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Abstract. This paper presents a new model for mobile processes inoccam-π. A
process, embedded anywhere in a dynamically evolving network, may suspend itself
mid-execution, be safely disconnected from its local environment,moved(by commu-
nication along a channel), reconnected to a new environment and reactivated. Upon
reactivation, the process resumes execution from the same state (i.e. data values and
code positions) it held when it suspended. Itsviewof its environment is unchanged,
since that is abstracted by its synchronisation (e.g. channels and barriers) interface
and that remains constant. The environment behind that interface will (usually) be
completely different. The mobile process itself may contain any number of levels of
dynamic sub-network. This model is simpler and, in some ways, more powerful than
our earlier proposal, which required a process to terminate before it could be moved.
Its formal semantics and implementation, however, throw up extra challenges. We
present details and performance of an initial implementation.

1 Introduction

occam-π is a sufficiently small language to allow experimental modification and extension,
whilst being built on a language (classicaloccam) of proven industrial strength. It integrates
the best features of CSP [1, 2] and theπ-calculus [3], focussing them into a form whose se-
mantics is intuitive and amenable to everyday engineering by people who are not specialised
mathematicians — the mathematics being built into the language design, its compiler, run-
time system and tools, so that users benefit automatically from that foundation. The new
dynamics broadens its area of direct application to a wide field of industrial, commercial and
scientific practice.

Our earlier model [4] for mobile processes requires them to terminate before they could
be moved. This gives a simple and intuitive semantics for activation:

SEQ
c ? x -- mobile process arrives
x (...) -- process x (...) runs from start to finish
d ! x -- mobile process departs

and a relatively simple implementation. However, for there to be a purpose behind these
mobiles, they have to be able to maintain some (passive) state that survives their termina-
tion, movement and reactivation. To achieve this necessitates aclass-likesyntax for those
mobile processes, involving private fields (for persistent state), constructors (for initialising
that state) and methods (for activation). Such mobiles do not suffer the problems associated
with object-orientation — such as leaky encapsulation, aliasing and concurrency blindness
— and may be interesting in their own right. A denotational semantics for them, based on
Hoare and He’sUnified Theories of Programming[5], has been constructed that naturally
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supports system development and verification by refinement from formal specifications [6].
Accordingly, we are likely to combine this earlier model with the new one and we show in
sections 2 and 3.1 below how this combination may be done cleanly. Readers unfamiliar with
this earlier model may safely ignore these comparisons.

Our new proposal has a slightly less crisp semantics for mobile process activation:

SEQ
c ? x -- mobile process arrives
x (...) -- process x (...) runs from somewhere to somewhere
d ! x -- mobile process departs

where thesomewheresare either thestart of the process, asuspension-pointor termination.
The value of the process variable ‘x’, after it has been input, is (the CSP expression)P/t,
whereP is the original process andt is the trace it has executed so far (and elsewhere!).

Process types are as in [4] — justPROC header templates. AMOBILE process implement-
ing such a type has an extra primitive it can invoke — ‘SUSPEND’. When that happens, the
activation ‘early terminates’, retaining its state and program counters. This corresponds to a
strongoccam intuition: that it is very powerful to express process state as a combination of
its data valuesandwhere it is in its code.

The process may now be moved by normal communication down a channel carrying its
process type. It may then be reactivated by the receiving process, after plugging it into a
local environment. The process resumes execution from where it suspended with its own
state unchanged, but with its external synchronisations bound to the new environment1.

1.1 Implementation Issues

When thinking how to support mobile processes a long time ago, we were concerned about
the danger of race hazard between asking a process to suspend and its subsequent move-
ment — how could we be sure it had really suspended (and was not in the middle of some
crucial transaction with its current environment)? Note, however, the tenses in the abstract
of this paper. Mobile processes have toSUSPEND themselves — they are not suspended by
their environment, which would simply not be safe. External processes may ask a mobile to
suspend, but the mobile must do it itself and may take its time. When it suspends, control
automatically passes to the process that activated it, which may now safely move it.

We are particularly grateful to the insight Tony Hoare gave us for handling a mobile pro-
cess that has gone parallel internally. Our earlier model handled this by waiting for full termi-
nation — i.e. a multi-way synchronisation on the termination event of all internal processes.
So, treatSUSPEND also as a multi-way synchronisation bound to all the internal processes —
theyall have to suspend for the whole mobile to suspend. For implementation, we just need
a CSP event (anoccam-π ‘BARRIER’) reserved in the workspace of any mobile process. To
reactivate the mobile, all its suspended processes will be on the queue held by that event —
easy!

