
Communicating Process Architectures 2004 233
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

gCSP: A Graphical Tool for Designing
CSP Systems†

Dusko S. JOVANOVIC, Bojan ORLIC, Geert K. LIET, Jan F. BROENINK
Twente Embedded Systems Initiative,

Drebbel Institute for Mechatronics and Control Engineering,
Faculty of EE-Math-CS, University of Twente,

P.O.Box 217, 7500 AE, Enschede, the Netherlands
d.s.jovanovic@utwente.nl

Abstract. For broad acceptance of an engineering paradigm, a graphical notation
and a supporting design tool seem necessary. This paper discusses certain issues of
developing a design environment for building systems based on CSP. Some of the
issues discussed depend specifically on the underlying theory of CSP, while a
number of them are common for any graphical notation and supporting tools, such
as provisions for complexity management and design overview.

1. Introduction

In the last two decades of the 20th century the transputer [1], a processor specifically
designed for simple parallel processing, was successfully applied in a number of
engineering fields but eventually fell out of use. However, the occam language [3],
designed for programming systems based on transputers, is still referred to in
contemporary text books (for instance, [4]) because of its unique properties that do not yet
have a match in industrial state-of-the-art languages. Much of the credit given to the occam
language, transputers, and the overall design mindset stems from their foundation in the
process algebra CSP (Communicating Sequential Processes) [5]. CSP provides a clear and
simple approach for reasoning about concurrent systems. Thanks to its sound mathematical
foundation, one of the most needed properties of modern system engineering – formal
analysis – is incorporated in the paradigm inherently.

Research efforts have been pursued in both hardware and software application areas of
CSP in the post-transputer era. Successful experiences composing complex distributed
systems inspired development of several communication platforms and protocols [6-8]. On
the software engineering side, CSP influenced the design of Ada and inspired development
of occam-like libraries for Java, C and C++ [9-14]; although occam is now rarely used for
programming transputers, research on extending the language is still active [15].

Before the proposal for graphical notation for CSP [16] by Hilderink, ways of drawing
CSP designs were being adopted for each particular occasion in an ad-hoc manner. This, of
course, brings difficulties in communication of ideas and concepts and easily introduces
design ambiguities as well. A commonly accepted graphical notation would ease
acceptance of CSP by a larger software community and provide great assistance for teaching
the CSP notions as well.

† This research is supported by PROGRESS, the embedded system research program of the Dutch organization
for Scientific Research, NWO, the Dutch Ministry of Economic Affairs and the Technology Foundation STW.

234 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

The proposed graphical notation has been used in practical applications at the Control
laboratory of the University of Twente in the last couple of years. It has proved to be useful
for transforming block diagrams to data flow models which can be further refined by
introducing relationships describing concurrent aspects of both communication and process
composition [17]. Block diagrams are well established for control applications and used in
all recognized modelling and simulation tools, such as Matlab/Simulink [18], or – as
reported in [17] – 20-SIM [19]. Moreover, CSP diagrams were successfully applied for
accomplishing a more complicated task: describing mode switching among a set of control
laws developed for different operational modes of a mechatronic system [20].

In [20], CSP diagrams were edited manually in general-purpose drawing tools. The
absence of special tools for editing CSP diagrams hampers many other facilities a CSP-based
paradigm could offer. Development of a specially crafted CSP design tool permits much
more design freedom and reuse, managing complexity through process hierarchy, automatic
code generation for concurrent networks, exporting designs to formal checkers and so forth.

In the original proposals of CSP diagrams [16, 21], the graphical CSP language is referred
to as GML (Graphical Modelling Language); the tool discussed in this paper is named gCSP
(graphical CSP). Basic language and tool elements are summarized in Sections 2, 3 and 4.
Section 5 deals with managing complexity in CSP (graphical) designs. The tool’s potentials
for automatic code generation are presented in Section 6. Section 7 summarizes the status
of the tool development and announces further points of attention.

2. General issues of modelling concurrent networks

Composition of any occam program and hence any program based on occam-like libraries
is always shaped as a strict tree-like hierarchy of SEQ, (PRI)PAR and (PRI)ALT constructs as
branches and user-defined processes as leaves. As such, it can be depicted easily and
naturally using a tree hierarchy.

2.1 Tree-based modelling

This fact led to the development of a tree-based CSP design tool [2]. Although the modelling
approach based on a strict hierarchical structure provided by the tree resembled the vital
compositional aspect of the occam reasoning, the tool’s design abilities exhibited two
serious flaws.

