,Y) ∈ A | #s 6 n} . (6)

The notationRLXM means the relational image of a setX. So:

RLXM = {y | x ∈ X ∧ x R y} .
Definition 9 Let (S,6) be a partial order.m6 : PS→ PS is the function that produces the
set of maximal elements:

m6(∅) = ∅
m6(X) = {x ∈ X | ∀ y ∈ X • x≮ y} (X , ∅) .

Usually the order is implied and we writem : PS→ PS.

Definition 10 An atomicprocess is one represented by a minimal non empty set of accep-
tances: any smaller non empty set cannot represent a process. Such processes have a unique
response to any offer: they areinternally deterministic.

7 Axioms

The axioms here were briefly described in the companion paper and shown to encompass a
very large class of processes. For a setBP ⊆ A to describe a process, it must conform to
these simple constraints.

Every process performs events only after it has started:

H1: 〈〉 ∈ traces(P)

There is at least one acceptance for every possible offer:

H2: ∀ s ∈ traces(P) • ∀X ⊆ Σ • ∃Y ∈
X✗

P(XX✗) • (s,X,Y) ∈ B (P)

The traces of a process are prefix closed, and match the responses:

H3: ∀ s ∈ Σ
∗ • ∀ x ∈ Σ • ŝ〈x〉 ∈ traces(P) ⇔ ∃(s,X,Y) ∈ B (P) • x ∈ Y∩ Σ

One may regardBP ⊆ A and properties likeX , ✗ andΣ ∩ {X,✗} = ∅ as implicit
axioms.

8 Semantics

The main purpose of this paper is to present the details of the semantics of the principal
operators ofCSPP.

8.1 Stop, SkipandSpin

Stop, SkipandSpinare all similar:

BStop = {(〈〉,X, ∅) | X ⊆ Σ}
BSkip = {(〈〉,X, {X}) | X ⊆ Σ}
BSpin = {(〈〉,X, {✗}) | X ⊆ Σ}

(7)

168 A.E.Lawrence/ Triples

8.2 ⊥

⊥ is the most unpredictable of all processes: it can behave in any fashion at all.

B⊥ = A (8)

See equation 3 on page 165 for the definition ofA.

8.3 Prefix choice

Considere : E→ P(e) with E ⊆ ΣX✗. In general there are many possible initial acceptances

〈〉 : X Ã ∅J XX✗ ∩ E = ∅I U

whereU ∈
X✗

P
(
XX✗ ∩ E

)
is not empty.

B (e : E→ P(e)) =

{
(〈〉,X,Y)

∣∣∣∣∣∣X ⊆ Σ ∧ Y ∈
X✗

M
(
XX✗ ∩ E

)}

∪{
(〈e〉̂s,X,Y) |e ∈ E∩ Σ ∧ (s,X,Y) ∈ B (P(e))

}
(9)

X✗

M (X) was defined in definition 1 on page 165: the acceptances include all ways of assigning
or refraining from assigning priority among the events ofE. Subsequent behaviour, if any,
depends on the initial eventeand matches one of those inBP(e). Clearly,P(e) is defined on
E∩ Σ, at least.

Example 1 Usually E in e: E→ P(e) is a set of real events. More general cases include

1. x : {X} → Stop= x : {X} → P = Skip for any P.

2. x : {✗} → Stop= x : {✗} → P = Spin for any P.

3. x : {X,✗} → P = Skipu Spin for any P.

4. x : {a,X} → Stop= (a→ Stop)
←−
¤ Skip u Skip.

When subsequent behaviour does not depend on the choice of event as in the examples above,
it is natural to omit ”x :” as in {a,b} → {b, c} → Stop.

8.4 Relational Prefix choice

It does not take much experience usingCSPP syntax to see the utility of notations likee :

(S, [{a,b} > {c} > {d}]) → P(e) to stand for
(
(a→ P(a))

←→
¤ (b→ P(b))

)←−¤ (c→ P(c))
←−
¤ (d→

P(d)). More generallye : (S,6) → P(e) is a process which initially gives priority to events
according to the partial order6 and then behaves likeP(e). One might expect that we can
always find such a partial order to describe the initial acceptances, but this is not true.

Example 2

((a→ Stop)
←−
¤ (b→ Stop))

←→
¤ ((c→ Stop)

←−
¤ (b→ Stop)

←−
¤ (a→ Stop))

has initial acceptances that do not match any partial order:
{a,b, c}Ã {a, c}, {b, c}Ã {b, c}, {a, c}Ã {a, c}, {a,b}Ã {a,b}, In such an order,{a,b, c}Ã
{a, c} would give b6 a, but that does not match{a,b}Ã {a,b} which would require that a
and b are incomparable.

A.E.Lawrence/ Triples 169

This suggests that a more general form of prefixing may be desirable. The obvious, simple
and natural approach is to directly specify an initial acceptance relation, although an accep-
tance function would be adequate. Relations used in practice are nearly always functions:
such prefixes can be called atomic.

B (e : (α)→ P(e)) =

{(〈〉,X,Y) ∈ A |XαY} ∪ {
(〈e〉̂s,X,Y) |∃(X′,Y′) ∈ α • e ∈ Y′ ∩ Σ ∧ (s,X,Y) ∈ B (P(e))

}
(10)

whereα : P
(
PΣ ×

X✗

P(ΣX✗)

)
is an acceptance relation with domα = PΣ matching the axioms

and respectingA. P(e) is understood to be defined for all the events that can be accepted by
α.

The most common use of this notation is atomic. It is when the initial acceptances match
a partial order relation (S,6) on events in which every nonempty subset ofShas a maximal
element andX or ✗ may be present only as bottom elements. In such cases

B (e : (S,6)→ P(e)) = {
(〈〉,X,m(S∩ XX✗)) |X ⊆ Σ

}

∪{
(〈e〉̂s,X,Y) | ∃Z ⊆ Σ • e ∈ m(S∩ ZX✗) ∩ Σ ∧ (s,X,Y) ∈ B (P(e))

} (11)

m : PΣX✗ → PΣX✗ is the function which selects the maximal elements of a set: see defini-
tion 9 on page 167.

Many orders of interest can be expressed in terms oflayersas in [{p} > {q, r} > {s}]: the
elements of the component sets are strictly ordered only with respect to members of other
sets. This notation is used in some of the examples below:

Example 3 x : ({a,b},=)→ Stop= a→ Stop
←→
¤ b→ Stop.

