
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

253

Towards a Semantics for Prioritised Alternation

Ian EAST
Dept. for Computing, Oxford Brookes University, Oxford OX33 1HX, England.

ireast@brookes.ac.uk

Abstract. A new prioritised alternation programming construct andCSP operator
have previously been suggested by the author to express behaviour that arises with
machine-level prioritised vectored interruption. The semantics of each is considered,
though that of prioritisation is deferred given the current lack of consensus regarding
a suitable domain. Defining axioms for the operator are tentatively proposed, along
with possible laws regarding behaviour. Lastly, the issue of controlled termination of
component and construct is explored. This is intended as only a first step towards a
complete semantics.

1 Introduction

Reactive behaviour has traditionally been regarded as the province of the operating system
alone. Systems programmers were required to have additional programming skill, an un-
derstanding of concurrency, and knowledge of hardware. It was accepted that they would
fall back on assembly language. The vast majority of applications could be designed and
programmed with less capability, and using a purely sequential language. For the unavoid-
able concurrent and reactive behaviour within the system and with the the environment, they
would defer to the operating system.

Such an approach is frequently no longer adequate for the engineering of software. First,
the need for an operating system to satisfy the needs of every application has led it to become
bloated, expensive, and unreliable. Second, the market for software application has moved
away from the desktop and into the consumer product, as a result of a dramatic decrease in
hardware cost. Embedded applications are themselves typically both concurrent and reactive,
yet must be both cheap and reliable. A method is needed by which they can be engineered
rapidly, but with high integrity and low cost, by people who can readily be hired.

Honeysuckle [1] is intended to provide the means to implement concurrent and reactive
systems, secure against pathology such as deadlock and priority inversion. Static verification
of formal design rules guarantees security against many errors, without the additional skill,
cost, and delay, usually associated with the use of formal methods.

A serviceis a protocol between two processes that identifies a strict sequence of com-
munications. The idea is derived from the master/servant protocol of Per Brinch-Hansen [2].
It may be drawn as a directed arc connecting two nodes within aservice digraph. A design
rule, denying any circuit in such a graph, has been proven to guarantee deadlock-freedom [3].
A companion paper shows how the protocol may be recast as statically verifiable conditions
separably defining service and service network [4]. The addition of mutual exclusion and
dependency between services proves necessary for compositionality, ensuring every system
is a valid component andvice versa.

Like occam before it, Honeysuckle is a derivative of Hoare’s Communicating Sequential
Processes (CSP) [5]. Unlike occam, it models prioritisation as the ability of one process to
interrupt another. An interrupting process is often cyclic. An interrupted process resumes

254 I. East / Towards a Semantics for Prioritised Alternation

only when a cycle is complete or when its interruptor terminates. A newCSPoperator has
been proposed which captures such behaviour, along with a programming construct (when)
that provides mechanisms for components to asynchronously communicate and precipitate
the termination of (disable) each other [6].

The purpose of this paper is to take a first step towards establishing the semantics of both
operator and construct by discussing desirable behaviour and resolving certain issues that
arise. The aforementioned companion paper also extends service architecture to incorporate
prioritised service provision and shows howa priori deadlock-freedom may be retained,
along with immunity to priority conflict and inversion.

2 Prioritised Alternation

2.1 Indirect Expression

Because reactive behaviour is unavoidable in practice, processor design typically includes a
mechanism by which normal control flow can be interrupted. Since there is usually a number
of distinct events that cause interruption, the mechanism often allows for the provision of a
vectorto direct control to the appropriate subroutine.Interrupt service routinesmay or may
not be re-entrant and sometimes may pre-empt one another according to some recorded pri-
oritisation. It is thus possible toalternatebehaviour according to prioritised events (internal
or external) by programming such hardware directly. This is commonly done using assembly
language, but becomes tiresome and error-prone when the system is other than trivial.

