
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

265

A Calculated Implementation of a Control System

Alistair A. McEWAN
Computing Laboratory, University of Kent at Canterbury, UK

Abstract. In this paper, a case study consisting of a plant, and associated control
laws, is presented. An abstract specification of the control system is given in Hoare’s
Communicating Sequential Processes (CSP). Via a series of calculated refinements, an
implementation is developed, and translated into a simulation in a Java-based library
for CSP, JCSP. Verification of the development process is performed using the model-
checker for CSP, FDR. The result is a complete, verified implementation of the control
system.

“Control (n): The apparatus by means of which a machine, as an aeroplane or motor vehicle, is
controlled during operation; also, any of the mechanisms of a control apparatus, or collectively
for the complete apparatus. ”Oxford English Dictionary, 2nd edition

1 Introduction

In this paper, a case study consisting of a plant, and control laws, is investigated. An exe-
cutable simulation of the control system is developed via a full, verified, top down procedure
from an existing abstract specification. Proof obligations are discharged using FDR. The
case study in question is a steam boiler—a device which accepts water input from a set of
pumps, boils the water, and allows steam to escape through sets of valves. The boiler can
be seen as analogous to, for instance, a cooling system in a nuclear reactor. An instantiation
of the abstract control system is developed, and its correctness verified. This instantiation is
then transformed into an executable refinement, and from this, a simulation is produced by
translating this model into a Java-based library for CSP, JCSP.

Development of the new device is done in a top-down manner. The existing abstract
specification of the device is refined in several stages into models where the implementation
is exposed gradually. It is our belief that, by taking an abstract specification, and using a
calculational approach to refining it into a concrete model, a high level of confidence can be
achieved in the correctness of the implementation. The contribution of this paper, therefore,
can be summarised as a demonstration of a full top-down development technique, from a
high level specification to a dependable, verified, executable program.

The paper begins by presenting some relevant background material, including the case
study in question. This is followed by a detailed description of the control laws in section 2.
In section 3, a refinement of this model is produced, involving concrete instantiations of the
processes necessary to implement the laws, and is further refined into an executable model
in section 4. The executable model is translated into JCSP in section 5, resulting in a verified
implementation of the abstract model. Some conclusions are drawn in section 6.

1.1 CSP and FDR

The process algebra Communicating Sequential Processes (CSP)[3, 11] is a mathematical
approach to the study of concurrency and communication. It is suited to the specification,

266 A.A. McEwan / A Calculated Implementation of a Control System

design, and implementation of systems that continuously act and interact with their environ-
ment. CSP is a state-based approach to modelling, where systems are characterised by the
events in which they are willing to participate in their lifetime. The collection and inter-
action of these events form processes, which can be combined using the operators of CSP,
to describe more complex systems.Failures Divergences Refinement(FDR) [4] is a tool
for model-checking networks of CSP processes, checking the containment of processes, and
allowing the proving or refuting of assertions about those processes.

1.2 Multi-way Synchronisations

The termmulti-way synchronisationrefers to the situation where three or more processes
simultaneously engage in a common event. In CSP, this situation arises from synchronising
processes in a network on a single event, and can be used, for instance, as a technique for
composing different units of a specification [7], even thought the designer may never intend
to implement the specification in this manner. Another use is for modelling common events
in a system: for instance a system clock [13], or a quiescent, stable system state [12, 14].
Concurrent programming languages such asHandel-C[2] andoccam[5] support one-to-one
communication between processes: only two processes may read to, or write from, a chan-
nel. There is no direct support for implementing multi-way synchronisations. To produce
executable code multi-way synchronisations must be replaced with constructs supported by
these languages; and a family of protocols allowing this is presented in [6].

1.3 JCSP

JCSP[9, 10] is a Java class library providing a CSP-style interface to concurrent Java pro-
gramming. A JCSP program consists of a network of communicating, independent processes,
interacting with each other via synchronous channel communications. Although JCSP offers
several constructs that do not have a direct, one-to-one correspondence with CSP primitives,
the code developed in this case study utilises only those that do.