Firstly, the communication patterns over channel nets were hardly readable from the
processes’ interfaces scattered over the branches of the tree. An additional view
representing data flow was needed.

The second problem was much more serious. The primary aim of implementing such a
tool was to assist in designing concurrent programs. A strict hierarchical view can only
depict the design that is already shaped as a hierarchy of constructs and processes. But
during the design, one starts with process blocks existing in isolation or connected only
using data-flow diagrams. Modelling compositional structure in a tree hierarchy does not
allow compositional ambiguities (i.e. underspecification) in the course of the design and,
therefore, limits the design freedom. In further research, the tree concept was discarded.

Instead, development focused on the fact that during a design process constructs might
not yet be formed while compositional relationships between some processes are known.
In the follow-up research conducted by Hilderink and Volkerink, the initial idea of GML
was conceived.

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 235

2.2 GML design principles

A construct can be seen as a set of processes with the same type of relationship between
any two processes. In sequential, prioritized parallel, and prioritized alternative constructs,
these relationships are not symmetrical and strict order must be maintained within a
construct.

In GML, the recommended design process starts with a data flow model. This model is
represented by the network of communicating processes. The concurrency structure is then
added to this model by specifying compositional relationships between the processes
involved. Some concurrency relationships between processes are known in advance and
some are subject to various trade-offs. A tool that would allow one to make arbitrary
compositional relationships (sequential, parallel, alternative) between any two processes
would offer greater flexibility than a tool based solely on the tree compositional hierarchy.
GML models can express designs that are not fully specified. Compared to tree views, GML
views seem to be better suited for entering designs.

Refining the data flow model with compositional relationships expressing the
concurrency structure can be done without changing the layout of the original data-flow
model. This feature makes a prospective tool based on GML suitable for use in a chain of
tools. In our research group, focus is on development of control systems; one possible
predecessor to a GML-based tool in such a chain is 20-SIM [19].

20-SIM is a tool for modelling and simulation of control systems. It can generate code for
specified controllers, but the code is generated after sequentialization of the data-flow
models. It would be advantageous if one could import data-flow models from 20-SIM into a
GML tool, extend them with compositional relationships specifying the concurrency
structure, perform formal checking, and then automatically generate code free of unwanted
concurrency phenomena such as deadlock and livelock.

It is expected that the combination of 20-SIM and gCSP will result in a tool chain that
can support the design of control applications, whereas gCSP alone can serve as a graphical
tool for using CSP.

3. Purpose of the tool and its specification

The most elaborate standard for describing software graphically, UML [22], is described as
“a graphical language for visualizing, specifying, constructing, documenting and
communicating the artefacts of a software-intensive system”. The same goes for the general
idea of GML. In short, the purpose of the language and the tool can be described as
“supporting the building concurrent software based on the Communicating Sequential
Processes algebra”. In order to meet this goal, the development of the tool started with the
following set of requirements. The tool should:

1. allow the modelling of concurrent systems using the Graphical Modelling Language

(GML) for drawing CSP diagrams.
2. preserve notions of the CSP theory and its peculiarities, but bring it closer to

implementation needs.
3. support means for managing complex CSP models – allowing hierarchical

organisation by containment relations among parent (complex) and children (leaf or
also complex) processes.

4. allow the expression of communication and compositional patterns of process
networks, the latter not only in terms of an extended set of CSP constructs, but also
in terms of compositional relationships (likewise communication relationships,

236 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

which represent CSP channels), as defined in the GML proposal.
5. transform the software models to a number of types of human- and machine-

readable code.
6. allow semantic and integrity checks of the specified models.
7. allow visualization also in the domains of (formal) analysis and other imaginable

CSP model processing.
8. generate CSP networks suitable for incorporation of operational code derived from

other tools (for instance one-shot processes from 20-SIM, as reported in [17] and
[20]).

The set of CSP constructs applied and extended in occam with prioritized variants,
recently formally described in the work of Lawrence [23], is appended with one more
construct for modelling exception handling, as described by Hilderink [16]. Table 3-1
summarizes the set of constructs used in the GML and the gCSP tool.

Table 3-1. Constructs in GML.

Construct symbols Constructs

 sequential (SEQ)

 parallel (PAR)

 priparallel (PRIPAR)

 alternative (ALT)

 prialternative (PRIALT)

 exception (EXCEPTION)

The following vocabulary was derived to describe some important terms for the gCSP

tool development:

• Processes and channels are defined as in the CSP theory [5]. A process in a CSP diagram
is depicted as a rectangle, while a channel is represented by an arrowed line.