Well, not quite that easy. Processes — even mobile processes — are very lightweight
mechanisms inoccam-π and, currently, are not location independent. A completeoccam-
π system is, of course, location independent but individual processes have many things ad-
dressed relative to the base of the whole system, not the individual process. Moving a process
to a new memory space (or ‘CLONE’-ing it) means that its workspace is allocated elsewhere
and pointers will have to be adjusted. Moving processes across soft channels to a process in
the same memory space is no problem.

1The allowed parameters are restricted to synchronisation types only — e.g. channels and barriers (see
section 2.2).
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Of course, we have to arrange a ‘graceful’ suspension by all the processes within a mo-
bile. If one sub-process gets stuck on an internal communication while all its sibling pro-
cesses have suspended, we have deadlock. Fortunately, there is a standard protocol for safely
arranging this parallel suspend — it’s the same as arranging for parallel termination [7].
This is left for the mobile application to implement; it’s not our concern as mobile process
language designers. We will think about providing language support for such distributed
decisions. But that is orthogonal to the issue of mobile processes.

1.2 Structure of this Paper

Section 2 describes how mobile processes are declared, initialised and activated. The ‘mo-
bile’ aspect of these mobile processes — i.e. moving them around a process network — is
described in section 3.

Section 4 discusses some of the potential applications of this technology, with respect to
existing “mobile agent” ideas and practice.

An overview of the implementation of these mobile processes is given in section 5. Sec-
tion 6 draws some preliminary conclusions and lays out intended future directions for this
work.

2 Defining Mobile Processes

Mobile processes may be defined in one of two ways. The first, described in [4], allow a
single mobile process to support multipleimplementationsof process-types. That method of
defining a mobile process allows the various implementations to share the state that persists
between activations. That state must be declared outside of the individual implementations,
however. Process-types provide the type system for mobile processes, and describe the inter-
face to that process. For example:

PROC TYPE IO IS (CHAN INT in?, out!):

This declares a process-type called ‘IO’, whose implementations must match the ‘PROC’-
style signature given, i.e. oneINT input channel and oneINT output channel — the formal
parameter names need not match. Like other types inoccam, two similarly structured but
differently named process-types are not considered compatible.

The second method of defining a mobile process, described here, only allows a single im-
plementation. This can be viewed as a ‘shorthand’ syntax for single-implementation mobile
processes declared using the first method — and where there is no shared state. Instead of
writing, for example:

MOBILE PROC integrate -- earlier model
... persistent/shared state (in this case, empty)
IMPLEMENTS IO (CHAN INT in?, out!)

... process body
:

we would instead write:

MOBILE PROC integrate (CHAN INT in?, out!) IMPLEMENTS IO -- new model
... process body

:



204 F.R.M. Barnes and P.H. Welch / Communicating Mobile Processes

Note that ‘CONSTRUCT’ blocks (section 2.1 and [4]) are not needed for these mobiles, since
there is no shared or persistent state to initialise.

Furthermore, the “IMPLEMENTS IO”, is not strictly required. The compiler can check this
when a mobile process is allocated. It also permits a single mobile process to support multiple
implementations, provided that the formal-parameters are compatible. For example:

MOBILE IO p:
SEQ

p := MOBILE integrate
... process using p

The type of ‘p’ is always well-known —occam-π does not support type polymorphism —
thus the compiler can easily (and statically) check that ‘IO’ matches the formal parameters
of ‘integrate’ at the point of its allocation (the ‘MOBILE’ assignment). The declaration
of the mobile ‘integrate’ process might be simplified even further to an ordinary ‘PROC’
declaration. For example:

PROC integrate (CHAN INT in?, out!)
... process body

:

This allows anyPROC to be mobilised, providing its interface matches the corresponding
process-type. However, there are arguments that it may be good programming practice al-
ways to include an ‘IMPLEMENTS’ when declaring a mobile process — as well as identifying
explicitly that the process is ‘MOBILE’. We may specifically require the latter to enable some
optimisations planned for later stages of our implementation.

2.1 Allocating Mobile Processes

As shown above, mobile processes are dynamically allocated using a special form of assign-
ment. This follows in a similar way to other ‘MOBILE’ allocations, e.g. for dynamic mobile
arrays [8] and mobile channel-types [9, 10]. The ‘fuller’ version of mobile processes (de-
scribed in [4]) requires the separately declared and persistent state to be initialised using a
‘CONSTRUCT’ block. This is called at the point of allocation, passing any parameters given.
For example, consider the following mobile process definition:

MOBILE PROC integrate
INT total: -- persistent state

CONSTRUCT (VAL INT i)
total := i

IMPLEMENTS IO (CHAN INT in?, out!)
... process body

:

A variable of the ‘IO’ type could be allocated with:

MOBILE IO p:
SEQ

p := MOBILE integrate (0)
...
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The simplified version of mobile processes presented here does not need this type of alloca-
tion. Allocation is simply “p := MOBILE integrate”, without any parameters. Initialisa-
tion of any internal state follows the normal (and natural) pattern of being the first thing the
process does the first time it is activated

Following the allocation of a mobile process, the process variable (‘p’ in the above code
fragment) is used purely in terms of its process-type (e.g. ‘IO’), not the process that created it
(e.g. ‘integrate’). The only data relating to ‘integrate’ stored inside ‘p’ are the process
entry-point, run-time memory requirements and a pointer to a ‘workspace-map’ for the pro-
cess. These are, of course, not the concern of the programmer using these mobiles. Details
are covered in section 5.