The JCSP model of concurrent programming corresponds to that ofoccam: processes
interact via synchronous channel communication. The same communication constraints that
are expected of aHandel-Cor occam program exist: channel communications are one-to-
one, and a process may not have an output on a channel as a possibility in a guard. Simple
synchronisations do not exist—as inHandel-Candoccam, these are implemented by passing
arbitrary values across typed channels. Several extensions to classicaloccam exist: for
instance, processes can be created and destroyed dynamically; and object-oriented concepts
such as inheritance are commonly exploited in a JCSP program.

1.4 The Steam Boiler

The steam boiler case study is formally presented in [1], and is an example of a class of
system where control in the presence of non-manifest failures is a fundamental issue. The
boiler itself consists of a tank of water, a set of pumps that supply water to the tank, a valve
allowing steam to escape, an emergency outlet, and sensors reporting the water level in the
tank (table 1).

Pumps can be either open or closed—an open pump supplies water to the boiler. Four
water levels are pre-defined: levelsN1 andN2 depict the minimum and maximum normal,
safe, operating levels respectively; whileM1 and M2 represent minimum and maximum
critical levels. If there is too much water in the boiler, the emergency overflow may be
opened; and if pressure is too great, the steam outlet may be opened. Figure 1 shows a boiler

A.A. McEwan / A Calculated Implementation of a Control System 267

M2

N2

N1

M1
Pump 2

Pump 1

Steam outlet

Emergency overflow

Water level

Figure 1: The steam boiler

Sense Meaning

LtM1 Water level critically low
LtN1 Water level dropped below safe level

BetweenN1N2 Water level is between normal operating parameters
GtN2 Water level above safe level
GtM2 Water level critically high

Table 1: Senses in the system

state in which the water level lies betweenN1 andN2, the steam outlet is open, the overflow
is closed, and one pump is open and the other closed.

Definition 1.1 Basic control system requirements

• If the water level falls below N1, open closed pumps;

• If the water level rises above N2, close open pumps.

It is the job of the control system to ensure that the quantity of water in the boiler remains at
a safe level, summarised by definition 1.1. In the full model of the boiler, the control system
may shut down the boiler if the water level becomes critical. Additionally, failures may occur
non-deterministically in any of the components, and these failures must be mitigated. In this
paper, only the normal operating mode is considered. Laws for initialisation, shut down, and
failure mitigation exist, but as the derivation technique for their implementation is identical,
they are not considered in this paper.

In [8], an inference engineis presented, which takes this set of rules, and instantiates a
control system. The model of the inference engine uses an idiom that relies on concurrency
and synchronisation, but not on data flow. For this reason, it is highly suitable to imple-
mentation inHandel-Con an FPGA, as concurrency can be exploited without the additional

268 A.A. McEwan / A Calculated Implementation of a Control System

rule0 =̂ Normal∧ Level.LtN1 ∧ ClosePump.Pump1⇒ Disable.ClosePump.Pump1
rule1 =̂ Normal∧ Level.LtN1 ∧ ClosePump.Pump2⇒ Disable.ClosePump.Pump2
rule2 =̂ Normal∧ Level.GtN2 ∧ OpenPump.Pump1⇒ Disable.OpenPump.Pump1
rule3 =̂ Normal∧ Level.GtN2 ∧ OpenPump.Pump2⇒ Disable.OpenPump.Pump2

Table 2: Assertion disablers

overhead of complex abstract data types being implemented directly into hardware. Each rule
is declared as a CSP channel; and processes monitoring senses, inferring facts, and effecting
actuates by synchronising on these channels are declared. These processes are given in the
following sections.

2 The Control System

The control laws governing operation of the steam boiler are represented as a set of rules. In
normal operating mode, rules can be divided into two distinct categories: those that react to
senses, and those that infer facts about the plant—some of which are actuates to be performed
on the plant. Rules are expressed as implications: the hypothesis of a rule is the conjunction
of a set of facts which imply the conclusion—when all the facts in the hypothesis have been
asserted, the conclusion can be inferred. All the rules used in this paper are taken from [8].