• SEQ, (PRI)PAR, (PRI)ALT and EXCEPTION are called constructs. The occam WHILE loop is
proposed in [16] to be represented as the SEQ of the µ primitive process (see Table 3-2)
and the process whose repetition is required. Being an idiom of GML, the SEQuences
with the µ primitive process are, in the tree of constructs (see discussion of the C-tree in
Section 4), optimized to be presented with one repetition construct marked by the µ
glyph.

• Relationships are represented as lines augmented with the construct symbols (see Table
3-1) that connect processes. Relationships are divided in two sets: compositional, that
connect (ordered) pairs of a construct’s children, and communication, channels that
connect two or more processes (shared channels are allowed).

• A CSP diagram consists of processes and their relationships.
• A view on a CSP diagram displays processes and a set of relationships. gCSP can display

three standard views: the communication view that shows processes and channels
(communication relationships), the compositional view showing processes and
compositional interrelationships, and the full CSP view with processes and both

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 237

compositional relationships and channels. The topology of the processes is preserved on
all the views (compare Figures 4-1, 4-2 and 4-3).

Hilderink's GML proposal [16] includes also the following primitive processes:

Table 3-2. Primitive processes.

Symbol Primitive processes

 Writer

 Reader

 Barrier sync process

 Repetition

Use of the µ primitive process is already mentioned in the context of repetitions. Writer
and reader primitive processes denote points of communication among processes, as shown
on the example in Figure 5-9. On notions of barrier and the use of the barrier
synchronisation process the reader is referred to [16].

In the GML proposal grouping of processes into constructs is depicted by attaching
indexed bubbles to compositional relationships tied to borders of newly created constructs.
For detailed semantics of the grouping mechanism see Subsection 5.1.

4. Graphical user interface

gCSP has a standard windowed user interface (Figure 4-1) that consists of several panes, a
menu and toolbars:

• The graphical editor (G-editor) consisting of:

• Communication view and the corresponding toolbar.
• Compositional view and the corresponding toolbar.
• Full CSP view.

• Tree views:
• Compositional tree that shows organization in constructs (C-tree).
• Graphical tree that summarizes graphical elements in the G-editor (G-tree).

• The Messages pane intended for giving feedback to the user.
• A standard window application toolbar extended with a few specific icons for navigating

through the model hierarchy in the G-editor (,) and saving and retrieving
submodels (,).

Entering a design (inserting processes and relationships) is performed exclusively
through the views of the graphical editor (G-editor). The full CSP view (as in Figure 4-3),
anticipated already in the GML proposal, has been added upon suggestions of users. While
the compositional and communication views are clearly suitable for focusing on one of the
corresponding architectural aspects, users of the tool suggested that in the design phase it is
also handy to have an overview of both compositional and communication relationships at
the same time.

238 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

Figure 4-1. Graphical user interface of gCSP (with displayed Compositional View).

While the compositional view can be seen in Figure 4-1, the communication view and
the full CSP view are shown in Figure 4-2 and Figure 4-3 respectively.

These figures reveal something that may look rather odd to an occam or a CSP person.
The Fetch process is composed in sequence with the rest of the system on the right hand
side; still, there is a channel in between (chRawData). This would certainly cause a
deadlock in a CSP model. However, a GML communication relationship (i.e. channel)
between processes that run in sequence is not a channel in the CSP sense. In occam it would
be a variable. In the CT libraries, due to OOP data encapsulation, variables defined in a
parent construct are not automatically visible in a child process. Therefore, in CT, type
ChannelVar [20] is created as a non-blocking channel that passes variables between
sequential processes.

The option to have a channel between sequential processes comes from the GML’s
intention to capture all interprocess communications by drawing them as channels. The tool
is supposed to allow a control engineer to impose explicitly certain sequences of a system’s
component activations, i.e. in mode switching (see [20]). The sequentialisation in
execution would anyway happen in practice if the two processes were composed in parallel
– channel synchronization would automatically force them to run in a sequential order.
While this is obvious for those familiar with CSP, the intention of the tool is to be receptive
to a wider community.

In generating machine-readable CSP (CSPM scripts) this problem needs to be solved by
detecting channels between sequentially composed processes and handling them in a proper
way. Making an option for different visualization of the non-blocking channels in gCSP is
under consideration.

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 239

Figure 4-2. Communication view.

Figure 4-3. Full CSP view.