Figure 1 shows this process (‘p’) from its own point of view. The channels are not real
channels as such, rather they are placeholders for channels that will be “plugged in” when
the process is activated — discussed in the following section.

integrate
in? out!p:

Figure 1: Value of mobile process variable ‘p’ after allocation of ‘integrate’

2.2 Activating Mobile Processes

Mobile processes areactivatedby applying the process variable to a set of local arguments.
This binds the mobile process to alocal environment for the duration of the activation. For
example:

CHAN INT to.p, from.p:
PAR

local.environment (to.p!, from.p?, ...)

MOBILE IO p:
SEQ

... p acquires some value
p (to.p?, from.p!)
...

Figure 2 shows this mobile process active and connected to a local environment.

to.p from.p

integrate

local.environment

Figure 2: Active mobile ‘integrate’ process
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3 Communicating Mobile Processes

Mobile processes inoccam-π follow the semantics of existing mobiles — they aremoved
rather thancopied, when assigned or communicated. They also share parts of the existing
implementation for mobiles (section 5).

Figure 3 shows an example process network containing two processes connected by a
channel. In this example, the channel carries mobile processes:

CHAN MOBILE IO c:
PAR

A (c!)
B (c?, ...)

BA
p.out!

c

p.in? p.out!

out!

in?

Figure 3: Process network for communicating mobile processes

The ‘A’ and ‘B’ processes are implemented such that ‘A’ creates a new mobile process and
communicates it to ‘B’, that then activates it. For example:

PROC A (CHAN MOBILE IO p.out!)
MOBILE IO p:
SEQ
p := MOBILE integrate
p.out ! p
-- p is no longer defined

:

PROC B (CHAN MOBILE IO p.in?, p.out!,
CHAN INT in?, out!)

MOBILE IO v:
SEQ

p.in ? v
v (in?, out!)
p.out ! v
-- v is no longer defined

:

Note that the ‘B’ process is unaware of the actual implementation — it only knows how to
connect with the process (given by the ‘IO’ process-type). This is one reason why it may
turn out to be good programming practice to indicate explicitly what process-type a mobile
process implements (e.g. “IMPLEMENTS IO”). That way, ‘B’ can at least be sure that the
process it has in its ‘v’ variable is one that was intended to implement ‘IO’ — as opposed to
a process whose interface is structurally the same, but whose behaviour is entirely different
(as that could lead to deadlock when interfacing with the process). Section 3.2 examines this
in more detail.

3.1 Suspending Mobile Processes

A serial implementation of ‘integrate’ involves a “WHILE TRUE” loop. For a mobile pro-
cess, this would normally mean that once activated the process would never terminate. For
most applications of such a mobile, this would be undesirable.
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The mobile processes described in [4] support suspend/resume through explicitly persis-
tent state that survives termination and re-activation. For example:

PROC TYPE IO.SUSPEND IS (CHAN INT in?, out!, CHAN BOOL suspend?):

MOBILE PROC integrate.suspend.0
INT total: -- persistent state

CONSTRUCT () -- simple constructor
total := 0

IMPLEMENTS IO.SUSPEND (CHAN INT in?, out!, CHAN BOOL suspend?)
INITIAL BOOL running IS TRUE:
WHILE running

PRI ALT
BOOL any:
suspend ? any

running := FALSE
INT v:
in ? v

SEQ
total := total + v
out ! total

:

This is adequate for many purposes, even though the syntax is slightly cumbersome. One
of the reasons for defining mobile processes this way is so that state may be shared between
several implementations — this ‘integrate.suspend.0’ has only one. There is a further,
more subtle, problem however — if the mobile process goes parallel internally, those parallel
processes must be shut-down before the mobile process can terminate.