Example 4 x : ([{a} > {b}]) → Stop= a→ Stop
←−
¤ b→ Stop.

Example 5

x : ([{a,b} > {c} > {d}]) → Stop= (a→ Stop
←→
¤ b→ Stop)

←−
¤ (c→ Stop

←−
¤ d→ Stop).

Example 6 x : ([{a,b} > {X}]) → Stop= (a→ Stop
←→
¤ b→ Stop)

←−
¤ Skip.

All the examples above are cases when the ‘x :’ might have been omitted for brevity:x was
not explicitly bound in the bodies, which means thatP(e) is a constant function.

8.5 Compliant prefixing

e :
←→
E → P(e), is defined ase : (E,=)→ P(e).

170 A.E.Lawrence/ Triples

8.6 Internal choice

B (P1 u P2) = BP1 ∪ BP2 (12)

We extend the definition to suitable non empty sets of processesP, writing

B
(uP) =

⋃
{BP | P ∈ P} . (13)

To avoid foundational issues, we need to impose a suitable limit on the size of the sets ad-
mitted by (13) to ensure the behaviours form a set rather than a proper class. It is then
immediately clear thatu P satisfies the axioms of section 7:

Lemma 1 B (
⋃P) represents a process whenP is a suitable non empty set of processes.

The following lemmas are not hard to prove:

Lemma 2 Let {Pi : Σ → CSPP} be an indexed nonempty set of process functions. Then
e : E→u{Pi(e) | i ∈ I } =u{e : E→ Pi(e) | i ∈ I }

Lemma 3 Let {Pi : Σ → CSPP} be an indexed nonempty set of process functions. Then
e : (α)→u{Pi(e) | i ∈ I } =u{e : (α)→ Pi(e) | i ∈ I }

Lemma 4 Let {Pi : Σ → CSPP} be an indexed nonempty set of process functions. Then
e : (S,6)→u{Pi(e) | i ∈ I } =u{e : (S,6)→ Pi(e) | i ∈ I }

8.7 Compliant external choice

B (P1

←→
¤ P2) =(〈〉,X,Y)

∣∣∣∣∣∣∣∣
∃Y1,Y2 ∈

X✗

P(ΣX✗) •
(〈〉,X,Y1) ∈ BP1 ∧ (〈〉,X,Y2) ∈ BP2 ∧ Y ∈

X✗

S (Y1 ∪ Y2)

∪{

(〈x〉̂s,X,Y)
∣∣∣(〈x〉̂s,X,Y) ∈ B (P1) ∨ (〈x〉̂s,X,Y) ∈ B (P2)

}
(14)

X✗

S (X) is defined in definition 1 on page 165. It ensures thatX and✗ can be returned only as
singletons if they are present.

Example 7 (a→ P1)
←→
¤ (a→ P2) = (a→ P1) u (a→ P2).

Example 8 Skip
←→
¤ (a→ P) = Skip u (a→ P)

←−
¤ Skip.

AlthoughSkip
←→
¤ (a→ P) looks as if it ought to be compliant on〈〉, an environment cannot

chooseX, soX cannot be offered as a legitimatechoice, only as a singleton. [8]

It is clear from the definition that
←→
¤ is associative:

P1

←→
¤

(
P2

←→
¤ P3

)
=

(
P1

←→
¤ P2

)←→
¤ P3

A.E.Lawrence/ Triples 171

¿From standard CSP, we might expect thatP1 u
(
P2

←→
¤ P3

)
= (P1 u P2)

←→
¤ (P1 u P3) but

this cannot be true in the presence of priority. The reason becomes clear when we regard the

processes as specifications. (P1 u P2)
←→
¤ (P1 u P3) has a refinement ofP1

←→
¤ P3 which is not

an implementation ofP1 u
(
P2

←→
¤ P3

)
. The correct result is

P1 u
(
P2

←→
¤ P3

)
w (P1 u P2)

←→
¤ (P1 u P3) (15)

It is again not hard to establish:

Lemma 5 Let {Pi : Σ→ CSPP} be an indexed nonempty set of processes. Then Q
←→
¤ u{Pi |

i ∈ I } =u{Q←→¤ Pi | i ∈ I }

8.8 Prioritised external choice

B (P1

←−
¤ P2) =(〈〉,X,Y)

∣∣∣∣∣∣∣∣

∃Y1,Y2 ⊆ ΣX✗ • (〈〉,X,Y1) ∈ BP1 ∧ (〈〉,X,Y2) ∈ BP2

∧
Y = (Y2 J Y1 = ∅I Y1)

⋃

(〈e〉̂s,X,Y)

∣∣∣∣∣∣∣∣∣∣∣

(〈e〉̂s,X,Y) ∈ B (P1)
∨

∃X′ ⊆ Σ • (〈〉,X′, ∅) ∈ B (P1) ∧ ∃Y2 ⊆ ΣX✗ •
(〈〉,X′,Y2) ∈ B (P2) ∧ e ∈ Y2 ∩ Σ ∧ (〈e〉̂s,X,Y) ∈ B (P2)

(16)

Equation (16) simply says that the process always behaves likeP1 unlessP1 refuses in
which case it behaves likeP2. It allowsP1 to perform any event, terminate or livelock if it is
capable of so doing. WhenP1 is active in any sense, it is let loose:

〈〉 : X Ã U if P1 :: 〈〉 : X Ã U apart fromU = ∅

P2 is only allowed to be active whenP1 is not. If P1 shows any sign of life, even pathological
life, it executes. Even ifP2 can performX or signal✗, it is ignored until all events fromP1

are positively blocked.

Example 9 (a→ Stop)
←−
¤ (a→ b→ Stop) = a→ Stop

In general, (a→ P1)
←−
¤ (a→ P2) = a→ P1. [9]

Example 10 SKIP guards.

Skip
←−
¤ (a→ Stop) only has acceptances of the sort:

〈〉 : X Ã {X}

because Skip never refuses, so Skip
←−
¤ (a→ Stop) = Skip. And

172 A.E.Lawrence/ Triples

PRI ALT

B & SKIP

P

a?

Q

is (Skip# P J B I Stop)
←−
¤ (a → Q) = P J B I (a → Q) as we would wish. This gives a

denotational semantics for, and so defines, SKIP guards. However,

PRI ALT

a?