Definition 2.1 The structure of a rule

hypothesiŝ= fact1 ∧ fact2 ∧ ... ∧ factn

rule =̂ hypothesis⇒ conclusion

2.1 Assertion Disablers

An assertion disableris a rule that prevents the control system from inferring facts that are
incorrect, or from repeatedly asserting a known fact. The complete set of assertion disablers
for normal, unfailed operating mode is given in table 2. In, for instance,rule0, if the boiler is
in Normaloperating mode, and the level is belowN1 andPump1 is closed, then it is inferred
that the ability to closePump1 should be disabled.

In the case of a process monitoring a sense, when that sense is detected, the process
attempts to synchronise on the channels corresponding to rules containing that sense in the
hypothesis. This is shown in figure 2. This process monitors the occurrence of sensex; and
when detected, it offers to synchronise on two different channels.

The CSP model of this is given in definition 2.2. The processYetToSenseis initially
willing to either engage in atock—an event that delimits units of time in the boiler, after
which it returns to its initial state. Alternatively, it may engage in a specific sense. If the
sense occurs, subsequent behaviour is the processSensed.

A.A. McEwan / A Calculated Implementation of a Control System 269

Process

x and y => a

x and z => b

x

tock

YetToSense(x)

Figure 2: A sense process

Definition 2.2 YetToSense and Sensed

YetToSense(i) =̂
i → Sensed(i)
2

tock→ YetToSense(i)

Sensed(i) =̂
let

use i to infer =̂ {(A, b) | (A, b)← deductions∪ ddeductions, i ∈ A)}
within

2(H, c) : use i to infer • infer.(H, c)→ Sensed(i)
2

tock→ YetToSense(i)

The setuse i to infer in the processSensedconsists of all of the rules in the system where
the sense eventi appears in the hypothesis. Initially, this process is willing to synchronise on
all of the channels corresponding to rules in this set. Alternatively, the time-slice may end
with a tockevent, and subsequent behaviour is the processYetToSense. The consequence of
this is that the sense is no longer current and it is forgotten that it had been received—none
of the rules requiring its assertion in the hypothesis are enabled.

2.2 Inference Assertions

Complementary to the assertion disablers are the rules for inferring assertions, given in table
3. In, for instance,rule4, if it asserted that closingPump1 has been disabled, andPump1
is closed, then it can be inferred thatPump1 should be opened. In this way, it can be seen
how these rules are complementary:rule0 asserted, that when the water level is critically low,
closing the pump should be disabled; andrule4 asserted that if the pump were closed, and
the ability to close the pump were disabled, then it should be opened—the fact that this is
because of the water level dropping is left implicit.

The CSP model of this is given in definition 2.3. The seti inferred from corresponds
to all the rules concluding the facti, and initially, the process is willing to synchronise on
any of the channels corresponding to these rules. Should one such synchronisation occur,
then it must be the case that all processes attempting to assert a fact in the hypothesis of that
rule have been successful. If its consequent is an actuation event, this can be performed, and
subsequent behaviour is the processInferred.

270 A.A. McEwan / A Calculated Implementation of a Control System

y and z => a

w and x => a
Process

a

a and b => d

a and c => eYetToInfer(a)

Figure 3: Inferring a fact from two possible hypothesis

rule4 =̂ Disable.ClosePump.Pump1 ∧ ClosePump.Pump1⇒ OpenPump.Pump1
rule5 =̂ Disable.ClosePump.Pump2 ∧ ClosePump.Pump2⇒ OpenPump.Pump2
rule6 =̂ Disable.OpenPump.Pump1 ∧ OpenPump.Pump1⇒ ClosePump.Pump1
rule7 =̂ Disable.OpenPump.Pump2 ∧ OpenPump.Pump2⇒ ClosePump.Pump2

Table 3: Performing actuates

Definition 2.3 YetToInfer

YetToInfer(i) =̂
let

i inferred from = {(A, b) | (A, b)← deductions∪ ddeductions, b = i}
within

2(H, c) : i inferred from • infer.(H, c)→ (
i ∈ Actuate& c→ Inferred(i)
2

i /∈ Actuate& Inferred(i)
)

Inferred(i) =̂
let

Applicable=̂ {(A, b) | (A, b)← deductions, i ∈ A}
Forget =̂ {(A, b) | (A, b)← ddeductions, i ∈ A}

within
2(H, c) : Applicable• infer.(H, c)→ Inferred(i)
2

2(H, c) : Forget• infer.(H, c)→ YetToInfer(i)

In the processInferred, the setApplicablecomprises all of the assertion disablers where the
eventi appears in the hypothesis. Similarly, the setForgetconsists of all the inference asser-
tions where the eventi appears in the hypothesis. Initially,Inferred is willing to synchronise
on any channel in these sets. Should a synchronisation drawn fromForgetoccur, the process
returns to a state where it needs to assert the hypothesis once more.

