
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

227

CSP: The Best Concurrent-System Description
Language in the World – Probably!

Extended Abstract

Michael GOLDSMITH
Formal Systems (Europe) Ltd, 26 Temple Street, Oxford OX4 1JS, UK

Worcester College, Oxford, UK
michael@fsel.com

Abstract. CSP, Hoare’sCommunicating Sequential Processes, [1, 2] is one of the
formalisms that underpins the antecedents of CPA, and this year celebrates its Silver
Jubilee [3]. Formal Systems’ own FDR refinement checker [4] is among the most
powerful explicit exhaustive finite-state exploration tools, and is tailored specifically
to the CSP semantics. The CSPM ASCII form of CSP, in which FDR scripts are
expressed, is the de-facto standard for CSP tools. Recent work has experimentally
extended the notation to include a probabilistic choice construct, and added function-
ality into FDR to produce models suitable for analysis by the Birmingham University
PRISMtool [5].

1 Introduction

The motivation for this work is provided by the increasing maturity of model-checking ap-
proaches to probabilistic analysis of concurrent systems, and the desire to move beyond the
black-and-white precision of pure CSP refinement to richer grey-scale measures of confi-
dence. Such probabilistic analysis is appropriate to ‘natural’ interference with a system, but
may have less application in the case where deliberate malevolence is potentially involved:
but even in this case it may play a role in quantifying the effect of simplifying assumptions,
such as the improbability of guessing nonces or keys, or where an assailant can himself take
advantage of probabilistic analysis [6, for example].

A number of attempts have been made to extend the theory of CSP with probabilistic con-
structs, from the original work of Lowe [7] to more recent efforts by Morganet al [8]. There
is an unfortunate tension between nondeterministic choice representing underspecification
and probabilistic choice denoting some kind of run-time resolution. The classic refinement
paradox of information-flow illustrates that these are very different concepts:

SECURE= high? : {0, 1} → (low!0 → SECURE
0·5¢0·5
low!1 → SECURE)

(where the0·5¢0·5 operator represents a fair coin toss) is reasonably free of information flow
(allowing only the detection of activity on thehigh channel, not what that activity is); but if
we replace the probabilistic choice with a nondeterministic one, then the resulting process is
refined by

INSECURE= high?x : {0, 1} → low!x→ INSECURE

which patently is not!

228 M. Goldsmith / CSP: Probably the Best!

There has so far been no entirely satisfactory treatment for combining the two concepts:
either probabilistic choice fails to distribute over nondeterminism, or else some other desir-
able laws have to be sacrificed: in [8], since all probabilistic choices can effectively be made
at process initiation, we have that one can detect when different instances of a process exist.
Thus in general we have thatP strictly probabilistically-refinesP u P. For example, if we
define

P = a→ STOP0·5¢0·5 b→ STOP

by ‘multiplying out’ the choices we get

P u P = (a→ STOP0·5¢0·5 b→ STOP) 0·5¢0·5 (a→ STOPu b→ STOP)

which has only a probability of0·25 of behaving likea → STOP, as compared with the0·5
probability inP.

While this treatment does give a well defined meaning to refinement, if we recall thatPv
Q is normally characterised asP u Q = P, there is clearly something a little counterintuitive
going on (and that equivalence cannot hold, ifv is to be reflexive).

We largely sidestep these difficulties by restricting our attention to a particular idiom of
probabilistic analysis, which should nevertheless be rich enough to provide interesting and
useful results.

1.1 PRISMLanguage

PRISMsupports a variety of probabilistic models: Discrete-Time Markov chains (DTMC),
Continuous-Time Markov Chains (CTMC), and Markov Decision Processes (MDP). MDP
support nondeterministic scheduling, but more importantly for our purposes, we need MDP
for nondeterminism.

The PRISM language, like FDR’s view of CSP, combines one or more ‘modules’ (leaf
processes) using a variety of high-level process operators. The semantics of leaf processes
are described in terms of ‘Labelled Transition Systems’, but these are rather dissimilar to
the familiar event-labelled ones underlying the operational semantics of CSPM : the nodes
in the graph are particular assignments of values to state variables, and the arcs are labelled
with probabilities. In fact, one should strictly distinguish two levels of arc: the first selecting
nondeterministically between probability distributions, and then a partition of the probability
space between the arcs within that distribution.