Trees have shown as the best means for navigation through a model hierarchy. The
compositional tree (C-tree in Figure 4-4) also corresponds to a model representation that is
most suitable for code generation.

The C-tree actually consists of three compartments:
• list of Loose processes
• list of Unresolved relationships
• trees representing emerging hierarchies of constructs and processes

The term loose process is used for a process whose parent construct in the compositional

hierarchy is not yet determined. Unresolved relationship is a term used for a compositional
relationship that connects two processes that are not yet composed in a construct. These
issues are discussed in detail in Subsection 5.2.

The G-tree (Figure 4-5) allows inspection of the graphical objects and browsing through
the hierarchy; furthermore it assists working with the full CSP view when compositional
relationships and channels are overlapping.

240 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

Figure 4-4. Compositional tree. Figure 4-5. Graphical tree.

5. Managing a CSP model complexity

5.1 Representing compositional hierarchies in flat models

A bottom-up approach of building a complex CSP model starts by connecting processes
with compositional relationships. Since any process can be connected with many others,
some kind of grouping processes and relationships is necessary to establish a proper
compositional hierarchy. Otherwise, the model would be compositionally ambiguous.

Figure 5-1. An ambiguous model.

Figure 5-1 depicts an example of a compositionally ambiguous model. For instance, it is

ambiguous whether the sequence of Fetch and Calc is composed in a priparallel

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 241

composition with Idler, or after the termination of Fetch the priparallel construct consisting
of Calc and Idler takes place. The reader may spot many other ambiguities as well.

A construct in a compositional graphical view is represented by a group of processes
connected with compositional relationships of the same kind. An intuitive representation of
a construct (group) would be a rectangle (“box”) embracing the grouped processes. One
possible solution that eliminates compositional ambiguities turns the model from Figure 5-1
into the one depicted in Figure 5-2.

Figure 5-2. Boxed notation.

However, in a complex network, rectangles that mark nested structures take a lot of
display space. Adapting this kind of diagram by rearranging the structure may result in a
rather serious amount of editing work. Furthermore, maintaining the boundaries of the
constructs may be very laborious for a proper GUI development.

In order to compensate for these drawbacks, GML has so-called “parentheses”, little
indexed bubbles at the end(s) of a composition relationship to indicate the nesting, as in
Figure 5-4. An intermediate step between the boxed and parenthesized (“bubbled”)
representations is given in Figure 5-3. Only parts of rectangles intersecting relationships
carry the nesting information.

Figure 5-3. The intermediate step between the two grouping notations.

242 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

Figure 5-4. Compositional hierarchy shown by parenthesizing.

An index of a parenthesizing bubble is equal to the number of rectangles to be crossed
going from a process to an external relationship in the boxed notation, as can be seen by
comparing Figures 5-2, 5-3 and 5-4. It is quite obvious that parenthesis notation, although
compact, demands practice to become readable.

5.2 C-tree as compositional hierarchy representation

It is not possible to generate code directly for the ambiguous model from Figure 5-1, but it
becomes possible once compositional ambiguities are solved – for instance as depicted in
Figure 5-4. In other words, one cannot generate an occam-like code in a unique way before
a model is shaped as a strict hierarchy of constructs as branches and user defined processes
as leaves.

A tool based on a strict tree hierarchy, as described in Subsection 2.1, is naturally suited
for the generation of occam-like code. GML models, however, offer much more design
freedom. The price to be paid is that a GML model which contains compositional
ambiguities or conflicts cannot be uniquely displayed in a strict tree hierarchy. Therefore, a
view based on a strict tree hierarchy and a view based on the GML model cannot be used
together. One is forced to choose one or the other. In either case some valuable properties
of the model are lost.

Possibly, in the design tool, an engine could be constructed that detects compositional
underspecification by making queries to a model database. It would rely on some
prescribed methods or perhaps built-in heuristics in resolving compositional ambiguities by
deriving unspecified relationships, as suggested in the original GML proposal [16].

However, at this stage of the research these issues would put too much of a burden on
the tool. Even the necessary minimal check whether a model is free of compositional
conflicts would probably not scale well with the complexity of the design. Instead, a
practical decision was made to share the responsibility of detecting compositional conflicts
between the tool and the user. A supplementary view into the GML model is constructed that
can give better insight in the hierarchy of models while keeping the design freedom of the
GML modelling approach. The idea is to let the user build this alternative view gradually
while creating a graphical design. A complex structure containing one or several tree views
and two additional compartments can completely reflect the compositional side of the
model at any moment of the design process. Two compartments contain flat lists of loose
processes and unresolved relationships. The third compartment contains a set of tree
hierarchies of which the roots and the branches represent constructs or complex processes
while the leaves represent user-defined processes. This structure is the C-tree presented in

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 243

Figure 4-4 in Section 4. The C-tree view and G-editor view are always two views of the
same GML model.