The complete control system is the instantiation of these processes, synchronising on the
channels corresponding to rules. By constructing the system in this way there is no explicit
data flow in the system: processes do not contain any data structures recording system state.
Knowledge is implicitly held in the overall state of the system.

A.A. McEwan / A Calculated Implementation of a Control System 271

Sense(x)

x

Sense(y)

y

tock
x and y => a
x and y => a

Infer(a)

a

y and z => c

x and z => b

a and r => s

a and p => q

Figure 4: Connecting senses and inference

rule0 =̂ Level.LtN1 ∧ ClosePump.Pump1⇒ Disable.ClosePump.Pump1
rule1 =̂ Level.LtN1 ∧ ClosePump.Pump2⇒ Disable.ClosePump.Pump2
rule2 =̂ Level.GtN2 ∧ OpenPump.Pump1⇒ Disable.OpenPump.Pump1
rule3 =̂ Level.GtN2 ∧ OpenPump.Pump2⇒ Disable.OpenPump.Pump2

Table 4: Simplified assertion disablers

3 Calculating Process Instantiations

In this section, the network of processes corresponding to the concrete instantiation of the
inference engine is given. In doing so, several possible observations and optimisations are
made, and operators used in the abstract description, but not available in the target program-
ming environment, are removed.

3.1 Sense Dependencies

In the previous section, it was stated that only the rules for normal operating mode were
being considered. Therefore, by propositional logic, a simpler set of assertion disablers may
be used (table 4). Consequently, a process attempting to establishNormal is redundant,
thereby reducing the costs of implementation.

Five instantiations of the processYetToSenseare required, drawn from table 1. A static
analysis of the rules reveals the setuse i to infer in each; the results are given in table 5—
only LtN1 andGtN2 have consequences. Two parameterised versions of this process can
be specified to reflect this, given in definition 3.2 and definition 3.1. When there are no
consequents, the only possibility in the processSensedis that the clock ticks after the sense
has been received. In the case of two consequents, wither may fire. The complete network of
senses are these instantiations, all synchronising on clock ticks.

Sense use i to infer
LtM1 ∅
LtN1 rule0, rule1

BetweenN1N2 ∅
GtN2 rule2, rule3

GtM2 ∅

Table 5: Sense dependencies

272 A.A. McEwan / A Calculated Implementation of a Control System

Actuate fact i inferred from Applicable Forget
OpenPump.Pump1 rule4 rule6 rule2

OpenPump.Pump2 rule5 rule7 rule3

ClosePump.Pump1 rule6 rule4 rule0

ClosePump.Pump2 rule7 rule5 rule1

Non-actuate fact i inferred from Applicable Forget
Disable.OpenPump.Pump1 rule2 ∅ rule6

Disable.OpenPump.Pump2 rule3 ∅ rule7

Disable.ClosePump.Pump1 rule0 ∅ rule4

Disable.ClosePump.Pump2 rule1 ∅ rule5

Table 6: Inference dependencies

Definition 3.1 A sense with two consequents, A and B.

YetToSense(i, A, B) =̂
i → Sensed(i, A, B)
2

tock→ YetToSense(i, A, B)

Sensed(i, A, B) =̂
A→ Sensed(i, A, B)
2

B→ Sensed(i, A, B)
2

tock→ YetToSense(i, A, B)

Definition 3.2 A sense with no consequents

Sense′(i) =̂
i → tock→ Sense′(i)
2

tock→ Sense′(i)

3.2 Assertion Dependencies

A similar analysis can be performed for the eight facts involving assertion enablers (table
6). The first four facts correspond to actuates, the second four do not, meaning that two
different versions ofYetToInferare required. Furthermore, a static analysis of the rules reveals
that each of these facts appears precisely once in the hypothesis of the other rules—the set
i inferred fromcan be calculated for each process; the results of this calculation are given in
table 6 and the concrete, parameterised versions of the processes given in definition 3.3 and
definition 3.4 respectively.