When using a high-level programming language (one permitting a measure of abstrac-
tion), it is common to portray a set of alternating processes as concurrent. Some pre-emptive
scheduler, outside application program control, is then relied upon to deliver alternation. This
can be expressed directly, for example, usingoccam:

PRI PAR i=0 for n
WHILE running

SEQ
input[i] ? request
... respond to request

Since, by definition,no two responses may execute concurrently, this is hardly ideal. Con-
currency implies equivalence among all interleavings, but in an alternation each interleaving
has meaning and therefore should be distinguished. There is also the issue of resumption.
The solution above allows an interrupted process to resume when its interruptor is blocked.
Prioritised vectored interruption (PVI) provides no mechanism for this but imposes the min-
imum overhead on latency. Disallowing resumption until completion is arguably simpler,
both in abstraction and in implementation, though less efficient, in the sense that the alter-
nation as a whole is blocked where otherwise it need not be. It might also be argued that a
programming language should provide abstraction ofall patterns of control flow offered by
hardware, includingPVI.

Pre-emptive scheduling offers a worsening solution as interaction between responses in-
creases. Ultimately, some central process will be required to maintain state, communicating
with every other process after each response. Scheduling will incur (possibly unacceptable)
overheads on both performance and latency. Abstraction becomes complicated and obscure.

Although it is now common practice to simply rely on excess performance available,
sometimes even discarding pre-emption, it surely remains sensible to pursue efficiency and
the lowest possible latency. It is surely also sensible to provide direct abstraction, and thus
transparent and efficient expression of the behaviour of any event-driven system.

I. East / Towards a Semantics for Prioritised Alternation 255

2.2 Interrupts and Alternation inCSP

In his seminal book, Hoare accounts for both interruption and alternation [5, #5.4], but not
priority. He denotes a processP1, interruptible byP2, by

P1ˆP2 (1)

The process thus formed starts and continues behaving as specified byP1 until some event
with whichP2 can start occurs. It then behaves asP2. P1 is never resumed.

He adds two qualifications. “To avoid problems”, termination must not lie in the alphabet
of P1, αP1. This means thatP1 is not in fact a sequential process at all, since it cannot be
combined with another via the sequence operator ‘;’. (One obvious problem would be the
interpretation following termination ofP1.) This permits the description of processes which
can cease only via interruption. In fact, it’s worse than that. If we compound the (associative,
non-commutative) operator

(P1ˆP2) ˆP3 = P1ˆ (P2ˆP3) (2)

we see that, in a string of interruptible processes, none may terminate save the last. In
practice, we do not wish to be restricted in this way.

In order to preserve determinism and simplify reasoning about operators, Hoare further
requires any interrupting event to lie outside the alphabet of the interrupted process:

P0
2 ∩ αP1 = ∅ (3)

(P0 refers to the set of events with whichP is willing to start. The functioninitials(P)
is used in laterCSPtexts.) In contrast, this is entirely acceptable. Only the environment can
trigger interruption. The interruptible process is blind to the interrupting event.

Hoare goes on to provide abstraction for the class of events which prevent a process
continuing (cause ‘catastrophe’) and for processes which subsequently restart.Checkpoints
provide for the preservation of a state, upon an event denoted by ‘c©’, to which a process
may return upon catastrophe, instead of restarting. A third interrupting event is defined,
denoted by ‘⊗’, which causes two processes to alternate. (A circumflex is introduced here to
distinguish event and operator.)

P1⊗̂P2 (4)

Hoare’s second stipulation means that⊗ lies in the alphabet of neitherP1 nor P2, but in
that of the process produced by the operator.⊗ also secures a checkpoint. The state of the
interrupted process is preserved.

2.3 Prioritised Alternation inCSP

A simple, but useful, interpretation of the term ‘prioritisation’ has been previously proposed
by the author, together with a newprioritised alternationCSPoperator [6]. A brief summary
follows.

Consider a process composed via interruption, as described by Hoare [5, p. 180]. (The
notation used by Roscoe is now preferred [7, p. 235].)

Π = ((P14 P2)4 P3) . . .4 Pn (5)

It would only be natural to interpret the order in which processes appear, indexed byi, as
a form of prioritization. Other interpretations of the term remain possible but surely this one
is useful for describing the behaviour (desired or actual) of reactive systems.