The mobile processes described here, which need no special support for persistent state,
cannot suspend through termination — all its state would go out of scope and be lost! In-
stead, a mechanism for explicitly suspending a process mid-execution is provided. The above
process, for example, now becomes:

MOBILE PROC integrate.suspend.1 (CHAN INT in?, out!, CHAN BOOL suspend?)
IMPLEMENTS IO.SUSPEND

INT total:
SEQ

total := 0
WHILE TRUE

PRI ALT
BOOL any:
suspend ? any

SUSPEND -- suspend process
-- re-activates here

INT v:
in ? v

SEQ
total := total + v
out ! total

:

If control reaches theSUSPEND line, the process suspends execution, retaining all local state
and its resumption address (in much the same was as it does when de-scheduled) but returns
control to its invoking process. The invoking process may communicate the mobile to a
new location, where the receiving process may re-activate it by invocation on its own set of
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arguments. The mobile then resumes execution from where it suspended with its local state
unchanged. The channels bound to its parameters will (usually) be different — but that is of
no concern to the mobile, whose semantics are defined with respect to its parameters and not
the actual arguments supplied.

We believe that the mechanism for ‘integrate.suspend.1’ is a little clearer and more
natural than that for ‘integrate.suspend.0’.

3.2 Mobile Contracts

PROC TYPE interfaces define only theconnectionsthat are required and offered by the mobile.
They do not definehow those connections are used nor, indeed, how the values generated
by the mobile relate to values received. We have just described three levels of specification
that refine each other: the most general being theConnection(defined by thePROC TYPE),
then theContract(definable by a CSP specification of the behaviour of the mobile in terms
of the events parameterised by itsPROC TYPE), and finally theFunction (definable by a Z
specification of the mobile as a state machine). These all integrate nicely into theCircus
algebra of Woodcock et al. [11].

For the safety of both the mobile process itself and its hosting environment, aConnection
specification is insufficient. For flexibility, aFunctionspecification is too constraining — we
want to allow differently functioning mobiles (e.g. with successive bug-fixes) to be delivered
to and activated in any host environment. Otherwise, mobile processes offer nothing new; we
could have a static (conventional) process and just move around passive data.

A Connectioninterface is insufficient because the hosting environment needs to be sure
that a mobile process will behave properly when invoked (connected) to its local environ-
ment — i.e. that it will not cause deadlock or livelock, will not starve any local processes
of its attention and will suspend when asked. Of course, reciprocal promises by the hosting
environment are equally important to the mobile. We call those promises aContract.

CSP is sufficiently rich to enable the specification of such good behaviours. Model check-
ers (such as FDR [12]) are sufficiently powerful to check thatContractconforming hosts and
mobiles will indeed be safe.

We are looking to boost thePROC TYPE of a mobile to include such a contract. For
example, a contract on ‘IO.SUSPEND’ might be that it is aserveron its ‘in?’ and ‘suspend?’
channels, responding to an ‘in?’ with an ‘out!’ and to a ‘suspend?’ with suspension. This
could be strengthened to indicate its priorities for service. Or weakened to specify just its
traces. Or weakened further to require only that the number of ‘in?’ events in a trace can
never be less than the number of ‘out!’ events and that a ‘suspend?’ may only occur when
the number of ‘in?’ events equals the number of ‘out!’ events.

A behaviour we may want to prohibit in such aContract is that of a ‘suspend?’ (and,
therefore, suspension) occurring in-between an ‘in?’ and its corresponding ‘out!’. That way
the host environment will know that the mobile will not suspend with an answer outstanding2.

Without such a contract, an ‘IO.SUSPEND’ mobile could arrive that always refuses its
‘kill?’ channel (and could never be removed by its host!) or starts with an ‘out!’ (and
deadlocks with its host!).

We are considering extending the definition ofPROC TYPEs to include some level of con-
tract that the compiler can verify against implementing mobiles — but this is outside the
scope of this paper. We note that these notions of behavioural contract would be valuable for
all PROCs, mobile or not mobile.

2Note that this behaviour is honoured by ‘integrate.suspend.1’ above.
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3.3 Suspending Mobile Networks

The ‘IO.SUSPEND’ implementing processes given above are toy examples, but they illustrate
mobiles that offer services and gather information. They have also been chosen because their
base function (a running-sum integrator) can be implemented as a simple feedback network
of statelessprocesses — and is a common teaching example.

We use it here to illustrate suspending a mobile that has gone parallel. Thegraceful
termination[7] algorithm can be modified to provide secure distributed suspension. However,
that algorithm was not concerned with saving state information — it was only concerned with
termination for which the subsequent state of the processes was irrelevant! Here, we must
take care to preserve state (in this case, the running total)and to honour a minimum level of
the contract described in the previous section (i.e. that suspension must not come between an
‘in?’ and its matching ‘out!’).

There are many ways to to do this, figure 4 shows one.

+

0

in?

kill?

integrate.suspend.2
out!

a

c

b

d

Figure 4: Suspendable parallel mobile integrator

The code for this parallel version of the integrator is:

PROTOCOL OK.INT IS BOOL; INT:

MOBILE PROC integrate.suspend.2 (CHAN INT in?, out!, CHAN BOOL suspend?)
IMPLEMENTS IO.SUSPEND

CHAN OK.INT a, b, c:
CHAN INT d:
PAR

suspend (in?, kill?, a!)
plus.suspend (a?, d?, b!)
delta.suspend (b?, c!, out!)
prefix.suspend (0, c?, d!)