When someone adds a process or a relationship in the G-editor, they are automatically
added in appropriate compartments of the C-tree. The ambiguous model from Figure 5-1
would be represented with all processes listed in the Loose Processes compartment, all
relationships shown as unresolved, and with an empty third compartment. That model can
be transformed to an unambiguous model from Figure 5-4 in several steps. One can start by
grouping the Check1, Check2 and Check3 processes connected with parallel relationships
into the parallel construct. The same can be done with the Calc and Idler processes.

When several processes connected via relationships of the same type are grouped to
make one construct, this change will be reflected in the C-tree by the appearance of the
construct as a root or a branch in the appropriate tree hierarchy. Processes that are grouped
by a newly created construct have a parent process and cannot be classified as loose
processes any more. Therefore they are moved from the first compartment to become
leaves of a newly created branch representing their parent construct in the third
compartment. Associated relationships contained in this construct are not unresolved
further. For the given example this is illustrated in Figure 5-5. The next steps in resolving
compositional ambiguities are shown in Figures 5-6 and 5-7.

Figure 5-5. The model after creating two parallel constructs.

Figure 5-6. The model with parInner relationships resolved into Par1 construct.

244 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

Figure 5-7. The model after creating the repetition construct.

The C-tree gives to a designer a better insight in the transient phases of hierarchy
building. The designer can easily visually inspect a C-tree to determine how far the design
is from a strict hierarchy. Code can be generated only after a strict tree hierarchy is
obtained. More details about the role of the C-tree in code generation are given in Section
6.

A complex process is a process that contains other processes. By definition, every
construct is a type of complex process. During a design one can have complex processes
whose internals are not yet shaped as a strict hierarchy of constructs and user defined
processes. Contents of complex processes can be encapsulated using containment; this is
the subject of the next subsection.

5.3 Structuring compositional hierarchy by the parent-child containment

So far, flat models have been considered. With a growing process network, a G-editor view
quickly becomes overpopulated. In order to manage complexity of a model, in gCSP one
can partition a model in larger logical chunks by building complex processes.

(a) Communication interface of the Check process.

(b) Communication view of Check’s internals. (c) Check’s internal composition.

Figure 5-8. Complex (parent) Check process.

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 245

At any moment the designer may decide to encapsulate several processes inside a
separate process, which becomes the complex one. For example, the parallel composition of
Check1, Check2 and Check3 (Figure 5-4) could be encapsulated inside the complex Check
process (Figure 5-8a).

In turn, the body of the Check3 process could be further refined as a sequence consisting
of primitive input processes, output processes, and blocks for specification of the
processing code (note that such blocks are not yet implemented in gCSP), as Figure 5-9
suggests.

Figure 5-9. Possible representation for the body code place holders (for process Check3).

When building complex processes, channel interfaces to the next-higher level are
indicated with symbols that are in line with the 20-SIM submodels notation: empty squares
for input channel interfaces, and filled squares for output channel interfaces.

Note that one who prefers the top-down design approach would start with a smaller
number of processes (as in the figures in Section 4, with the Check process capturing the
functionality later distributed over three processes). When a global network of processes
with well-defined interfaces is established, each of them can be further refined with
subprocesses that fulfil the interface contract of the parent.

In the trees, the existence of hierarchical organization is indicated by means of the usual
“+” and “–” (respectively expanding and collapsing) boxes in front of the complex
processes and the constructs as well (Figure 5-10).

Figure 5-10. Containment hierarchy in the trees.

5.4 Containment hierarchy versus overview

Clearly, it is the user’s decision to what extent to build complex compositions in a flat view
and at which moment to “implode” some groups of processes into complex ones. Facilities
for both building containment hierarchies based on complex processes made out of simpler
ones and flat compositions with several constructs on the same visual level are
implemented. Obviously, both are necessary to allow the user to find a proper balance
between managing complexity of the design and providing sufficient overview.

246 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

Having both these facilities available, with a limited complexity of the subprocesses, the
first disadvantage (inefficient space usage) of the boxed grouping notation discussed in 5.2
is no longer significant. The idea of adding the boxed notation along with the parenthesized
one is not definitely abandoned and remains a subject for the future work.