256 I. East / Towards a Semantics for Prioritised Alternation

Following interruption, no process resumes, and only the last of the given list may ter-
minate. In practice, we usually wish no response to any interruption to disappear after com-
pletion. The solution is to allow any such process to becyclic about interruption but also
require it to be non–re-entrant. ThusP2 starts with interruption ofP1. Instead of a single
switching event, the new operator adds a dedicated event for each clause, marking thecom-
pletion of a response. Upon completion,P1 resumes, whileP2 awaits further interruption.
Such behaviour might be denoted by a new operator ‘←↩’ with which to compose processes.

Π = ((P1 ←↩ P2)←↩ P3) . . . Pn (6)

A serial operator, concisely denoting a list of alternating processes, could also be defined,
subject to an enumerating index.

A number of semantic issues surround prioritised alternation. For example, when process
P2 interruptsP1, one must consider the possibility thatP1 is blocked awaiting synchronization
with the environment.P1 may also comprise multiple concurrent processes, each of which
may be blocked. Upon interruption, all offers of communication must be withdrawn, pending
completion of the response, whereupon they are re-established.

2.4 The Honeysucklewhen Construct

The Honeysuckle programming language [1] introduces a dedicated prioritized alternation
construct –when. For example:

when
transfer draft to publisher

... celebrate
acquire draft from editor

... check
idle

sleep

Each guard initiates a service. At least two clauses must be given and are listed in order
of priority. The lowest priority clause may employ the symbolidle to indicate that it is un-
guarded. No clause is re-entrant. Part of each response may be to disable further interruption
by either the same, or any other, event. Note that an alternation does not terminate untilall
interruption is disabled.

The order in which clauses may appear is constrained by an explicit process interface
in Honeysuckle. A guard may be compounded by selection, allowing interruption by any
member of a designated set of services, known as abunch(see next section). This is supported
by admitting a selection construct in place of a single guard.

Clauses may share memory, which should immediately raise concern regarding the pos-
sibility of interference. Each visible object (variable) may be assigned value within at most
one clause (component), which is said toown it. One form of interference, commonly cited
in textbooks on concurrency, is where interruption of (read or write) access leads to an out-
come (final state) different to that given no interruption. Honeysuckle might protect against
this by disabling interruption during every access. Assignment would be atomic, as is any
procedure encapsulated within an object. (Shared objects may then be modelled usingCSP.
See Section 4.) The price paid for such security is in the form of extended latency when large
objects are shared. Achieving security and adequate performance is then the responsibility
of the designer, who must understand the issue, as indeed existing practitioners must, when
usingPVI explicitly.

I. East / Towards a Semantics for Prioritised Alternation 257

Interference can only be defined with regard to the intended function of each component,
specified, for example, by pre- and post-assertions. Interference-freedom between concur-
rent processes requires that every interleaving thereof yields precisely the same outcome. It
remains a serious general issue in programming concurrency. (Because processes can model
variables, distributing memory doesnot automatically confer a solution [8].)

Components of an alternation arenot concurrent. Indeed, the interleaving that actually
occurshas meaningand may thus legitimately affect outcome. It remains to prove that each
interleaving has only the desired outcome. This is not a simple issue, nor one which currently
knows a solution. Increasing atomicity according to granularity (disabling interruption longer
when accessing larger objects) does not confer a complete solution for an alternation [8,
#1.6]. It is not difficult to contrive an example where an interruption between two related
accesses interferes with the outcome.

All that is claimed here is that the situation is no worse than it would be using pre-emptive
scheduling (e.g.PRI PAR in occam) to address the same problem.

3 Regarding the Semantics of Prioritised Alternation

Viewed from the outside, an alternation consists of an enumerated list of serverbunches. (A
‘server’ is the providing end of a service,i.e. a connection, not a process. A “server bunch”
refers to a set of servers providing mutually exclusive services.) For the sake of simplicity,
we shall consider only cases where there is just a single server per bunch.

Termination will be addressed in the next section and only briefly discussed here.

3.1 Alphabet

Rather like a parallel composition, the alphabet of an alternation is the union of that of its
components:

α(P1 ←↩ P2) = αP1 ∪ αP2 (7)

On the other hand, component alphabets are disjoint. In an alternation, components do
not communicate directly. While interleaving common events might be useful, we choose
here the simpler option.