P

SKIP

Q

is not normally implemented with the semantics of
←−
¤. The reason is that when a? is checked

for availability, the process which outputs a is not necessarily involved. This is quite different
from the semantics of equation(16)which requires P1 to positively refuse before P2 is allowed
to execute.

Example 11 Skip and Spin are left multiplicative zeroes of
←−
¤ while Stop is a unit:

Skip
←−
¤ P = Skip Spin

←−
¤ P = Spin Stop

←−
¤ P = P P

←−
¤ Stop= P

Like its compliant counterpart,
←−
¤ is associative:

P1

←−
¤

(
P2

←−
¤ P3

)
=

(
P1

←−
¤ P2

)←−
¤ P3

Notice however that

P1 u
(
P2

←−
¤ P3

)
w (P1 u P2)

←−
¤ (P1 u P3) (17)

becauseP1

←−
¤ P3 andP2

←−
¤ P1 are refinements of the right hand side, but not of the left.

Lemma 6 Let {Pi : Σ→ CSPP} be an indexed nonempty set of processes. Then Q
←−
¤u{Pi |

i ∈ I } =u{Q←−¤ Pi | i ∈ I } andu{Pi | i ∈ I } ←−¤ Q =u{Pi

←−
¤ Q | i ∈ I }.

8.9 Parallels

8.9.1 Interleaving

When P1‖
E
P2 executes and performs a traces, then the parallel processes have performed

matching traces (s1, s2). If E = Σ, then all events are synchronised and performed jointly by
P1 andP2. In that cases1 = s2 = s.

The other extreme is whenE = ∅, so no events are synchronised. That is just standard
interleaving:P1‖

∅
P2 = P1 ||| P2. True concurrency is not part of the present theory.

In general a traces can arise from more than one pair of traces (s1, s2). We call this way
of picking events from thes1 ands2 to form s generalised interleaving and writes ∈ s1‖

E
s2.

Clearly〈〉‖
E
〈〉 = {〈〉}.

The following abbreviation captures this:

A.E.Lawrence/ Triples 173

Definition 11 Let s∈ Σ
∗
. Then

Interleaves(P1,P2, s,E) ≡

f : ↓s→ Σ∗2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (〈〉) = (〈〉, 〈〉)
∧

∀ t̂〈x〉 ∈ ↓s • ∃ t1 ∈ traces(P1) • ∃ t2 ∈ traces(P2) • f (t) = (t1, t2)
∧

x ∈ E⇒

∃X,Y1,Y2 •
(t1,X,Y1) ∈ B (P1) ∧ (t2,X,Y2) ∈ B (P2) ∧ x ∈ Y1 ∩ Y2

∧
f
(
t̂〈x〉) = (t1̂〈x〉, t2̂〈x〉)

∧ x < E⇒

f
(
t̂〈x〉) = (t1̂〈x〉, t2) ∧ t1̂〈x〉 ∈ traces(P1)

∨
f
(
t̂〈x〉) = (t1, t2̂〈x〉) ∧ t2̂〈x〉 ∈ traces(P2)

The projections of f∈ Interleaves(P1,P2, s,E) are written as f1 and f2 so f(t) = (f1(t), f2(t)).

Definition 11 has to include a number of details to ensure that irregular processes are handled
properly.

8.9.2 General parallel

B (P1‖
E
P2) =

(s,X,Y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ f ∈ Interleaves(P1,P2, s,E) • ∃Y1,Y2 ∈
X✗

P XX✗ •
(f1(s),X,Y1) ∈ B (P1) ∧ (f2(s),X,Y2) ∈ B (P2)

∧
Y ∈

X✗

M
((

Y1 ∩ Y2 ∩ EX) ∪ (
(Y1 ∪ Y2) − EX))

(18)

X✗

M (X) was defined on page 165: see definition 1. In equation (18),Y can be any available
nonempty subset or available singleton token.

The difficulty with hard priority here is just the same as that which arises with¤: there can

be ‘unexpected’ deadlocks. So (P1 ||| P2) ||| (P1 ||| P2) can behave like (P1
←−|||P2)

←→||| (P1
−→|||P2) at

any point and create a deadlock which would not arise in standard CSP. As a consequence,
P1‖

E
P2 should not be identified with the corresponding operator of standard CSP. In most

circumstances,P1
←→‖
E

P2 will be the right identification, although just as for¤

P1

CSP
‖
E

P2 = P1
←→‖
E

P2 u P1
←−‖
E

P2

and

P1

CSP
‖
E

P2 = P1
←→‖
E

P2 u P1
−→‖
E

P2

are more abstract possibilities as well as variants that are not consistent at each step.

Lemma 7 Equation(18)defines a process.

174 A.E.Lawrence/ Triples

Proof. Suppose (f1(s),X,Y1) ∈ B (P1) ∧ (f2(s),X,Y2) ∈ B (P2). Then acceptances of the
form (fi(s),X′,Y′2) exist for all otherX′ ⊆ Σ, so all (s,X′,Y′) triples are present.

The set of acceptances must also satisfyH3. Takeŝ 〈x〉 ∈ traces

(
P1‖

E
P2

)
. That means that

∃(ŝ 〈x〉,X,Y) ∈ B
(
P1‖

E
P2

)
. Supposex ∈ E. Then there is anf ∈ Interleaves(P1,P2, ŝ 〈x〉,E)

with (f1(ŝ 〈x〉),X,Y1) ∈ B (P1) and (f2(ŝ 〈x〉),X,Y2) ∈ B (P2). ¿From definition 11, there
are some setsX′,Y′1 andY′2 for which (f1(s),X′,Y′1) ∈ B (P1) and (f2(s),X′,Y′2) ∈ B (P2) with

x ∈ Y′1 ∩Y′2. This shows that there is aY with (s,X′,Y) ∈ B
(
P1‖

E
P2

)
andx ∈ Y so the forward

implication ofH3 is satisfied whenx ∈ E.
Whenx < E the result is even easier to establish because only one parallel partner is

involved.
The converse implication ofH3 is obviously satisfied.a

Example 12 Take P1,P2 and Q to be processes with acceptances which include

Q :: 〈〉 : {a,b}Ã {a} P1 :: 〈〉 : {a,b}Ã {a} P2 :: 〈〉 : {a,b}Ã {b}
{a, c}Ã {c} {a, c}Ã {a} {a, c}Ã {a}
{b, c}Ã {c} {b, c}Ã ∅ {b, c}Ã {b}
{a}Ã ∅ {a}Ã {a} {a}Ã {a}
{b}Ã {b} {b}Ã ∅ {b}Ã {b}
{c}Ã {c} {c}Ã ∅ {c}Ã ∅