:

The ‘OK.INT’ protocol tagsINTs with a boolean, indicating whether the data carried is a
suspendsignal orlive data. All sub-processes in the network remain stateless. The feedback
loop holds the state of the whole mobile network — even during suspension (the propogating
suspendsignal carrying that state). Channel ‘d’ could have been ‘OK.INT’ as well. However,
since ‘prefix.suspend’ only ever outputslive data, this has been optimised to just ‘INT’.



210 F.R.M. Barnes and P.H. Welch / Communicating Mobile Processes

The ‘suspend’ process monitors its inputs and reacts in an obvious way:

PROC suspend (CHAN INT in?, CHAN BOOL kill?, CHAN OK.INT out!)
WHILE TRUE

PRI ALT
BOOL any:
kill ? any
SEQ

out ! FALSE; 0 -- suspend signal
SUSPEND

INT x:
in ? x
out ! TRUE; x -- live data

:

Note that it prioritises its service in the same way as the serial (and stateful) ‘integrate.-
suspend.1’. The ‘plus.suspend’ is a simple modification to the standard adder process:

PROC plus.suspend (CHAN OK.INT in.0?, CHAN INT in.1?, CHAN OK.INT out!)
WHILE TRUE

BOOL b:
INT x.0, x.1:
SEQ

PAR
in.0 ? b; x.0
in.1 ? x.1

IF
b -- live data received

out ! TRUE; x.0 + x.1 -- send live data
TRUE -- suspend signal received

SEQ -- send suspend signal ...
out ! FALSE; x.1 -- (carrying the running-sum)
SUSPEND

:

Note: the graceful termination algorithm requires waiting for the ‘kill’ signal to return, dis-
carding other data that arrives. For this application, we know that no other data exists, so
that only the suspend signal would return. That return has been optimised away here. This
also means that this component does not need to remember the running-sum state (‘x.1’) and
remains stateless. The remaining processes now write themselves:

PROC delta.suspend (CHAN OK.INT in?, out.0!, CHAN INT out.1!)
WHILE TRUE

BOOL b:
INT x:
SEQ

in ? b; x
IF
b -- live data received

PAR
out.0 ! TRUE; x -- send live data
out.1 ! x -- send data

TRUE -- suspend signal received
SEQ -- send suspend signal ...

out.0 ! FALSE; x -- (carrying the running-sum)
SUSPEND

:
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PROC prefix.suspend (VAL INT n, CHAN OK.INT in?, CHAN INT out!)
SEQ

out ! n
WHILE TRUE

BOOL b:
INT x:
SEQ
in ? b; x
IF

b -- live data received
SKIP

TRUE -- suspend signal received
SUSPEND

out ! x -- send data
:

So, the running-sum state is actually held in ‘prefix.suspend’ when the mobile network is
moved. From the point of view of ‘prefix.suspend’ it is stateless— i.e. it retains no data
between its cycles. Within each cycle, it just reacts to the input received with an output —
albeit with a suspension point in-between, depending on the type of input received.

The ‘integrate.suspend.2’ mobile network gracefully suspends when its environment
offers a ‘suspend’ signal. It does this without deadlocking (which would certainly occur if
the sequence of output communication and suspension were reversed in any of its component
processes). In fact, the output and suspend operations could safely be run inPAR by all
sub-processesexceptfor ‘prefix.suspend’ (where deadlock would result since the output
would never be accepted).

This shows the care that needs to be taken in devising and implementing a safe suspension
of all processes in a mobile network. However, this is a different responsibility from the
actual mobile suspend mechanism. Responsibility for the former rests, for the moment, on
the application engineer. We are investigating design (and, hopefully, language) rules to
assist.

Finally, we note that initiation of aSUSPEND need not only come from the environment
of the mobile. It could be a unilateral decision by the mobile itself (subject, of course, to
satisfying any declared behavioural contract with its current environment) or initiated by the
mobile and negotiated with its environment.

4 Applications

The most commonly understood meaning of the term “mobile agent” is primarily that of
code and data mobility, as described by White in [13]. The main focus of which is on mo-
bility of code and data between nodes in a distributed system, and where the infrastructure
for handling mobile agents is provided largely by the application and libraries, not by the
language itself. As noted by Jansen and Karygiannis in [14], there are many security issues
relating to mobile agents, that should be addressed by any system wishing to support these
agents. Generally, these can be divided into two categories — those that relate to the envi-
ronment (e.g. admittance of an agent for execution) and those that relate to the agent (e.g. its
interaction with the environment once ‘connected’).