Definition 3.3 An inference with an actuate

YetToInfer(i, A, B, C) =̂
A→ i → Inferred(i, A, B, C)

Inferred(i, A, B, C) =̂
B→ Inferred(i, A, B, C)
2

C→ YetToInfer(i, A, B, C)

A.A. McEwan / A Calculated Implementation of a Control System 273

Definition 3.4 An inference without an actuate

YetToInfer′(A, B) =̂
A→ B→ YetToInfer′(A, B)

Further analysis reveals that each actuate assertion has precisely one rule inApplicable, and
one inForget, while non-actuate assertions only have a single rule inForget (table 6).This
gives rise to two versions of the processYetToInfer. In definition 3.3, the process offers either
of the consequent rules, while in definition 3.4 there is no choice, and laws of CSP permit
this simpler representation.

Definition 3.5 The network of actuate assertions

ActuateAssertionŝ=
(YetToInfer(OpenPump.Pump1, rule4, rule2, rule6)
|[{|rule4, rule6|}]|
YetToInfer(ClosePump.Pump1, rule6, rule0, rule4))
|||
(YetToInfer(OpenPump.Pump2, rule5, rule3, rule7)
|[{|rule5, rule7|}]|
YetToInfer(ClosePump.Pump2, rule7, rule1, rule5))

Definition 3.6 The network of non-actuate assertions

NonActuateAssertionŝ=
(YetToInfer′(rule0, rule4) ||| YetToInfer′(rule1, rule5)
||| YetToInfer′(rule2, rule6) ||| YetToInfer′(rule3, rule7))

The system of assertion dependencies is given by the parallel composition of the processes in
each of definition 3.5 and definition 3.6, synchronising on the full set of rules. A full instan-
tiation of the control system is this resulting process, in parallel with the sense dependencies,
synchronising on the clock event and the set of rules. Rules are internal to the system, and
are then hidden. The resulting system of processes can be verified equivalent to the original
abstract model by model-checking using FDR.1

Theorem 3.1 The instantiation is equivalent to the abstract model in section 2.

Proof Model-check using FDR2

1This implementation assumes the boiler has initialised—establishing pumps are closed. Therefore this
fact must be established manually: processes parameterised byClosePump.Pump1 and ClosePump.Pump2
must be prefixed with their inferences firing: (rule0 → YetToInfer(ClosePump.Pump1, ...) and rule1 →
YetToInfer(ClosePump.Pump2, ...) respectively).

274 A.A. McEwan / A Calculated Implementation of a Control System

4 Implementing Rules as Multi-way Synchronisations

As discussed in the previous section, each rule is a implemented as a channel. Further in-
spection of the complete system reveals that, for each rule, there are three processes whose
agreement is required to enable any one given rule—this can be seen from table 5 and table
6. For instance, each of the processesYetToSense(GtN2), YetToInfer(OpenPump.Pump1, ...),
andYetToInfer′(Disable.OpenPump.Pump1, ...) all synchronise onrule2. Furthermore, the
clock ticking is a synchronisation between all of the sense processes and the boiler. To de-
rive an executable implementation, these multi-way synchronisations must be removed. A
straight application of the protocol presented in [6] is used to eliminate these multi-way syn-
chronisations.

The elimination involves introducing a controller process, and set of channels to imple-
ment each multi-way synchronisation. As each controller is independent, they are inter-
leaved. The protocol is applied to all of the processes developed in the previous section for
each rule. The correctness of this development step is assured through the verification of the
protocol in [6]; it is also possible, although unnecessary, to model check the resulting net-
work using FDR. The CSP produced as a result of applying the protocol is rather long, and
is included in appendix A.2

Theorem 4.1 Removing the multi-way synchronisations has produced an equivalent system.

Proof By the correctness of the multi-way synchronisation protocol.2

5 A JCSP Implementation

In this section, a description of the translation into an executable JCSP program is given.
This simulation is only a demonstration of the derivation to executable code: while every
step in the derivation to the executable model has been verified, the JCSP interface has not.
No claims are made, therefore, about the behaviour of the JCSP library. JCSP was chosen
to allow demonstrations of the results of this case study to be run on commodity personal
computer environments.