In an important extension to this scheme, the choice of distribution from any node may
be constrained by labelling it with a named action. This makes that choice available only
when it is also available in the zero or more other modules with which it must synchronise,
according to the high-level system composition.

The tests that we support are to calculate the maximum and minimum probability, over
all nondeterministic schedulers and environmental choice of events offered deterministically,
that a counterexample state to some refinement query can be reached. In picking a path
through these (internal and external) choices, thePRISMsemantics allows the scheduling
dæmon to take note of how any probabilistic choice is resolved, which the choice in question
does not causallyhappen-beforeit (and which might therefore be scheduled to happen before
it, in a non-causal sense).

This gives a quite different view of the world to that in [8], where the dæmon has to pick
a path before any of the probabilistic choices is made. We recover idempotence of nondeter-
ministic choice, but probabilistic choice still does not distribute over nondeterministic.

M. Goldsmith / CSP: Probably the Best! 229

2 Extended Syntax

CSPM is already endowed with two choice operators: ‘|˜| ’ which represents internal (non-
deterministic) choice, and ‘[] ’, which allows the environment to choose the initial event of
the combined process and so control which of the two arguments proceeds to evolve; unless
the event is common to both, in which case which ‘wins’ is nondeterministic.

The probabilistic choice operator ‘p¢1−p’ lies conceptually somewhere in between, so
we have chosen a syntax reminiscent of both. When one considers the role that dot ‘. ’
plays in the formation of events and datatype values in CSPM , it rapidly becomes clear that
adding support for floating-point numerals is likely to be fraught with sorrow; so rather than
probabilities directly, we allow probabilities of each branch to be expressed by an integer
weight. Thus

P [m˜ n] Q

corresponds to what we have been writing

P m
m+n

¢ n
m+n

Q

and we can expressP 0·5¢0·5 Q as

P [1˜ 1] Q

or even

P [50˜ 50] Q

as we might express it colloquially.

Both the choice operators have distributed forms:

|˜| i : I @P(i)

[] i : I @P(i)

where in general an arbitrarily complex collection of generators and filter expressions can
occur between the choice operator and the ‘@’.

For probabilistic choice, we have a similar construct:

˜ i : I @ [w(i)] P(i)

where the weightsw(i) can also vary with the ‘loop index’i. Here, as with nondetermin-
istic choice, it doesn’t make much sense if the generators and filters give rise to an empty
construct. Otherwise the probability of each branch is its weight divided by the sum of the
weights across all admitted values of the loop index.

Currently the bridge between CSPM andPRISMis mediated by special forms of assertion
in FDR:

assert Spec[T= Impl :[probabilistic translation]

assert Spec[F= Impl :[probabilistic translation]

Running such an assertion uses FDR’s compiler and some of its other internal machinery to
generate aPRISMmodel file, which can then be loaded manually intoPRISMand checked
against some supplied PCTL formulæ. It is clearly desirable in the longer term to automate

230 M. Goldsmith / CSP: Probably the Best!

this process, and to provide a route back for analysing any counterexample with the FDR
debugger.

In both of these assertions,Specmust be a normal (in a nontechnical sense) nonprobabilis-
tic process, whileImpl is allowed to (and presumably does, as otherwise FDR would vastly
outperform the route viaPRISM to checking the refinement) contain probabilistic choices.
The fact thatSpecis nonprobabilistic means that it can unproblematically be normalised (in
the technical sense of reducing it to a deterministic transition system, while retaining suffi-
cient annotations to be able to reconstitute its nondeterministic behaviour), which is key to
efficient refinement checking.