While flat models at one visual level represent only the current abstraction level, the C-
tree always represents the whole system. Of course, one can represent the whole system
with one flat model as well, but this is not recommended for complex designs.

As is shown in Figure 5-10, the C-tree treats complex processes and constructs
coherently. When a model is completely specified, every complex process contains exactly
one (top) construct. The children of the top constructs are at the same time children of a
complex process containing that construct.

6. Code generation

As stated on the list of the tool development requirements, converting the graphical
(human-readable) models into machine-readable forms by automatic code generation is an
essential feature.

The following targets are of interest:
• CSPM (machine-readable CSP), the input for the model checker FDR [24]. Analyses

with FDR can be done directly to check the quality of a specification. Furthermore,
using existing converters [25], the CSPM code can be translated to CTJ, JCSP or
CCSP.

• Executable programs based on use of the CSP libraries like CTJ [11], [10], [26] or
JCSP [27], or their C or C++ versions. Graphical CSP models directly correspond to
process networks that are built with the CSP libraries. As discussed later, after filling
in application-specific code, the programs can be compiled and run directly.

• occam, which can be executed on transputers, or by compiling with KRoC [15] on
standard processors.

CSP is a notation and algebra that describes communication patterns in which different
components interact. Parts of code that contain only pure computation are not of interest to
CSP. Therefore this tool is also oriented towards generation of network builders - program
files implementing concurrent networks that reflect the modelled concurrent structure,
leaving empty place holders for the application-specific code. Filling this part of
operational code can be done in different ways. One way is to do that also within the tool
by using code blocks as sketched in Figure 5-9. The other option is importing code
produced by other tools, for instance automatically coded control laws from 20-SIM, as
described in [17] and [20].

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 247

(a) Compositional view.

(b) Communication view.

(c) C-tree

Figure 6-1. Example model for code generation.

For an example of code generation, a submodel of the previous example is shown in
Figure 6-1. The C-tree structure gives a good starting point for any kind of code generation.
Code can be generated whenever the state of strict hierarchy is reached. This state is
reached when two conditions are met:

• there must not exist any unresolved relationship.
• only loose process that can exist is the top level construct.

Verifying whether code can be generated or not is therefore straightforward and also
intuitively clear to the user (it is visual) - there is no need for a complex parsing algorithm.
This does not yet mean that such a code is free of deadlocks, livelocks, etc. For this purpose
a CSPM script will be generated.

248 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

Listing 6-1. CSPM code generated by gCSP.

channel chCheck3

channel chIdlerCheck

channel chCheck2

channel chCalcCheck

channel chCheck1

channel chIdlerCalc

SubSystem = ParCheck [| {| chCheck3 |} |] (PriParCalc [| {| chIdlerCheck,

chCalcCheck |} |] (ToDisk))

ParCheck = Check2 [| {| chCheck2 |} |] (Check1 [| {| chCheck1 |} |]

(Check3))

PriParCalc = Calc [| {| chIdlerCalc |} |] Idler

Calc = Calc

Idler = Idler

ToDisk = ToDisk

Check1 = chCalcCheck?x -> chCheck1!x -> Check1

Check2 = chIdlerCheck?x -> chCheck2!x -> Check2

Check3 = chCheck1?x -> chCheck2?x -> Check3

The CSPM script for the model in Figure 6-1 is shown in Listing 6-1. Note that the
channel communication for Check1, Check2 and Check3 is added manually after the
network is generated by gCSP.

It has been decided to model the interleaving parallel construct (|||) in the graphical
models in the same way as the sharing parallel construct. Firstly, the tool easily checks
whether a channel is present between any two processes composed in parallel, and
consequently decides to generate an interleaving or a shared parallel operator in the CSPM
code as appropriate. Secondly, insisting on appearance of the interleaving operator (|||) in
the CSPM code would complicate the code generation in some situations. For instance, a
human would probably describe the ParCheck process as

(Check1 ||| Check2) [| {|chCheck1, chCheck2|} |] Check3

since Check1 and Check2 do not synchronise with each other. However, the tool, by parsing
the C-tree, generates an equivalent composition that does not exhibit the interleaving
explicitly.

An executable C++ code generated for use with the CTC++ library consists of pairs of .h
and .cpp source files for each defined process and one .cpp file for the network builder as
well. The structure of the network builder clearly corresponds to the compositional
structure captured by the C-tree, as shown in Listing 6-2.