The mobile processes ofoccam-π can provide an equivalent functionality3. Furthermore,
mobile processes offer a comparatively secure implementation, as a direct consequence of
using theoccam-π language. For example, there is no way mobiles can access resources

3At the time of writing, there is no support for migration of mobile processes over networks. We hope to
implement this in the near future, however (section 6).
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to which their hosts do not explicitly provide connection. Connection and activation of the
mobile is wholly under the control of the host.

4.1 Mobile Agents and Agent Platforms

Within the wider “mobile agent” community, anagentis the mobile (as expected), and an
agent platformis the environment in which that mobile agent executes. This maps cleanly
onto occam-π — agents are mobile processes and the agent platform is any process that
activates a mobile. Mobile processes may also activate other mobiles, becoming “agent plat-
forms” themselves.

The agent platform exists for two main purposes: firstly, to allow agents to interact with
the system providing the agent platform; secondly, to allow agents to interact with each other.
occam-π can support both types of interaction easily. When activated, mobile processes at-
tach to the local environment (providing ‘agent – platform’ interaction), and that environment
may allow agents to interact with each other (providing ‘agent – agent’ interaction). Within
occam-π, agents may also form links directly between each other — the platform then serves
as a mechanism to allow agents to find each other.

Figure 5 shows an example mobile agent system, where the ‘platforms’ could either be
processes in a single system, or distributed over a network. Within the scope of other research
(investigation and modelling of nanite assemblies on a grand scale) we are exploring systems
containing millions of ‘agent’ processes and ‘platforms’.

Figure 5: Example mobile agent system

In such systems, each ‘platform’ is a process constructed into amatrixof processes defin-
ing the topology of the space over which mobile agent processes roam. The matrix nodes are
(mostly passive) servers, in touch with neighbouring nodes and on which arriving agents reg-
ister. An agent attaches to one matrix node at a time, through which it can sense the presence
of other agents and, hence, connect and interact as it chooses (using agent-specific protocols
to avoid deadlock).

Matrix-agent protocols will be generic. Agents may enrol and resign from local (or
global) barrier synchronisations to maintain a sense of time — as well as move and reproduce
according to their own rules. Matrix nodes may also have their own agenda, allowing them
to be pro-active in reshaping the space they define (e.g. through the creation of worm-holes)
for more exotic environments.

We want to investigate the emergent properties of the system as a whole, rather than the
behaviour of individual processes. This will require very large numbers of mobile processes
— our current aspirations are for the order of108 processes. The usefulness of networked
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distribution here is in increasing the overall size of the system. However, we have to take
care to minimise the effects of latency as processes migrate between nodes.

Another practical example of the use of mobile agents in distributed systems is in organ-
ising meetings, for example. When someone wishes to schedule a meeting, they send out an
agent to a ‘calendar’ platform. This agent then waits for other user’s agents to ‘check-in’ with
the calendar, and negotiates suitable times. In practice, agents may need to remain connected
to the calendar for some time — to wait for other agents and the finally decided (meeting)
time. This leads to other issues, such as how a user’s agent finds its way back to the user —
the user may have moved. One possible solution would be a ‘directory’ platform, that can
direct agents back to their user — users update a local directory whenever they connect or
disconnect, and this information propagates between directories over time. As long as users
migrate more slowly than their agents, such a system will work. Such issues are beyond the
scope of this paper, however.

We are also exploring the use of mobile processes (as an agent mechanism) in RMoX
[15], where having such mechanisms at the operating-system level may be useful — both for
application and inter-RMoX use.

4.2 Security

Within the wider mobile-agent community, there is a good deal of concern for the security of
mobile agents and agent based systems, as discussed in [14, 16] and [17]. This section covers
someof these issues. Broadly, these security considerations fall into two categories: those
affecting the integrity of the overall system; and those affecting the integrity of individual
agents and agent-platforms.

Integrity of the overall system is outside the scope of this paper. Processes that activate
mobile agents may safely assume that the agent is valid — because that agent was either cre-
ated locally or came from another part of the system. Correspondingly, an agent may assume
that whoever activates it was meant to do so. In a networked environment, possibly con-
nected using public networks (e.g. the internet), the part of the system that manages network
connections is responsible for ensuring the integrity of data communicated over networked
channels (where the data may be ‘serialised’ mobile processes). This may involve proper
(public/private key) authentication and encryption.

Of course, we could create a system that freely admits mobile processes from open net-
work connections. Such a system would be open to many of the potential abuses that afflict
mobile-agent systems in general. The use ofoccam-π in the construction of agents allows
some of this threat to be minimised. Instead of communicating a serialised agent whole, the
(source) code for the process could be sent, along with the saved state of the agent, and used
to re-create the agent locally. Theoccam-π compiler can make certain guarantees about code
it compiles, that compilers for many other languages cannot — e.g. that the code is generally
safe and interacts with its environment in the intended way.