3 Translation

The translation of an individual leaf process into aPRISMmodule is relatively straightfor-
ward: as within FDR, we tabulate the transitions as between numbered states, and supply the
resulting module with a program-counter variable which can be updated accordingly. (Each
module requires its own distinct variable, as ‘ownership’ of a variable controls only which
module can modify it, not its visibility, which is global.) Visible events correspond to transi-
tions with a synchronisable action label; internal (τ -) transitions to anonymous, autonomous
ones; and probabilistic choice gives rise to a probabilistic update of the state variable. For a
variety of technical reasons, we forbid the (external) choice between a probabilistic choice
and any other action.

The system section of aPRISMmodel now admits a rich enough set of operators to
permit direct translation of the high-level operator tree, so we can simply enough create an
overall model of the implementationImpl; but there is no direct way to compare that, within
PRISM, with an analogous translation ofSpec.

In fact we use a different strategy, based on another situation where we want to approach
a refinement query indirectly.

3.1 Watchdog Transformation

It has long been known [9] that the hierarchical compression operators provided by FDR
tend to work best when there is a lot of hidden activity that can be compressed away. One
evident possible route towards maximising this is somehow to move the specification over to
the right-hand-side of the refinement, in such a way that the resulting check is invariant under
hiding; and then hide everything!

We have shown [10, 11] that this is indeed possible, and we have addressed the issue that
it is not just hidden activity, but rather localised hidden activity, which is necessary in order
to get real benefit from hierarchical compression. Unfortunately the simple execution of
the watchdog transformation, where the specification is transformed into a monitor process
which signals a failure of refinement either through an error-flag event or by deadlocking
the system (in the traces and failures models respectively), yields a system where the hidden
events are nearly all shared immediately below the outermost hiding, so that virtually no extra
compression is obtained. We explain in the cited works how the syntax tree can be rebalanced
to solve this problem, but CSP operators are generally not precisely associative and do not
commute with one another, so the transformation is quite intricate.

More recently, to be reported in [3], we have been able to take advantage of another
part of FDR’s internal machinery, the supercompiler. Any CSP operator tree can be trans-
formed, leaving the leaf processes untouched, into an equivalent one (unique up to reordering
and choice of new event names) that uses only outward (inverse-functional) renaming at the

M. Goldsmith / CSP: Probably the Best! 231

leaves, ‘natural’ alphabetised parallel, and functional renaming and hiding at the outermost
level. Using this transformation, which FDR already makes use of for efficient exploration of
the operational semantics of the system, allows the system to be expressed in a form which
can be reordered and rebracketed at relatively little cost in either CPU cycles or, more impor-
tantly, intellectual effort.

In the interests of code re-use, as much as anything else, exactly the same approach has
been followed in performing a watchdog transformation on the specification forPRISM. The
only real difference is that the global visibility ofPRISMvariables and the fact that the actual
specification property in thePRISManalysis is a PCTL formula which is expressed in terms
of them together allow a slight simplification in detecting failure of refinement. In particular,
the use of the interrupt operator in [11,§4] can be avoided. Some quite neat encodings have
been found of, for instance, the slices through the minimal acceptances in the failures-model
watchdog, and the resultingPRISMcode is quite compact (if not much more readable than
most autogenerated code).

4 Conclusions and Further Work

Only limited amounts of experimentation have been performed at the time of writing, but
the results are encouraging: a variety of small technical examples have been checked to
validate the translation (successfully), and a version of the classic Alternating-Bit Protocol
with probabilistic media has been shown to refine its specification (as a small buffer) with
probability 1. By the time of the conference there should be substantial results from its
application to ad-hoc routing protocol analysis within theFORWARD project [12].

As mentioned above, a more streamlined workflow is desirable, and a facility for back-
annotation into the FDR debugger. But it is here that the fact that we have used the FDR
supercompiler may come into its own: given a path in terms of the state variables of the
PRISMmodel, all that is required is to drop the special control variables (marking the pres-
ence of a trace error, or controlling the minimal acceptances of the watchdog), and the result
is preciselythe path that FDR itself would have generated internally from a failed refinement
check, and passed to the debugger.