Q :: 〈a〉 : X Ã X ∩ {a,b, c} P1 :: 〈a〉 : X Ã ∅ P2 :: 〈a〉 : X Ã X ∩ {b}
Q :: 〈b〉 : X Ã X ∩ {a,b, c} P2 :: 〈b〉 : X Ã ∅
Q :: 〈c〉 : X Ã X ∩ {a,b, c}

Then Q‖ P1 :: 〈〉 : {a,b}Ã{a}, so it has a trace〈a〉 after which it stops. Q‖ P2 :: 〈〉 : {b}Ã{b}
provides the only nonempty trace,〈b〉, after which it stops. In particular, this process cannot
perform the trace〈ab〉. However Q‖ (P1 u P2) canperform the trace〈ab〉. This shows that

Q ‖ (P1 u P2) , Q ‖ P1 u Q ‖ P2 .

The various responses in equation (18) allow, for example, a scheduler to make arbi-
trary decisions about which events to select in preference to others, perhaps for reasons of

efficiency.P1
←→‖
E

P2 does not permit that freedom:

B (P1
←→‖
E

P2) =

(s,X,Y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ f ∈ Interleaves(P1,P2, s,E) • ∃Y1,Y2 ∈
X✗

P XX✗ •
(f1(s),X,Y1) ∈ B (P1) ∧ (f2(s),X,Y2) ∈ B (P2)

∧
Y ∈

X✗

S
((

Y1 ∩ Y2 ∩ EX) ∪ (
(Y1 ∪ Y2) − EX))

(19)

X✗

S (X) was defined on page 165.

8.9.3 Derived Parallels

As usual there are derived versions.

PX‖Y Q = P′ ‖
X∩Y

Q′

whereP′ = P‖
Σ

RunX, Q′ = Q‖
Σ

RunY and RunE = e : E → RunE. And of course interleaving:

P ||| Q = P‖
∅
Q and fully synchronised parallel:‖ = ‖

Σ

.

A.E.Lawrence/ Triples 175

8.10 Prioritised parallel

For the form of parallel composition that always favours one partner, we have to refine the
notion of interleaving to match because triples like (s,X,Y) only record a very limited history
in the trace components.

Definition 12 Let s∈ Σ
∗
. Then

←−−−−−−−−−−
Interleaves(P1,P2, s,E) ≡

f : ↓s→ Σ∗2

∣∣∣

f (〈〉) = (〈〉, 〈〉)
∧

∀ t̂〈x〉 ∈ ↓s • ∃ t1 ∈ traces(P1) • ∃ t2 ∈ traces(P2) • f (t) = (t1, t2)
∧

x ∈ E⇒

∃X,Y1,Y2 •
(t1,X,Y1) ∈ B (P1) ∧ (t2,X,Y2) ∈ B (P2) ∧ x ∈ Y1 ∩ Y2

∧
f
(
t̂〈x〉) = (t1̂〈x〉, t2̂〈x〉)

∧

x < E⇒

f
(
t̂〈x〉) = (t1̂〈x〉, t2) ∧ t1̂〈x〉 ∈ traces(P1)

∨

f
(
t̂〈x〉) = (t1, t2̂〈x〉)

∧
∃X,Y2 •

(t1,X, ∅) ∈ B (P1) ∧ (t2,X,Y2) ∈ B (P2) ∧ x ∈ Y2

The projections of f∈ ←−−−−−−−−−−Interleaves(P1,P2, s,E) are again written as f1 and f2 so f(t) =

(f1(t), f2(t)).

B (P1
←−‖
E

P2) =

(s,X,Y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ f ∈ ←−−−−−−−−−−Interleaves(s,E) • ∃Y1,Y2 ∈
X✗

P XX✗ •
(f1(s),X,Y1) ∈ B (P1) ∧ (f2(s),X,Y2) ∈ B (P2)

∧
Y ∈

X✗

S
((

Y1 ∩ Y2 ∩ EX) ∪
((

Y2 J (Y1 − EX) = ∅I Y1

)
− EX

))

(20)

A less explicit way to defineP1
←−‖
E

P2 would just use the ordinaryInterleaves and thebBc
notation of section 5.1 on page 166 to eliminate the excess traces.

8.11 Sequential Composition

B (P1 # P2) =

{(s,X,Y) ∈ B (P1) |Y , {X} }
∪

{(s,X,Y) |(s,X, {X}) ∈ B (P1) ∧ (〈〉,X,Y) ∈ B (P2) }
∪(t1̂〈x〉̂ t2,X,Y)

∣∣∣∣∣∣∣∣

∃X′,Y′ • (t1,X′, {X}) ∈ B (P1) ∧ (〈〉,X′,Y′) ∈ B (P2) ∧ x ∈ Y′

∧
(〈x〉̂ t2,X,Y) ∈ B (P2)

(21)

176 A.E.Lawrence/ Triples

The reference to two triples fromB (P2) in the last set in equation (21) means that distri-
bution overu is unlikely to hold in all cases, and this proves to be the case.

Example 13 TakeΣ = {a,b} and let Q be the rather artificial process that terminates on the
offer {a,b} and refuses all other offers. That is Q:: 〈〉 : {a,b}Ã {X} and Q:: 〈〉 : XÃ∅ for all

other X. Write P1 = (a→ a→ Stop)
←−
¤ (b→ a→ Stop) and P2 = (b→ b→ Stop)

←−
¤ (a→

b → Stop). Notice that Q# P1 has traces{〈〉, 〈a〉, 〈aa〉} and Q# P2 has traces{〈〉, 〈b〉, 〈bb〉}.
However Q# (P1 u P2) has a trace〈ab〉 so this shows that Q# P1 u Q # P2 , Q # (P1 u P2).

Distribution acrossu does work in the other direction:

Lemma 8 Let {Pi : Σ → CSPP} be an indexed nonempty set of processes. Thenu{Pi | i ∈
I } # Q =u{Pi # Q | i ∈ I }.