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 249

Listing 6-2. Network builder in CTC++.

/** Auto Generated - gCSP **/

//-- Includes

#include ...

int main (void) {

 //-- Channel allocations

 Channel<float> *chCheck3 = new Channel<float>();

 Channel<float> *chIdlerCheck = new Channel<float>();

 Channel<float> *chCheck2 = new Channel<float>();

 Channel<float> *chCalcCheck = new Channel<float>();

 Channel<float> *chCheck1 = new Channel<float>();

 Channel<float> *chIdlerCalc = new Channel<float>();

 //-- Process allocations

 Calc *Calc_1 = new Calc(chCalcCheck, chIdlerCalc);

 Idler *Idler_1 = new Idler(chIdlerCheck, chIdlerCalc);

 ToDisk *ToDisk_1 = new ToDisk(chCheck3);

 Check1 *Check1_1 = new Check1(chCalcCheck, chCheck1);

 Check2 *Check2_1 = new Check2(chIdlerCheck, chCheck2);

 Check3 *Check3_1 = new Check3(chCheck3, chCheck2, chCheck1);

 //-- Network builder

 Parallel *ParCheck = new Parallel(

 Check2_1,

 Check1_1,

 Check3_1,

 NULL);

 PriParallel *PriParCalc = new PriParallel(

 Calc_1,

 Idler_1,

 NULL);

 Parallel *SubSystem = new Parallel(

 ParCheck,

 PriParCalc,

 ToDisk_1,

 NULL);

 SubSystem->run();

//delete’s...

 return 0;

}

250 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems

7. Conclusions and future work

A basic version of a graphical CSP editor and code generator has been built. The first tests,
as shown in this paper, indicate that the tool has the potential to meet its initial
requirements, and can help proliferate the ideas and usage of CSP.

The idea of the C-tree view can also be generalized and applied to similar problems
where an additional view is needed to visualize the process of forming the hierarchy rather
than the hierarchy itself.

Building a usable graphical tool is a laborious process; many interesting features can be
thought of. The following features are recognized as vital for acceptance in a somewhat
broader audience that could supply the tool and methodology developers with valuable
feedback:

1. Further improvement of managing complex models; imploding a group of processes
to a complex one; exploding complex processes by bringing their children higher up
in the hierarchy with proper handling of the network topology.

2. Reassessing the benefits and drawbacks of the boxed and bubbled grouping
notations.

3. Extending reusability of developed CSP models. At this moment reuse is possible
only by saving and retrieving submodels (complex processes).

4. Letting the user enter the body (operational code) of the processes via code blocks or
import external program files.

5. Allowing for diagrams partly populated – as desired by the user – with the processes
and relationships from the model.

6. Enabling layered organization of complex models; for instance, a user may choose
different ensembles of coexisting networks reflecting a control application layer,
safety components layer, and hardware deployment layer to be displayed in various
combinations. The preserving topology of the processes in different views with the
layered compositions comes to its full effect.

7. Facilitating the tool with event trace analyses by mimicking the network interaction
with the environment, as in ProBE [24]. This could lead to executable specification
of CSP concurrent designs.

8. Bidirectional collaboration with model checkers and visualization of concurrency
phenomena.

9. Allowing use of the C-tree for entering design as well. The manipulation of large
structures (merging constructs or dragging and dropping processes) would be easily
done in the tree.

8. Acknowledgements

The contribution of Gerald Hilderink to this project is substantial. Beside the fact that the
tool is based on the GML modelling principles that he has established, Gerald has also
supervised the development of a significant part of the GUI for gCSP during the internship
project of Marvin Rumnit.

The authors are also grateful to the reviewers who carefully pointed out potentially weak
points of the paper. Furthermore, we are grateful to Dyke Stiles for special diligence in
correcting the English.

 D.S. Jovanovic et al. / gCSP: A Graphical Tool for Designing CSP systems 251

References

[1] INMOS, “INMOS Website” www.inmos.com, 2004.
[2] H. J. Volkerink, G. H. Hilderink, J. F. Broenink, W. A. Vervoort, and A. W. P. Bakkers, “CSP

Design Model and Tool Support”, Communicating Process Architectures 2000, WoTUG-23.
Canterbury, United Kingdom 2000.