One less attractive feature of this approach is that all regularity in the input process has
been lost as a side-effect of the compilation process: neither state numbers nor event numbers
reflect any symmetry or structure in the leaf processes. Since it is precisely this regularity
which enables BDD-related technology to operate effectively on large problems (andPRISM
is based on Multi-Terminal BDDs), this bodes ill for scaling the approach to significant ex-
amples; it remains to be seen how significant an issue this is in practice. It may be possible
to address this likely problem by a symbolic compilation strategy, which can preserve the
structure of process definitions and of the corresponding data components of events; a pilot
version of such a tool is currently under development.

The purely CSP watchdog transformation scheme has difficulty handling the full failures-
divergences model, since it is not possible for the watchdog to stop the implementation from
diverging when the specification wants to allow it to (and so should stop it). It is also hardly
worth adopting any of the rather more intrusive transformations that would allow this to
be simulated, since there are no significant (fixed-specification) refinement queries in that
model which are invariant under hiding, so the exercise would be more than a little academic.
Neither of these considerations apply in the case of thePRISMmodels, however: it is easy
for the watchdog to set a variable to inhibit any further action by the implementation, as part
of its entry into a state corresponding to a divergent state of the implementation; and PCTL
can express the necessary eventualities to capture livelock-freedom of the combination. So
this is an enhancement to be anticipated.

232 M. Goldsmith / CSP: Probably the Best!

However useful the bridge between the two tools proves in the long run, the transforma-
tion has a certain elegance of its own. It illustrates once more the unintended extra utility of
some of the constructs within FDR, whose sole motivation were efficiency and robustness in
refinement checking.

5 Acknowledgements

Much of the work in this paper was carried out as part of the DTI Next Wave Technologies and
Markets projectFORWARD [12], building upon research undertaken for QinetiQ Trusted
Information Management System Assurance Group.

The assistance of thePRISMdesign team at Birmingham University, in particular Dave
Parker, is gratefully acknowledged.

References

[1] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall International, 1985.

[2] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998. ISBN 0-13-6774409-5, pp.
xv+565.

[3] Ali Abdullah, Cliff Jones, and Jeff Sanders, editors.25 Years of CSP. Springer Verlag, To appear, 2005?
Workshop at Institute for Computing Research, London South Bank University, 7–8 July 2004, organised
by Formal Aspects of Computing Science BCS Specialist Group.

[4] Formal Systems (Europe) Ltd.Failures-Divergence Refinement: FDR 2 User Manual, 1992-2004.

[5] PRobabilistIc Symbolic Model checker. http://www.cs.bham.ac.uk/∼dxp/prism/.

[6] Vitaly Shmatikov. Probabilistic analysis of anonymity. InIEEE Computer Security Foundations Workshop
(CSFW), pages 119–128, 2002.

[7] Gavin Lowe. Pravda: A tool for verifying probabilistic processes. InProceedings of the Workshop on
Process Algebra and Performance Modelling, number CSR-2693, pages 57–64. Department of Computer
Science, University of Edinburgh, 1993.

[8] Carroll Morgan, Annabelle McIver, Karen Seidel, and Jeff Sanders. Refinement-oriented probability for
CSP.Formal Aspects of Computing, 3(1–000), 1995.

[9] A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M. Jackson, and J.B. Scattergood. Hi-
erarchical compression for model-checking CSPor How to check1020 dining philosophers for deadlock.
In Proceedings of TACAS Symposium, Aarhus, Denmark, 1995.

[10] Irfan Zakiuddin, Nick Moffat, Michael Goldsmith, and Tim Whitworth. Property based compression
strategies. InProceedings of Second Workshop on Automated Verification of Critical Systems (AVoCS
2002). University of Birmingham, April 2002.

[11] Michael Goldsmith, Nick Moffat, Bill Roscoe, Tim Whitworth, and Irfan Zakiuddin. Watchdog trans-
formations for property-oriented model-checking. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli,
editors,FME 2003: Formal Methods, pages 600–616, Pisa, September 2003. Formal Methods Europe.

[12] QinetiQ, Birmingham University, Formal Systems, and Oxford University.FORWARD: A Future of Reli-
able Wireless Ad-hoc networks of Roaming Devices.http://www.forward-project.org.uk .