The failure to distribute overu in every case arises from the multiple references to triples
from B (P2) in equation (21). In effect, the present semantics is too fine grained to guar-
antee the distribution. The failure is repaired in a more coarse grained semantics in which
behaviours representing the histories of experiments are recorded. This yields a slightly less
abstract version ofCSPP, but is not examined further here. The same phenomenon occurs in
hiding below.

Notice that we cover processes likeµp • (Skipu a→ p) #Q. And also that it is trivial to
check thatSkip# P = P # Skip= P.

8.12 Hiding

Conceptually,P \ H is a process with the internal behaviour ofP, yet with external ‘visible’
behaviour which excludes any ’internal’ events from the setH. The internal events ofH are
no longer subject to direct environmental control. Often there are several possibilities for the
internal dynamics: the processP \ H models them by nondeterminism.

The most natural form of hiding offers the internal hidden events in a compliant way. The
version below also allows external hesitant offers.

B (P \ H) =

(s \ H,X, {✗})

∣∣∣∣∣∣∣∣∣∣∣

Accessible(P, s,H)
∧

∃w ∈ Hω • ∀ n ∈ N •
∃Y′ • w(n + 1) ∈ Y′ ∧ (ŝ (w º n),X ∪ H,Y′) ∈ B (P)

⋃

(s \ H,X,Y \ H)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Accessible(P, s,H)
∧

Y ∈
X✗

S

⋃

Y′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ u • s 6 u ∧ s \ H = u \ H
∧

(u,X ∪ H,Y′) ∈ B (P)
∧

∀n ∈ [#s,#u) • ∃Y′′ •
(u º n,X ∪ H,Y′′) ∈ B (P) ∧ u(n + 1) ∈ Y′′

∧

(Y \ H = ∅)⇒ Stable(P, s,X,H)

(22)

A.E.Lawrence/ Triples 177

where

Accessible(P, s,H) ≡ ∀n ∈ [0,#s) • ∃X′,Y′ • (s º n,X′ ∪ H,Y′) ∈ B (P) ∧ s(n + 1) ∈ Y′

means that there is some way thatP can perform the traceswhen the events ofH are always
included compliantly in any offer.

Stable(P, s,X,H) ≡ ∃ u0 • s 6 u0 ∧ s \ H = u0 \ H ∧ (u0,X ∪ H, ∅) ∈ B (P) ∧
∀n ∈ [#s,#u0) • ∃Y • (u0 º n,X ∪ H,Y) ∈ B (P) ∧ u0(n + 1) ∈ Y

is used to ensure that external refusals are genuine rather than as a side effect of hiding
internal events.

The first set in equation (22) captures livelock. The second set references more than
one triple inB (P) and this is why it does not distribute overu. It is however manifestly
monotone.

Example 14 Let

P1 =
←−−→{a,h} → ←−−→{b,h} → ←−−→{c,h} → Stop

P2 =
←−−→{e,h} → ←−−→{d,h} → ←−−→{f ,h} → Stop

and

P3 =
←−−→{a,h} → ←−−→{d,h} → ←−−→{c,h} → Stop

Then

P1 \ {h} : {a,b, c,d,e, f }Ã {a,b, c}
P2 \ {h} : {a,b, c,d,e, f }Ã {d,e, f }
and
P3 \ {h} : {a,b, c,d,e, f }Ã {a, c,d}

Since P1 u P2 can behave like P3, it follows that(P1 u P2) \ {h} , P1 \ {h} u P2 \ {h}.

Lemma 9 Hiding is monotone: Pv Q⇒ P \ H v Q \ H.

Proof. Obvious by inspection of equations (12) and (22).a
It does not appear that there can be any sensible definition of hiding using the present fine

grained semantics which can distribute overu. Sliding requires that we access more than one
unit of information to determine responses, and this is incompatible with the distribution. It
is interesting to notice how the problem is neatly side-stepped in standard CSP semantics
based on Failures by employing ‘inverted logic’.

8.13 Renaming

Renaming needs careful definition because one-many renaming introduces additional non
determinism. IfR is the renaming relation we writes R s′ to mean that the traces′ is a
pointwise renamed version ofs. And it is useful to extend it toΣX✗:

Definition 13 RX✗=R ∪{X 7→ X,✗ 7→ ✗}.

178 A.E.Lawrence/ Triples

R

X

R~(X)

()R R~(X)

Figure 1: Renaming with R

If P is a process,PJR K is the renamed process.

BPJR K =

(s,X,Y)

∣∣∣∣∣∣∣∣∣∣∣

∃ t • t R s∧ ∃Y′ • (t,R∼ LXM,Y′) ∈ B (P) ∧ Y = RX✗ LY′M ∩ XX✗

∧
∀ n ∈ [0,#s) • ∃ t • ∃X′,Y′ •

t R (s º n) ∧ (t,R∼ LX′M,Y′) ∈ B (P) ∧ s(n + 1) ∈ RX✗ LY′M ∩ X′X✗

(23)

R∼ is the reverse relation: the notation is similar to that used in Z. AndR LXM = {y | x R
y} is the relational image of the setX. The second predicate in equation (23) ensures thatH3
is obeyed: it is needed because the axioms admit some very irregular processes.

Renaming is clearly monotone.

Lemma 10 Renaming is monotone: Pv Q ⇒ PJR K v QJR K.

8.14 Interruption:P1 4
(i,r)

P2

A variant of the usual sort of interrupt operator is defined here with one eye on the evolution
of the Honeysuckle language: see [17], [18] and [19].

Let P1 andP2 be two processes andi andr two distinguished events.i will represent an
interruption, andr can be regarded as a ‘return from interrupt’. The intention here is thatP2

is something like a standard interrupt service routine. Denote the alphabets ofP1 andP2 by
αP1 andαP2 in the sense that these are the sets of events that the processes can perform. We
require that these alphabets be disjoint, and thati is in neither of them. Howeverr ∈ αP2

since we wantP2 to be able to complete its processing by executingr.
Two standard notations that have not been needed above ares ↓ a which is the number of

occurrences of the eventa in the traces; ands¹E which is the subsequence ofsconsisting of
members of the setE. Sos ↓ i = s ↓ r will determine whether the traces contains matching
pairs of i and r, and so whether we are ’background processing’ inP1 or in the interrupt
service routineP2. And s¹ (αP1) will be the portion ofsexecuted byP1 and similarly forP2.