Each channel in the CSP is declared as a JCSP channel. Many channels in the CSP spec-
ification utilise a process index and the value to be communicated. In the executable code,
these indexes are statically determined by tagging the name of each process onto the channel
name. For instance, example 5.1 gives the JCSP declaration of the channels corresponding
to pumps in the original specification; all channels are declared in this manner.

Example 5.1 Declaring the pump channels

private static final int pumps = 2;
private static final int WIDTH = 2;
private One2OneChannelInt[][] open =

new One2OneChannelInt[pumps][WIDTH];
private One2OneChannelInt[][] close =

new One2OneChannelInt[pumps][WIDTH];

JCSP processes are classes that implement the library interfaceCSProcess . Each process
instantiation in the complete CSP system is declared to implement this interface. Local pri-
vate state, corresponding to the process parameters and the channels upon which that process

2For details of the protocol, the reader is referred to [6].

A.A. McEwan / A Calculated Implementation of a Control System 275

synchronises, are declared; and references to these passed to the object constructor. For in-
stance, definition 5.1 contains the definition of a JCSP process implementing a non-actuate
assertion disabler of definition 3.4. In this definition, local state corresponding to the channels
used in the multi-way synchronisation (and the processes index in the synchronisation) are
declared, and references to the global channels supplied on construction. From this example,
it can be seen that the translation from a CSP process definition to a JCSP process definition
is relatively straightforward, providing the specification has been refined to an executable
subset.

Definition 5.1 A process class for an inference without an actuate

public class NonActuateAssertion implements CSProcess {

ChannelOutputInt toA, toB;
ChannelInputInt fromA, fromB;
int a, b;
Fact fact;

public NonActuateAssertion (
ChannelOutputInt toA, ChannelInputInt fromA, int a,
ChannelOutputInt toB, ChannelInputInt fromB, int b,
Fact fact

) {
this.toA = toA; this.fromA = fromA; this.a = a;
... etc

}
}

Every process must implement the abstract methodrun , which is analogous to a main
method in a program, and specifies what the process does when it is given a thread of control.
In the run method for the non-actuate inference of definition 5.2, the process enters an infinite
loop, engaging in the multi-way synchronisation corresponding to establishing its fact, and
then the multi-way synchronisation corresponding to alerting other processes of the truth of
this fact.

Definition 5.2 The run method for an inference without an actuate

public void run () {
while (true) {

toA.write (a);
do {

fromA.read ();
toA.write (a);

} while (fromA.read () != 1);

toB.write (b);
do {

fromB.read ();
toB.write (b);

} while (fromB.read () != 1);

}
}

276 A.A. McEwan / A Calculated Implementation of a Control System

A full JCSP program consists of a network of processes, grouped together in an array struc-
ture allowing for their parallel instantiation and execution, along with the relevant global
declarations of common channels. Instruction as to how this is implemented is covered in
the documentation for JCSP, and is omitted from this paper for brevity. However, a complete
JCSP implementation of the steam boiler, the control system, and a graphical interface de-
picting the state of the system, has been developed and can be run on commodity personal
computers.

6 Summary

In this paper, a full, top down derivation of an executable program was calculated from an
abstract CSP specification. The result was a simulation of a control system, and associated
plant, in a Java library for CSP that compiled, and ran without apparent error, and without
need for an experiment/test cycle normally expected for a highly concurrent program.

Despite this notable success, there are several limitations. Firstly, the final stage of de-
velopment, in moving from CSP to JCSP, is largely an approximation. There was no direct
application of a refinement calculus to guide the translation from CSP to JCSP, so it cannot
be completely justified. However, the library offering implementations of the primitives used
has a clear one-to-one correspondence, so confidence can be earned from the simplicity of
the process.