The use of a synchronisation-only interface to mobile processes limits many of the threats
associated with existing agent systems. The widespread use of sequential programming lan-
guages (such as C) has led to a generally sequential interfacing for mobile agents. This would
typically be realised using a “procedure-call” style activation of agents, that limits basic inter-
actions to input on procedure call and output on procedure return. Concurrent interaction is
still a possibility, but requires non-standard (or non-language controlled) code. One possible
option would be to use RPC [18], as suggested in [16]. This does not (directly) permit the
use of synchronisations between an agent and its environment, however.

The use of a synchronisation interface separates the activation of a mobile process from
interaction with it, although the two are closely related — and there is (theoretically) no limit
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to the amount of interaction that may occur during a single activation. To ensure correctness
of those interactions, the ‘TRACES’ extension described in [19] could be used — although this
is unsupported by the currentoccam-π compiler. This extension would enable to the com-
piler to check that both the agent and its environment conform to some pre-defined pattern of
interaction (by specifying the CSPtracesof those interactions). This mechanism, once im-
plemented, will be able to define an important part of theContract, described in section 3.2.

5 Implementation

Supporting the mobile processes as described here has required reasonably large modifica-
tions to theoccam-π compiler used by KRoC [20, 21]. The most complex of these modi-
fications is supporting the ‘SUSPEND’ functionality — which if not carefully managed could
result in disaster (e.g. new activations contaminated with an old environment).

Mobile process variables (e.g. “MOBILE IO p”) are implemented in a similar way to mo-
bile channel-end variables — a single word in the process workspace that points to a block
of dynamically allocated memory. This dynamically allocated block, ranging from 12 to 16
words in size, contains general information about the process, pointers to the process memo-
ries, and abarrier [22] that is used to hold suspended processes. Figure 6 shows the structure
of this mobile-process descriptor.

saved mobile−process
state

saved activator
state

barrier for suspend

memory usage
information

SEQ

  p := MOBILE integrate

  ...

MOBILE IO p:

Figure 6: Structure of mobile-process descriptor

Mobile processes that donot suspend require very little special treatment — to the point
where their activations are treated as ordinaryPROC calls. However, once that mobile process
has terminated, it may not be re-activated. This is implemented by setting thereactivation-
addressof the terminated process to code that raises a run-time error, or in ‘stop’ error-mode,
deschedules the process attempting the activation.

Processes thatdo suspend require a certain amount of special treatment, largely in the
code-generator. Because a mobile process may suspend mid-execution, there is a potential
problem with parameters that have been abbreviated internally. Returning to the earlier par-
allel ‘integrate’, for example:

MOBILE PROC integrate.suspend.2 (CHAN INT in?, out!, CHAN BOOL suspend?)
IMPLEMENTS IO.SUSPEND

CHAN OK.INT a, b, c:
CHAN INT d:
PAR

suspend (in?, kill?, a!)
plus.suspend (a?, d?, b!)
delta.suspend (b?, c!, out!)
prefix.suspend (0, c?, d!)

:
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When this code is activated for the first time, it sets up a network of sub-processes, connect-
ing channels in the interface to those sub-processes. The usual implementation of channel
parameter-passing (and abbreviations) is to simply copy the channel-pointer. When the sub-
processes ‘SUSPEND’, the mobile process is shut-down and control returns to the activating
process. A subsequent reactivation may be to a different environment, that would render
the interface originating channel-pointers inside ‘plus.suspend’, ‘ delta.suspend’ and
‘int.suspend’ useless — as they contain channel addresses that came from the environ-
ment of the first activation.

This problem is solved by adding an extra layer of indirection in the implementation of
channel-parameters. That is, instead of passing a channel-address as a parameter, apointer
to the channel-address is passed. This does not apply to the activation, however — that gets
channel-pointers for channel parameters. When setting up the sub-processes, the compiler
passes addresses that are inside the workspace of the mobile process, for both external and
local channels. Local channels require an additional address temporary, since they are the
channel themselves.

Inside the sub-processes, the indirect channel-pointers must be dereferenced before com-
munication is attempted. Three new ETC [23] ‘specials’ have been added for this, that deref-
erence the virtual-transputer A, B and C registers respectively. These instructions are gener-
ated immediately prior to communication. The compiler could produce the same result using
the traditional “LDNL 0” (load non-local at word offset 0). This, however, would require a
more substantial modification to the compiler, that is currently largely unaware of general
pointers-to-pointers.