αP1 ∩ αP2 = ∅ (8)

Each componentPi is characterised by its guardsgj
i, and acompletioneventhi which

marks the resumption of any interrupted process. The initial event set of the alternation is
just the union of the initials of both components:

initials(Pi ←↩ Pj) = initials(Pi) ∪ initials(Pj) (9)

Completion cannot force actual resumption, compelling the interrupted process to engage
in its next event. There is no sense ofurgencyin our definition. Completion merely denotes
the granting ofpermissionto proceed. If further interruption occurs before it resumes then,
well, it had the chance. As Hoare noted [5, p. 80], any requirement to take advantage of
opportunity, and not be “infinitely overtaken”, must be met in implementation, which in
practice should not be difficult.

On the other hand, in practice, wedo require that the operator guarantees acceptance of
any offer of a guard by the environment, and according to the defined prioritization. Without
introducing timing, we cannot however stipulate the delay. That must also be a matter for
implementation.

258 I. East / Towards a Semantics for Prioritised Alternation

It may be that the lowest priority process is required to run continuously without awaiting
any particular event. In other words, it may be unguarded. This is identified with anull guard.
occam employedskipas a null guard in analt (alternative) construction. However,skip is
aprocess, not an event – a distinction which proves necessary in a consistent algebra. Rather
than introduce a null event, we shall simply allow a component to be unguarded. This is
the interpretation place upon the notationidle, used in Honeysuckle. There seems no reason
to restrict this possibility to the component with lower priority. One law is suggested as a
direct consequence, at least in the traces domain. If the interrupting process is unguarded and
non-terminating, an alternation is indistinguishable from that process alone:

initials(P2) = {τ} ∧ X /∈ αP2 ⇒ (P1 ←↩ P2) = P2 (10)

P2 may only engage in internal events and not communicate with the environment. Note
that much depends upon whether or not a component terminates. It is often easier to under-
stand alternation with cyclic, non-terminating, components.

3.2 Traces

Once again, an alternation may be compared with parallel composition. Every trace of each
component is also a trace of the alternation. To these must be added those formed as a result
of interruption:

traces(P1 ←↩ P2) = traces(P1) ∪ traces(P2) ∪
{s = p a u a q | u ∈ traces(P2)), h ∈ | u |, p a q ∈ traces(P1)} ∪ (11)

{s = p a u a q a v a r | u, v ∈ traces(P2), h ∈ | u |, h ∈ | v |,
p a q a r ∈ traces(P1)} ∪

. . .

Note that we take care to ensure that any interruption is followed by a completed re-
sponse. Afterg2, no further progress byP1 is allowed until completionh2. There can be no
interleaving.

3.3 An Axiom

It is useful here to define a Boolean operator to infer event precedence. We shall denote “x
precedesy in traces” by x

s
; y1, so that:

x
s

; y ⇐⇒ 1 > | s ↓ x− s ↓ y | > 0 (12)

assuming bothx andy occur just once within any cycle – a condition fulfilled by both guard
and completion of any clause. Note that the condition remains appropriate even if the clause
concerned is not cyclic, and simply terminates.

A prioritised alternation may be understood as something which guarantees completion
of a higher priority service before one of lower priority. To be more precise:

Condition 1. If a higher priority event precedes the completion of a response to one of lower
priority then the completion of its own response does also:

∀ s∈ traces(P1 ←↩ P2). g2
s

; h1 =⇒ h2
s

; h1 (13)

1Not to be confused with use of the same symbol by Schneider to denote anevolution— a state transition
over time [9, p. 270].

I. East / Towards a Semantics for Prioritised Alternation 259

3.4 Prioritisation

Equation 13 is still not quite enough to guarantee the desired behaviour. Suppose the environ-
ment offers interruption simultaneously with the next communication of the current process.
Having deprived it of the liberty to interleave high and low priority responses (Eq. 11), we
must somehow compel interruption:

Condition 2. If a higher priority guard is ever offered then it will be immediately accepted.

Unfortunately, neither traces nor failures provide an adequate domain in which to express
this precisely. Proof of some of the laws suggested in the next section would also require an
adequate domain. Both are left for future publication. However, a brief review follows of the
issue and existing literature on the issue.