Secondly, although the JCSP library claims to implement these primitives, the majority of
library itself has not been verified—therefore it cannot be guaranteed that the executable code
behaves precisely as the specification intended. For instance, a non-terminating, mutually
(infinitely) recursive pair of processes is a common appearance in CSP; but if translated
directly into JCSP, stack overflow errors occur, leading to programs crashing. Such an error
is not readily detectable by model-checking in FDR as it is a property of the implementation
of the target executable language that does not exist in the mathematical model. Areas such
as this need to be addressed if justified claims that the executable JCSP code was equivalent
to the abstract CSP specification are to be made.

Despite these limitations, the production of the simulation is a definite success. The inten-
tion was to demonstrate that techniques exist allowing for the accurate, calculated production
of executable concurrent code; and to produce a simple example of this which could be run
on commodity personal computers for demonstration purposes—and this has been achieved.
However, clearly, for the production of real control systems, applying the refinement calculus
to a verified subset of, for instance,Handel-Con an FPGA, is necessary.

Acknowledgements

The author wishes to thank QinetiQ Malvern and Bedford for their role in funding this work,
and Jim Woodcock and Peter Welch for extensive technical discussion and assistance.

References

[1] J. R. Abrial, E. Borger, and H. Laangmack, editors.Formal methods for industrial applications: specifying
and programming the steam boiler control, volume 1165 ofLNCS. Springer–Verlag, 1996.

[2] Celoxica. Handel-C reference manual. Technical report, Celoxica, 1999.

[3] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International Series in Computer
Science. Prentice-Hall, 1985.

[4] Formal Systems (Europe) Ltd. FDR: User manual and tutorial, version 2.28. Technical report, Formal
Systems (Europe) Ltd., 1999.

A.A. McEwan / A Calculated Implementation of a Control System 277

[5] INMOS Ltd. occam Programming manual. International Series In Computer Science. Prentice-Hall,
1984.

[6] Alistair A. McEwan. Concurrent Program Development. DPhil thesis, The University of Oxford, Sub-
mitted Trinity Term, 2004.

[7] Carroll Morgan and J. C. P Woodcock. What is a specification? In Dan Craigen and Karen Summerskill,
editors,Formal Methods for Trustworthy Computer Systems, Workshops in Computing, pages 38–43.
Springer-Verlag, 1989.

[8] Colin O’Halloran. Identifying critical requirements. Internal report of work in progress, Qinetiq, 2003.

[9] P.H.Welch. Process Oriented Design for Java: Concurrency for All. In H.R.Arabnia, editor,Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), volume 1, pages 51–57. CSREA, CSREA Press, June 2000.

[10] P.H.Welch, J.R.Aldous, and J.Foster. CSP networking for java (JCSP.net). In P.M.A.Sloot, C.J.K.Tan,
J.J.Dongarra, and A.G.Hoekstra, editors,Computational Science - ICCS 2002, volume 2330 ofLecture
Notes in Computer Science, pages 695–708. Springer-Verlag, April 2002.

[11] A. W. Roscoe.The theory and practice of concurrency. Prentice Hall Series in Computer Science. Prentice
Hall, 1998.

[12] J. C. P. Woodcock. Montigel’s Dwarf, a treatment of the Dwarf Signal problem using CSP/FDR. In
Proceedings of the 5th FMERail Workshop, Toulouse, France, 1999.

[13] J. C. P Woodcock and Alistair A. McEwan. An overview of the verification of aHandel-Cprogram.
In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and
Applications, volume V, page 3003. CSREA Press, 2000.

[14] J. C. P. Woodcock and Alistair A. McEwan. Verifying the safety of a railway signalling device. In
H. Ehrig, B. J. Kramer, and A. Ertas, editors,Proceedings of IDPT 2002, volume 1. The 6th Biennial
World Conference on Integrated Design and Process Technology, Society for Design and Process Science,
2002. Winner of the best paper award.