5.1 Suspending Mobile Processes

The idea to collect suspended parallel processes on a barrier — in order to support suspension
of entire process networks, rather than just a single process — was suggested by Tony Hoare
and documented in [24]. When a mobile process is initially created, the barrier’s ‘enrolled’
count is set to 1. The compiler automatically generates code to enroll and resign parallel
processes as they are created and destroyed. When the last parallel process ‘SUSPEND’s, or
resigns, it will complete the barrier and return control to the activating process. When re-
activated, the processes blocked in the barrier are put back on the run-queue.

The code that enrolls processes on a barrier is relatively trivial — the barrier count is
incremented byn−1, wheren is the number of parallel processes. The code that synchronises
(on ‘SUSPEND’) and resigns processes from a barrier is not trivial, since both may complete
the barrier synchronisation. Rather than being generated in-line, this code is built into the
run-time library (written in ‘virtual transputer’ assembly language). Compile-time constants
required by the code (e.g. offset of the ‘count’ field within the barrier) are made available as
pre-processor variables. Having this code external to the compiler reduces the complexity
of the compiler and size of the generated code, at the expense of a slightly longer run-time.
However, having the operation identified explicitly (by a procedure call) allows for future
optimisation — the native-code translator (tranx86) could replace the procedure call with
an optimised native-code version of the operation.

5.2 Implementing Mobile Process Communication

For communication and assignment of mobile processes, existing mobile-related code and
instructions are used. Within a single system, communication and assignment are simply
the moving of a pointer (to the mobile-process descriptor) between processes (or variables
in the case of assignment). As with other dynamic mobiles, “old” processes are freed rather
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than being moved into source of the communication or assignment — as happens for static
mobiles.

Mobile processes can be duplicated using the ‘CLONE’ operator. This returns a copy of
the mobile process operand, that is left defined. Supporting ‘CLONE’ requires knowledge
about the workspace (and possibly vectorspace and mobilespace) layout of the process, so
that any pointer values are correctly adjusted and other dynamic (mobile) state also ‘CLONE’d
(adeepcopy). The one restriction is that any mobile process containing anunsharedchannel-
bundle end may not be cloned — because that channel-bundle end cannot be duplicated using
‘CLONE’ (since that would break itsunsharedsemantics!).

‘Serialisation’ of mobile processes is possible using the built-in ‘ENCODE.CHANNEL’ and
‘DECODE.CHANNEL’ processes, that were developed for KRoC.net [25]. ‘DECODE.CHANNEL’
would input a mobile process, then output a dynamic mobileBYTE array containing the
position-independent state of the process, in addition to general information about the pro-
cess, e.g. memory-requirements and a reference to the code that implements the process. The
serialised state although position-independent, will still be architecture and layout dependant
— e.g. the byte-ordering in words and the layout of individual variables in the process’s
workspace. Thus when communicating mobile processes between heterogeneous architec-
tures, some (non-trivial) conversion may be required.

5.3 Performance

The implementation of mobile processes is, on the whole, very lightweight. At the time of
writing, the parts of the implementation that are in place are still somewhat experimental, and
so have not been optimised.

Measured on an 800 MHz Pentium-III, the time required to create and destroy a basic
process (that does not take any visible parameters) is around 450ns — and when the dynamic
memory required is immediately available from one of the free-memory lists. Including
a complete activation raises the time to around 550ns, giving an approximate activation-
deactivation time of 100ns.

Including aSUSPEND and activating the process twice takes approximately 920ns. Thus,
the time required to suspend a process and then reactivate it is approximately 370ns.

These times are for a very simple process — that does not have either vectorspace or
mobilespace. For more complex mobile processes (e.g. those that take parameters) the time
required to activate the process will increase.

6 Conclusions and Future Work

This paper has described a new model for mobile processes inoccam-π, that provides code
and channel mobility (ideas from theπ-calculus) with the discipline and rigour ofoccam and
composable semantics of CSP. Mobile processes complement mobile channels [4, 9, 10] the
occam-π programmer with powerful new tools for directly, safely and efficiently capturing
the dynamic aspects of complex large-scale systems — e.g. multi-layer modelling of micro-
organisms and their environments (theIn Vivo⇔ In Silico Grand Challenge [26, 27]) and
process migration (agents) in distributed systems.

Currently, there is limited support for creating ‘CLONE’s of a mobile process. This, and
‘serialisation’ using ‘DECODE.CHANNEL’ or other means, requires the suspend process to be
made independent of its location in memory. In order to do this, the run-time system (or
compiler-generated code) needs amemory-mapfor each of the process’s memories that con-
tain pointers — i.e. workspace, vectorspace and optionally mobilespace. The compiler-side
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of KRoC.net [28] will also require this support so that it may transport mobile processes
between separate memory-spaces.

At the time of writing, the compiler produces this information for some, but not all,
pointer-types in the process workspace —CLONE works for very basic processes. We hope to
complete this support, and therefore support forCLONE and serialisation in the near future.
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