A.E.Lawrence/ Triples 179

Then

B
(
P1 4

(i,r)
P2

)
=

(s,X,Y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

s ∈ (αP1 ∪ αP2 ∪ {i})∗
∧

(Y = {i}J i ∈ X I (s¹ (αP1),X,Y) ∈ B (P1))
Js ↓ i = s ↓ rI

(s¹ (αP2),X,Y) ∈ B (P2)

(24)

Recall thatbBc was defined in section 5.1 on page 166. It avoids the need to be explicit about
the set of traces: only the traces that can be ‘accepted’, starting from〈〉, are included.

8.15 Refinement

Refinement is as usual
P1 w P2 ⇔ P2 = P2 u P1 (25)

which simply maps onto set inclusion on the acceptances:

P1 w P2 ⇔ BP1 ⊆ BP2 (26)

Proof. AssumeP1 w P2 or P2 = P2 u P1 from (25) above. ThenBP2 = BP2 ∪ BP1 which
givesB (P1) ⊆ B (P2) immediately. The converse is equally obvious.a

8.15.1 ⊥
The most nondeterministic process which has all possible behaviours is evidently below any
other process in this order: it is the least element⊥ of w.

There is no top process in this version based on triples, although it appears in versions
based on behaviours.

8.15.2 Meets and joins

Let S be a nonempty set of processes.uS is the obvious candidate to be the meet.Proof.
First,uS is a lower bound ofS. If P ∈ S, thenBP ⊆ B (u S) is an immediate consequence
of the definition. But this isPw u Ssou S is a lower bound ofS.

Second, it is clear thatu S is the supremum of all lower bounds, for any lower bound
must contain∪{BP | P ∈ S}. a

If S has a join, then it must match the intersection of the behaviours:
⋂{BP | P ∈ S}.

Unfortunately, this can fail to define a process, as in the pair (a → Stop) and (b → Stop).
With Σ = {a,b, c}, B (a→ Stop) ∩ B (b→ Stop) = {〈〉 : {c}Ã ∅, 〈〉 : ∅Ã ∅} which is not a
process:H2 is violated.

Theorem 1 (CSPP,v) is a Complete Partial Order whenΣ is finite.

Proof. LetD be a directed set of processes. It is necessary to show that

B (U) =
⋂{B (D) | D ∈ D}

represents a process. WhenΣ is finite, so also arePΣ and
X✗

P ΣX✗. So the number of choices
of (s,X,Y) for a fixeds is finite. This observation is used to establish thatU satisfies the
axiomsH1, H2 andH3 of section 7.

For H1 suppose that there is no instance of (〈〉,X,Y) ∈ B (U). There is only a finite
number of such possibilities, so it is possible to construct a finite subset ofD with an upper

180 A.E.Lawrence/ Triples

bound which has no instance of (〈〉,X,Y) for someX andY. This is a contradiction in that
the bound is itself a process satisfyingH1. ThusU satisfiesH1.

U must satisfyH2 by a very similar argument noting that there are only a finite number
of choices forY in (s,X,Y) whens andX are fixed.

Supposeŝ 〈x〉 ∈ traces(U): we need to show that there is some common (s,X,Y) ∈ B (U)
with x ∈ Y ∩ Σ. If we assume the contrary and note the finite number of choices for (X,Y),
once again we can construct a finite subset ofD with an upper bound which will failH3.
Thus

ŝ〈x〉 ∈ traces(U) ⇒ ∃(s,X,Y) ∈ B (U) • x ∈ Y∩ Σ .

The converse is obviously satisfied, soU satisfiesH3.
a

8.16 Recursion

8.16.1 Fixed points from the refinement partial order.

µ p • f (p) denotes a fixed point of the functionf . This is often the least fixed point with
respect to the refinement order in standard untimed CSP. Theorem 1 establishesCSPP as a
CPO. Standard theorems now ensure that every monotone functionf has a least fixed point,
and soµ p • f (p) is well defined. All the ordinary operators ofCSPP are monotone with
respect to the refinement orderw: in most cases this follows from the fact that they distribute
overu.

If f is continuous, that is for every directed setD of processes,
⊔

f LDM exists and is the
same as the image of the join ofD:

⊔
f LDM = f (tD), then another theorem gives a more

useful formula:
µ p • f (p) =

⊔
{f n(⊥) | n ∈ N0} . (27)

Often there is a unique fixed point, but the results above do not help directly in identifying
such cases. A metric exists which is useful in such cases.

8.16.2 Monotone properties

All of the standard operators are monotone inv: this was shown as each was introduced
above. In most cases, the result follows from the the fact that the operators distribute overu,
but that is a stronger property. Hiding in particular does not so distribute, but is nevertheless
monotone.

Lemma A.1.8 on page 484 of [2] shows thatµ : (CSPP m−→ CSPP) → CSPP is mono-
tone. CSPP m−→ CSPP denotes the space of monotone functions onCSPP processes. The
monotone relation onCSPP m−→ CSPPis defined pointwise:

f w f ′ ⇔ ∀P ∈ CSPP • f (P) w f ′(P) .

Hence ifh(Q,P) is monotone in both arguments, thenλQ • h(P,Q) ∈ (CSPP m−→ CSPP) so
λP • µQ • h(Q,P) is also monotone. And similar arguments apply for other forms of which
λP • µQ • fP(Q) is perhaps the most general.

In the case of mutual recursion, that is a recursion involving a sequence of functions
〈fi | i ∈ I〉 whereI is an indexing set, then the standard treatment in [2] applies. So mutual
recursion is also monotone and the fixed points are well defined. In applications,I is nearly
always a subset ofN.

A.E.Lawrence/ Triples 181

All the elementary functions ofCSPP have now been shown to be monotone. Since
the composition of monotone functions is itself monotone, this means that all the compound
functions inCSPP have least fixed points.

Example 15 µP • Skip# P = ⊥ because P= Skip# P for every process P.

8.16.3 Continuity

Once a function is known to be monotone, a least fixed point is guaranteed. If in addition,
it is continuous in the partial order, then the constructive equation (27) on page 180 can be
used.