Any “denotational semantics” rests on establishing a meaning for operators such as equiv-
alence (‘=’). Deciding equivalence, for example, reduces to establishing whether or not two
processes share a common value for some function (or set of functions) of their description.
One possible attribute of a processP is the set of traces,traces(P). If another processQ
shares a common set of traces withP we can say thatP = Q “in the trace domain”.

Two processes might exhibit identical trace sets but may behave quite differently under
the same circumstances. It would be valuable to know what a process will do when presented
with a set of offers of communication by its environment. Anacceptance setcircumscribes
those events in which process would agree to engage, following a particular trace. Its com-
plement, therefusal set, may be combined with the trace to form afailure. A set of failures
may then be attributed to the process concerned (which subsumes a description of its traces).
Equivalence in the failure domain tells a great deal more than one in the domain of traces,
and allows many more deductions.

At this point, it is worth considering how a process is defined. It is usual to establish
a list of conditions. (For example, see [5, #3.9].) When defining a language by which one
can express process composition, it is essential to include a demonstration that all constituent
operators arewell–defined. By this we mean that each process produced by each operator
itself obeys the same conditions. Furthermore, in order to employ recursion, one must show
that each operator iscontinuousover some complete partial order (CPO). One process may
then be said torefineanother.

Failures still tell us nothing of processpreference. If the environment offers two com-
munications, it is possible to assert only that a process is ‘willing’ to engage in just one or
either. In the latter case, the semantics of general choice reduces to that of a non-deterministic
internal choice. It is not possible to describe a process that would repeatablypreferone ac-
tion over another. Neither is it then possible to decide, say, equivalence in this sense. Some
process attribute is needed that would always expose such preference. Only then could the
precise meaning of anybiased, or asymmetric, operator on processes be defined.

Over a decade ago, Colin Fidge took an approach similar to the use of refusal sets to
discriminate between responses to the environment a process might make following each
trace. He established an attributepreferences(P) that described a relation between each
pair of events in the process alphabet [10]. Technically, each attribute is a function of the
process description. In this case, it returns a set of ordered pairs. For example,a → b ∈
preferences(P) implies that, should botha andb be offered by the environment, the process
will acceptb.

Fidge goes as far as defining a set of operators in terms of traces and preferences. How-
ever, as far as the author is aware, he did not show they were either well-defined or continu-
ous. Hence, their semantics remain undefined.

At around the same time as Fidge, Gavin Lowe also provided a semantics for prioriti-
sation. However, its relation totimed CSP makes it more complicated and less relevant to

260 I. East / Towards a Semantics for Prioritised Alternation

the subject discussed here. In Lowe’s model, a process offers a set of bags of events at
each time-step. Like Fidge, a relation (a set of ordered pairs) is used to describe preference
(bias). He shows that the language thus formed is entirely deterministic after the removal of
non-deterministic choice and then proceeds to develop a probabalistic model on top of the
prioritised one.

More recently, Adrian Lawrence has developed an alternative approach whereby bias
may be expressed via the ‘response’ of a processY to an offerX made by the environment
following a traces [11]. A domain of triples {(s, X, Y)} is thus established [12]. Each
response defines what a process is willing to do in a particular circumstance. It may be
simply to terminate (Y = X) or even to do nothing at all (Y = { }).

Lawrence is thus able to distinguish ‘soft’ and ‘hard’ priority. In the former case, some
means of arbitration is found when priorities conflict. Hard priority may result in deadlock.
This contrasts with the approach taken here, where the means is sought to eliminate the
possibility of priority conflict [4]. It may be argued to be at least risky to contrive a language
where any such conflict may be directly expressed – a liberty surely better denied. However,
a form of “prioritised interleaving” can be formulated that would seem to yield the same
behaviour as prioritised alternation, though it is arguably much less transparent.

Overall, much progress has been made to introduce a semantic domain in which prioriti-
sation can be defined, but it remains to achieve academic consensus. An appropriate operator,
or set of operators, is a secondary issue, of greater concern here, where a single operator is
preferred that abstracts prioritisation uniquely as interruptibility.

3.5 Laws

The following laws are suggested but not proven over any domain.