[3] INMOS, occam 2 Reference Manual: Prentice Hall, 1988.
[4] A. Burns and A. Wellings, Real-TIme Systems and Programming Languages, 3rd ed: Pearson

Education, 2001.
[5] A. W. Roscoe, The Theory and Practice of Concurrency: Prentice Hall, 1997.
[6] S. Triger, B. C. O'Neill, and J. Clark, “Adapted OS Link / DS Link Protocols for Use in

Multiprocessor Routing Networks”, In A. Chalmers, M. Mirmehdi, and H. Muller, Eds.,
Communicating Process Architectures 2001. Bristol, UK, 2001.

[7] R. Peel, “A Reconfigurable Host Interconnection Scheme for occam-Based Field Programmable
Gate Arrays”, In A. Chalmers, M. Mirmehdi, and H. Muller, Eds., Communicating Process
Architectures 2001. Bristol, UK, 2001.

[8] R. Mosely, “Reconnectics: A system for the Dynamic Implementation of Mobile Hardware
Processes in FPGAs”, In J. Pascoe, P. H. Welch, R. Loader, and V. Sunderam, Eds., Communication
Process Architectures 2002. Reading, UK, 2002.

[9] G. H. Hilderink, “JavaPP project at UT: http://www.ce.utwente.nl/JavaPP”, 2002.
[10] G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink, “A Distributed Real-Time Java System Based

on CSP”, The third IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing ISORC 2000. Newport Beach, CA, 2000.

[11] G. H. Hilderink, J. F. Broenink, W. A. Vervoort, and A. W. P. Bakkers, “Communicating Java
Threads”, Proc. WoTUG-20 on Parallel programming and Java. Enschede, Netherlands, 1997.

[12] P. H. Welch, “Process Oriented Design for Java: Concurrency for All”, ICCS 2002. Amsterdam,
2002.

[13] J. Moores, “CCSP - A portable CSP-based run-time system supporting C and occam”, In B. M.
Cook, Ed., Architectures, Languages and Techniques - WoTUG-22. Keele, UK, 1999.

[14] N. C. C. Brown and P. H. Welch, “An Introduction to the Kent C++CSP Library”, In J. F. Broenink
and G. H. Hilderink, Eds., Communicating Process Architectures 2003. Enschede, 2003.

[15] P. H. Welch and D. C. Wood, “The Kent Retargetable occam Compiler”, Parallel Processing
Developments -- Proceedings of WoTUG 19. Nottingham, UK, 1996.

[16] G. H. Hilderink, “Graphical modelling language for specifying concurrency based on CSP,” IEE
Proceedings: Software, vol. 150, pp. 108-120, 2003.

[17] D. Jovanovic, G. H. Hilderink, and J. F. Broenink, “A communicating Threads -CT- case study:
JIWY”, In J. Pascoe, P. H. Welch, R. Loader, and V. Sunderam, Eds., Communicating Process
Architectures 2002. Reading UK, 2002.

[18] Mathworks, “Matlab, Simulink” http://www.mathworks.com: Mathworks, 2002.
[19] CLP, “20-SIM” http://www.20sim.com: Controllab Products, 2002.
[20] G. H. Hilderink, D. S. Jovanovic, and J. F. Broenink, “A multimodal robotic control law modelled

and implemented with the CSP/CT framework”, In J. F. Broenink and G. H. Hilderink, Eds.,
Communicating Process Architectures 2003. Enschede, Netherlands, 2003.

[21] G. H. Hilderink, “A graphical Specification Language for Modeling Concurrency based on CSP”, In
P. W. James Pascoe, Roger Loader, Vaidy Sunderam, Ed., Communicating Process Architectures
2002. Reading UK, 2002.

[22] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language, User Guide: Addison
Wesley, 1999.

[23] A. L. Lawrence, “CSPP and Event Priority”, In A. Chalmers, M. Mirmehdi, and H. Muller, Eds.,
Communicating Process Architectures 2001. Bristol, UK, 2001.

[24] FormalSystems, “FDR2 Refinement checker for CSP models” http://www.fsel.com, 2004.
[25] V. Raju, L. Rong, and G. S. Stiles, “Automatic Conversion of CSP to CTJ, JCSP, and CCSP”, In J.

F. Broenink and G. H. Hilderink, Eds., Communicating Process Architectures 2003. Enschede,
Netherlands, 2003.

[26] G. H. Hilderink, “Communicating Threads home page: www.ce.utwente.nl/JavaPP,”, 2002.
[27] P. H. Welch, “Java Threads in the Light of occam / CSP”, In P. H. Welch and A. W. P. Bakkers,

Eds., Architectures, Languages and Patterns for Parallel and Distributed Applications, WoTUG-21.
Canterbury, UK, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