When, as inCSPP, we have a metric and the function is contracting, then we have the
stronger result that iterating fromany starting point, not just from⊥, will converge into a
unique fixed point. Given the power of the metric approach, it is not often thatcontinuity
with respect to refinement is particularly useful.

It is easy to check thatf LDM is directed whenf is monotone andD is itself directed. So⊔
f LDM always exists for anyf : CSPP → CSPP and directed setD. And by definition,

f (
⊔D) =

⊔
f LDM for f continuous. Iff is monotone,f (

⊔D) w⊔
f LDM, because otherwise

f (
⊔D) @ ⊔

f LDM, which would entail someD ∈ D for which f (
⊔D) @ f (D) which is a

contradiction for monotonef .
So it is only necessary to prove the reverse containmentB f (

⊔D) ⊇ B ⊔
f LDM to estab-

lish continuity.

Lemma 11 e : E→ = P 7→ e : E→ P is continuous.

Proof. We need to show

e : E→ ⊔D =
⊔

(e : E→ D) ,

for each directed setD. As we have noted above, it is only necessary to show that (s,X,Y) ∈⋂{B (e : E→ D) | D ∈ D} ⇒ (s,X,Y) ∈ B (e : E→ ⊔D).
¿From equation (9) on page 168, it is clear that both sets of behaviours coincide when

s = 〈〉, so we need only consider the case (〈e〉̂s,X,Y) ∈ ⋂{B (e : E→ D) | D ∈ D}. This
means that (s,X,Y) is common to every memberD ∈ D. But that gives (〈e〉̂ s,X,Y) ∈
B (e : E→ ⊔D) which establishes the continuity.a

Lemma 12 P 7→ P
←→
¤ Q = Q

←→
¤ P is continuous whenΣ is finite.

Proof. Let (〈〉,X,Y) ∈ ⋂{
B

(
D
←→
¤ Q

)∣∣∣∣∣ D ∈ D
}
. ¿From equation (14) on page 170,

∃(〈〉,X,Y1) ∈ B (D) and∃(〈〉,X,Y2) ∈ B (Q) with Y ∈
X✗

P(Y1 ∪ Y2).
Consider first the case whenY ⊆ Σ soY = Y1 ∪ Y2. SinceY is fixed andΣ is finite, there

is only a finite number of pairs (Y1,Y2) with Y = Y1 ∪ Y2, so this is certainly true when the
possibilities forY2 are restricted to those available from initials inQ.

Now suppose (〈〉,X,Y) < B
(⊔D←→¤ Q

)
. Then there must be a finite subset ofD with a

join which does not contain (〈〉,X,Y), for we can choose a member ofDwhich excludes each
possible (〈〉,X,Y1) in turn. SinceD is directed, the join, which contains none of the possible

(〈〉,X,Y1) triples, is a member ofD. But that contradicts (〈〉,X,Y) ∈ ⋂{
B

(
D
←→
¤ Q

)
|D ∈ D

}
,

so there is some common (〈〉,X,Y1) triple, and (〈〉,X,Y) ∈ B
(⊔D←→¤ Q

)
.

182 A.E.Lawrence/ Triples

Next suppose (〈〉,X, {X}) ∈ ⋂{
B

(
D
←→
¤ Q

)
|D ∈ D

}
. If (〈〉,X, {X}) ∈ B (Q) then

(〈〉,X, {X}) ∈ B
(⊔D←→¤ Q

)
follows immediately. Otherwise (〈〉,X, {X}) ∈ B (D) for each

D ∈ D and (〈〉,X, {X}) ∈ B
(⊔D←→¤ Q

)
again. The same is true for triples of the sort

(〈〉,X, {✗}).
Otherwise, when (〈x〉̂ s,X,Y) ∈ ⋂{

B
(
D
←→
¤ Q

)∣∣∣∣∣ D ∈ D
}

then either (〈x〉̂ s,X,Y) ∈ B (Q)

in which case (〈x〉̂s,X,Y) ∈ B
(⊔D←→¤ Q

)
follows immediately, or (〈x〉̂s,X,Y) ∈ B (D)

for everyD. Again, (〈x〉̂s,X,Y) ∈ B
(⊔D←→¤ Q

)
is an immediate consequence.a ¨[12]

We omit the proofs of the following lemmas in order to keep this paper within reasonable
bounds.

Lemma 13 P 7→ P
←−
¤ Q is continuous whenΣ is finite.

Lemma 14 P 7→ Q
←−
¤ P is continuous whenΣ is finite.

Lemma 15 P 7→ P‖
E
Q is continuous whenΣ is finite.

Lemma 16 P 7→ P
←→‖
E

Q is continuous whenΣ is finite.

Lemma 17 P 7→ P
←−‖
E

Q and P7→ Q
←−‖
E

P are both continuous whenΣ is finite.

Lemma 18 P 7→ P # Q and P7→ Q # P are both continuous.

Hiding is not in general continuous:

Example 16 Let Pm = hm→ Stop be the process that performs m copies of h before stopping.
Write Dn = u{Pm | m > n} and note that Dn \ {h} = Stopu Spin.D = {Dn | n ∈ N} is a
directed set with

⊔D = µP • h → P. Since
⊔D \ {h} = Spin and

⊔{Dn \ {h}} = Stopu
Spin, hiding is not continuous.

Lemma 19 P 7→ PJR K is continuous whenΣ is finite.

8.16.4 A Stronger Order

The refinement order works well for finiteΣ but there is another stronger order:

Definition 14 P < Q ≡ B (P) ⊆ B (Q) ∧ clear(Q) ⊆ clear(P)
where clear(P) = {(s,X,Y) ∈ B (P) | (s,X, {✗}) < B (P)}.
Throughout this paper, we have emphasised that the model is based on pure observation
without any notion of what a ‘reasonable’ process should do. But now we have a reason to
restrict our consideration to processes that are not too bizarre: only then does< become a
Complete Partial Order for arbitraryΣ. The additional axiom is light weight: if an event that
can be performed is offered on its own, then it may be accepted.