278 A.A. McEwan / A Calculated Implementation of a Control System

A Control system processes implementations

Auxiliary definitions

Definition A.1 Withdrawing from a synchronisation

Withdraw(to, from, i) =̂
(to!flip(i)→ SKIP)
|||
(from?invite→ invite & from?any→ SKIP2 ¬ invite & SKIP)

Definition A.2 A guaranteed synchronisation

GSync(to, from, i) =̂
to!i → GSync′

GSync′ =̂
from?any→

to!i → from?sync→
(sync& SKIP2 ¬ sync& GSync′)

Sense inferences

Definition A.3 Senses not in a hypothesis, with multi-way synchronisations removed

Sense′(to, from, i, s) =̂
to!i → Sense′′(to, from, i, s)

Sense′′(to, from, i, s) =̂
s→Withdraw(to, from, i);

GSync(to, from, i);
Sense′(to, from, i, s)

2

from?any→
to!i →

from?sync→
sync& Sense′(to, from, i, s)
2

¬ sync& Sense′′(to, from, i, s)

Definition A.4 Senses in a hypothesis, with multi-way synchronisations removed

Sense(to, from, i, toA, fromA, a, toB, fromB, b, s) =̂
to!i → Sense′(to, from, i, toA, fromA, a, toB, fromB, b, s)

Sense′(to, from, i, toA, fromA, a, toB, fromB, b, s) =̂
sense→Withdraw(to, from, i);

Sensed(to, from, i, toA, fromA, a, toB, fromB, b, s)
2

from?any→
to!i →

from?sync→
sync& Sense(to, from, i, toA, fromA, a, toB, fromB, b, s)
2

¬ sync& Sense′(to, from, i, toA, fromA, a, toB, fromB, b, s)

A.A. McEwan / A Calculated Implementation of a Control System 279

Sensed(to, from, i, toA, fromA, a, toB, fromB, b, s) =̂
(to!i → SKIP ||| toA!a→ SKIP ||| toB!b→ SKIP);

Sensed′(to, from, i, toA, fromA, a, toB, fromB, b, s)

Sensed′(to, from, i, toA, fromA, a, toB, fromB, b, s) =̂
from?any→

to!i →
from?sync→

sync& (Withdraw(toA, fromA, a) |||Withdraw(toB, fromB, b));
YetToSense(to, from, i, toA, fromA, a, toB, fromB, b, s)

2

¬ sync& Sensed′(to, from, i, toA, fromA, a, toB, fromB, b, s)
2

fromA?any→
toA!a→

fromA?sync→
sync& (Withdraw(to, from, i) |||Withdraw(toB, fromB, b));

Sensed(to, from, i, toA, fromA, a, toB, fromB, b, s)
2

¬ sync& Sensed′(to, from, i, toA, fromA, a, toB, fromB, b, s)
2

fromB?any→
toB!a→

fromB?sync→
sync& (Withdraw(to, from, i) |||Withdraw(toA, fromA, a));

Sensed(to, from, i, toA, fromA, a, toB, fromB, b, s)
2

¬ sync& Sensed′(to, from, i, toA, fromA, a, toB, fromB, b, s)

Assertion inferences

Definition A.5 An inference without an actuate, with multi-way synchronisations removed

YetToInfer′(toA, fromA, a, toB, fromB, b) =̂
GSync(toA, fromA, a);

GSync(toB, fromB, b);
YetToInfer′(toA, fromA, a, toB, fromB, b)

Definition A.6 An inference with an actuate, with multi-way synchronisations removed

YetToInfer(toA, fromA, a, toB, fromB, b, toC, fromC, c, i) =̂
GSync(toA, fromA, a);

i → Inferred(toA, fromA, a, toB, fromB, b, toC, fromC, c, i)

Inferred(toA, fromA, a, toB, fromB, b, toC, fromC, c, i) =̂
(toB!b→ SKIP ||| toC!c→ SKIP);

Inferred′(toA, fromA, a, toB, fromB, b, toC, fromC, c, i)

280 A.A. McEwan / A Calculated Implementation of a Control System

Inferred′(toA, fromA, a, toB, fromB, b, toC, fromC, c, i) =̂
fromB?any→

toB!a→
fromB?sync→

sync& Withdraw(toC, fromC, c);
Inferred(toA, fromA, a, toB, fromB, b, toC, fromC, c, i)

2

¬ sync&
Inferred′(toA, fromA, a, toB, fromB, b, toC, fromC, c, i)

2

fromC?any→
toC!a→

fromC?sync→
sync& Withdraw(toB, fromB, b);

YetToInfer(toA, fromA, a, toB, fromB, b, toC, fromC, c, i)
2

¬ sync& Inferred′(toA, fromA, a, toB, fromB, b, toC, fromC, c, i)