3.5.1 Unit and Zero

There appears to be no zero of of an alternation.Stop, however, suggests a unit:

P←↩ Stop = Stop←↩ P = P (14)

The first equality is self-evident. The second is valid only if we disregard termination, and
thus whether an alternation may be regarded as a sequential process (i. e. can be composed
via the ’;’ operator). To the outside observer, behaviour will otherwise be identical.

Skipalso suggests a unit, but again we must be mindful of termination:

P←↩ Skip = P

The reverse,Skip←↩ P, requires clarification. A definition must be sought so that the
alternation itself either terminates or continues asP. The latter would be simpler and arguably
would more commonly correspond with intuition and requirements. It should hold even when
P itself terminates and thus affords termination of the alternation also.

P←↩ Skip = Skip←↩ P = P (15)

Any law should hold over the entire process domain. Equation 15 seems to do this.
Equation 14 clearly does not, and therefore lacks the status of law.

I. East / Towards a Semantics for Prioritised Alternation 261

3.5.2 Association and Commutation

Alternation would seem associative:

(P1 ←↩ P2)←↩ P3 = P1 ←↩ (P2 ←↩ P3) (16)

but not generally commutative:

(P1 = Skip) ∨ (P2 = Skip) ⇐⇒ P1 ←↩ P2 = P2 ←↩ P1 (17)

3.5.3 Distribution

Neither sequential nor parallel composition distribute through an alternation. Though it might
be appealing to suggest:

P←↩ (Q; R) = (P←↩ Q); (P←↩ R)

Equation 15 quickly denies it. (ConsiderP = Q = Skip.) Clearly, an alternation does not
distribute through parallel or sequence either.

Theafter operator (/s) is expected to distribute through an alternation, exactly as it does
a parallel composition:

(P1 ←↩ P2) /s = (P1/(s ¹ αP1))←↩ (P2/(s ¹ αP2)) (18)

3.6 Specification

The axiomatic specification of a particular alternation looks very much like that of a parallel
composition [5, p.90]:

∀ r ∈ traces(P1), ∀ s∈ traces(P2). P1 sat C1(r) ∧ P2 sat C2(s) ⇒
∀ t ∈ traces(P1 ←↩ P2). (P1 ←↩ P2) sat (C1(t ¹ αP1) ∧ C2(t ¹ αP2)) (19)

Many reactive systems may be specified by requiring pre-emptive responses to occur to
certain events (guards) according to a given prioritisation. Response latency can arguably be
computed by the compiler, given adequate information regarding the platform, affording the
satisfaction of certain timed requirements.

4 Termination

It becomes apparent early, as in Equation 10, that an alternation can be understood differently
according to whether or not components are capable of terminating. IfP is non-terminating
(not a sequential process), Equation 14 is correct as it stands, at least with regard to traces
observed, but not otherwise. Such equivalence might well be useful in some applications.

It may be worthwhile to consider an alternation at distinct epochs, according to whether
each component is cyclic or terminating. According to Equation 15, once a component ter-
minates, its clause may be considered deleted, and a new epoch begins.

This is precisely how a prioritised vectored interrupt system is commonly regarded. A
response to some event may be todisablefurther response to the same event, some other
event, or evenall events. As noted in the earlier summary, the Honeysucklewhen construct
allows for this, and will terminate only when all interruption is disabled.

262 I. East / Towards a Semantics for Prioritised Alternation

On considering how this may be modelled inCSP, one qualification regarding completion
is first necessary. When an interrupting process terminates it must first have completed its
response, allowing the interrupted process to resume. Completion cannot follow termination;
clearly, nothing can. Termination must follow completion.

Component termination obviously requires an assurance that the environment will never
again offer the corresponding guard. An interface must therefore convey information regard-
ing when any given service becomes available and ceases to be available. The design of
Honeysuckle will address this.