H4: (s,X,Y) ∈ B (P) ⇒ ∀ x ∈ Y∩ Σ • (s, {x}, {x}) ∈ B (P)

A.E.Lawrence/ Triples 183

< has the same bottom element as refinement and all the ordinaryCSPPoperators are
<-monotone. This order is stronger in that it relates fewer processes: this is exactly the
reason why it is a Complete Partial Order when refinement is not. The directed sets that are
problematical for refinement need not be considered because the members are not related by
<. But for sets that are directed under both orders, the joins are identical: thus< yields
exactly the same fixed pointsas does refinement for recursions.< is an analogue of Roscoe’s
alternative order for the Failures-Divergences model described in [20]. It is interesting to
discover that< does not depend upon identifying livelock with the bottom element of the
order. More details of< will be given elsewhere.

8.16.5 A Metric

Another approach to fixed points is via a metric. The big advantage is that it yieldsunique
fixed points: these are invaluable in constructing certain proofs. The disadvantage is that it is
of little help when there are several fixed points. So the metric and partial order treatments
are complementary.

The usual restriction space method is extended here forCSPP. A metric is

Definition 15 d(P1,P2) = inf
({3−n | n ∈ N ∧ B (P1) ºº n = B (P2) ºº n} ∪ {3}).

Restriction metrics are generally defined using powers of 2. We depart from tradition
and use 3 for a technical reason that there is no room to consider here. We merely note that
this metric is complete, that prefixing and contracting recursions are contracting, and that the
other standard operators apart from hiding are in general non expanding.

9 Conclusions

It has been shown thatCSPP can be given a simple acceptance semantics which closely
mirrors the properties of the standard Failures-Divergences model, while incorporating pri-
ority as well as more irregular behaviour. The version ofCSPP involved is more abstract
than those that arise from observation in which records of the histories of experiments are
recorded.

I would like to thank Bill Roscoe for a variety of comments which have helped shape
CSPP, for Jeremy Martin for his initial support, to the referees for spotting a slip and to the
CSP and WoTUG communities in general for their interest and input.

References

[1] C.A.R Hoare.Communicating Sequential Processes. Prentice Hall International, 1985.

[2] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998.

[3] Steve Schneider.Concurrent and Real-time Systems. John Wiley & Sons, Ltd., 2000.

[4] A.E. Lawrence. Extending CSP. In P. H. Welch & A. P. Bakkers, editor,Proceedings of WoTUG 21:
Architectures, Languages and Patterns, volume 52 ofConcurrent Systems Engineering, pages 111–131,
Amsterdam, April 1998. WoTUG, IOS Press.

[5] A. E. Lawrence. CSPP and event priority. InCommunicating Process Architectures – 2001, Concurrent
Systems Engineering, pages 67–92, Amsterdam, Sept 2001. IOS Press.

[6] A. E. Lawrence. Infinite traces, Acceptances and CSPP. InCommunicating Process Architectures – 2001,
Concurrent Systems Engineering, pages 93–102, Amsterdam, Sept 2001. IOS Press.

[7] A. E. Lawrence. Successes and Failures: Extending CSP. InCommunicating Process Architectures –
2001, Concurrent Systems Engineering, pages 49–65, Amsterdam, Sept 2001. IOS Press.

184 A.E.Lawrence/ Triples

[8] A.E. Lawrence. HCSP: Extending CSP for codesign and shared memory. InProceedings of WoTUG 21:
Architectures, Languages and Patterns, pages 133–156. WoTUG, 1998.

[9] A.E. Lawrence. Extending CSP - even further. Communicating Process Architectures–2000, 2000.
WoTUG.

[10] A. E. Lawrence. Acceptances, Behaviours and infinite activity in CSPP. InCommunicating Process
Architectures – 2002, Concurrent Systems Engineering, pages 17–38, Amsterdam, Sept 2002. IOS Press.

[11] A. E. Lawrence. HCSP, imperative state and true concurrency. InCommunicating Process Architectures
– 2002, Concurrent Systems Engineering, pages 39–55, Amsterdam, Sept 2002. IOS Press.

[12] A. E. Lawrence. Overtures and hesitant offers: hiding inCSPP. In Communicating Process Architectures
– 2003, volume 61 ofConcurrent Systems Engineering, pages 97–105, Amsterdam, Sept 2003. IOS Press.

[13] A. E. Lawrence. Observing processes. InCommunicating Process Architectures – 2004, volume 62 of
Concurrent Systems Engineering, pages 147–156, Amsterdam, Sept 2004. IOS Press.

[14] C.J. Fidge. A formal definition of priority in CSP.ACM Transactions on Programming Languages and
Systems, 15(4):681–705, September 1993.

[15] Gavin Lowe.Probabilities and Priorities in Timed CSP. D. Phil thesis, Oxford, 1993.

[16] B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge University Press, 2nd

edition, 2002.

[17] Ian R. East. Towards a semantics for prioritised alternation. In East and Martin et al., editors,Communi-
cating Process Architectures 2004, volume 62 ofConcurrent Systems Engineering, pages 253–263. IOS
Press, 2004.

[18] Ian R. East. Programming prioritized alternation. In H. R. Arabnia, editor,Parallel and Distributed
Processing: Techniques and Applications 2002, pages 531–537, Las Vegas, Nevada, USA, 2002. CSREA
Press.

[19] Ian R. East. The Honeysuckle programming language: An overview.IEE Software, 150(2):95–107, 2003.

[20] A.W. Roscoe. An alternative order for the failures model. InTwo Papers on CSP[27].

[21] Andrew Butterfield and Jim Woodcock. Semantics of prialt in Handel-C. InCommunicating Process
Architectures – 2002, Concurrent Systems Engineering, pages 1–16, Amsterdam, Sept 2002. IOS Press.

[22] Jeremy Malcolm Randolph Martin.The Design and Construction of Deadlock–Free Concurrent Systems.
PhD thesis, University of Buckingham, 1996.

[23] A.W. Roscoe, editor.A Classical Mind. Prentice Hall Series in Computer Science. Prentice Hall, 1994.
Essays in Honour of C.A.R. Hoare.

[24] Gavin Lowe. Prioritized and probabilistic models of Timed CSP. Technical Report PRG-TR-24-91,
OUCL, 1991.

[25] Gavin Lowe. Prioritized and probabilistic models of timed CSP.Theoretical Computer Science, 138(1),
1994. Special Issue on Mathematical Foundations of Programming Semantics conference.

[26] A.W. Roscoe. Unbounded nondeterminism in CSP. InTwo Papers on CSP[27].

[27] Oxford University Computing Laboratory.Two Papers on CSP, number PRG-67 in PRG Technical Mono-
graphs, July 1988.