A disablecommand might be implemented via a shared variable, which inCSP can be
regarded as a processDi composed in parallel with an alternation:

Di = send.di → receive.di (20)

One such process is required for each componentPi of an alternation.
A when clause might then be expressed generically (in normal form):

Pi = ((gi → Ri); Pi) 2 (receive.di → Skip) (21)

One possibility is that a response includes disabling of further interruption, in which case
Ri communicatessend.di. After completion (the final event ofRi), Pi should terminate. Here,
again we appear to face the need for bias. It is desirable that, should both initial events,
gi and receive.di, be offered, that the latter is always chosen. However, this circumstance
should never arise. It would expose a design flaw that could (should?) lead to deadlock. A
component of an alternation should never be disabled when another occurrence of its guard
event might occur.

Some applications might call for more than one component to have the capacity to disable
a peer. Later attempts to disable an already disabled component could be accommodated via
a slightly more complicated “shared variable” process. However, its recursion must then be
terminated somehow. Alternatively, the ability to disable each component might be limited to
the same or just one other and required to occur just once. This would be statically verifiable
but may narrow the application domain. Because it represents the simpler path, this will be
the rule forwhen in Honeysuckle.

It has always been the intention to explicitly share variables between components of
when, as discussed earlier in Section 2.4. These might be modelled in a similar manner.
Further work is needed here with regard to interference.

5 Conclusion

While the semantics of both prioritised alternation (←↩) and thewhen programming construct
remain incomplete, some progress has been made. An axiom has been proposed, along
with various laws that characterize behaviour. Some key issues have been explored, such
as the behaviour desired when components terminate and how termination might be brought
about. Further work is needed with regard to interference and communication within awhen
construct.

Prioritisation in alternation has been shown to reduce to the same issue as with other
‘asymmetric’ operators, such as biased choice. An appropriate semantic domain still needs
to gain consensus, though strong candidates exist. Further work is needed in order to se-
cure a complete semantics of both operator and programming construct. Once that has been
achieved, proof can then be sought of freedom from both deadlock and priority conflict in
systems withprioritised service architecture.

I. East / Towards a Semantics for Prioritised Alternation 263

It is hoped soon to complete the definition of the Honeysuckle programming language,
and implement a compiler. A demonstration of the complete methodology will then become
possible.

Acknowledgements

I am very grateful for a number of conversations with Mark Green, Jeremy Martin, and
Adrian Lawrence with regard to this work.

References

[1] Ian R. East. The Honeysuckle programming language: An overview.IEE Software, 150(2):95–107, 2003.

[2] Per Brinch Hansen.Operating System Principles. Automatic Computation. Prentice Hall, 1973.

[3] Jeremy M. R. Martin.The Design and Construction of Deadlock-Free Concurrent Systems. PhD thesis,
University of Buckingham, Hunter Street, Buckingham, MK18 1EG, UK, 1996.

[4] Ian R. East. Prioritised service architecture. In East and Martin et al., editors,Communicating Process
Architectures 2004, Series in Concurrent Systems Engineering, pages 55–69. IOS Press, 2004.

[5] C. A. R. Hoare.Communicating Sequential Processes. Series in Computer Science. Prentice Hall Inter-
national, 1985.

[6] Ian R. East. Programming prioritized alternation. In H. R. Arabnia, editor,Parallel and Distributed
Processing: Techniques and Applications 2002, pages 531–537, Las Vegas, Nevada, USA, 2002. CSREA
Press.

[7] A. W. Roscoe. The Theory and Practice of Concurrency. Series in Computer Science. Prentice-Hall,
1998.

[8] C. B. Jones. Wanted: A compositional model for concurrency. In Annabelle McIver and Carroll Morgan,
editors,Programming Methodology, Monographs in Computer Science, pages 1–15. Springer-Verlag,
2003.

[9] Steve Schneider.Concurrent and Real-Time Systems: The CSP Approach. Wiley, 2000.

[10] Colin J. Fidge. A formal definition of priority in CSP.ACM Transactions on Programming Languages
and Systems, 15(4):681–705, 1993.

[11] Adrian E. Lawrence. Hard and soft priority in CSP. In Barry Cook, editor,Architectures, Languages
and Techniques for Concurrent Systems, Series in Concurrent Systems Engineering, pages 169–195. IOS
Press, 1999.

[12] Adrian E. Lawrence. Triples. In East and Martin et al., editors,Proceedings of Communicating Process
Architectures 2004, Series in Concurrent Systems Engineering, pages 157–184. IOS Press, 2004.

