
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

281

Refining Industrial Scale Systems in Circus

Marcel OLIVEIRA, Ana CAVALCANTI, and Jim WOODCOCK
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, England

Abstract. Circus is a new notation that may be used to specify both data and be-
haviour aspects of a system, and has an associated refinement calculus. Although a
few case studies are already available in the literature, the industrial fire control sys-
tem presented in this paper is, as far as we know, the largest case study on theCircus
refinement strategy. We describe the refinement and present some new laws that were
needed. Our case study makes extensive use of mutual recursion; a simplified notation
for specifying such systems and proving their refinements is proposed here.

1 Introduction

Circus (Concurrent Integrated Refinement CalculUS) [1, 2] characterises systems as pro-
cesses that combine constructs that describe data and control behaviour. The Z notation [3, 4]
is used to define most of the data aspects, and CSP [5] and Dijkstra’s guarded-command lan-
guage are used to define behaviour. The semantics ofCircus is based on unifying theories
of programming [6], a framework that unifies the science of programming across many dif-
ferent computational paradigms.Circus, unlike other combinations of data and behavioural
aspects, such as CCS-Z [7, 8], CSP-Z [9], and CSP-OZ [10], supports refinement in a calcu-
lational style similar to that presented in [11].

A refinement strategy forCircus is presented in [2], with the complete development of
a reactive buffer into a distributed implementation as an example. Refinement notions and
many refinement laws are also presented. In the current paper, we provide a more significant
case study on theCircus refinement calculus: a safety-critical fire protection system. As far
as we know, it is the largest case study on theCircus refinement calculus.

Throughout the development of our case study there were some problems; we present
the solutions for some of them in this paper. First, the set of laws presented in [2] was not
sufficient; we propose new refinement laws. For instance, we require some laws for inserting
and distributing assumptions, and a new process refinement law. In total, more than fifty new
laws have been identified during the development of our case study.

In [2], the refinement of mutual recursive actions is not considered; our case study, how-
ever, includes mutually recursive definitions. We present here a notation used to prove re-
finement of such systems; this results in more concise and modular proofs. The necessary
theorems that justify the notation have been proved in [12].

The main objective of this paper is to illustrate an application of the refinement strategy
in an existing industrial application [13]. We believe that, with the results in this paper, we
provide empirical evidence of the power of expression ofCircus and, principally, that the
strategy presented in [2] is applicable to large industrial systems.

In Section 2, we present an introduction to refinement inCircus: we describeCircus and
the refinement notions for processes and their constituent actions. Section 3 presents our case
study. Finally, we present our conclusions and discuss future work in Section 4.

282 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

2 Refinement inCircus

In what follows, we summarise theCircus notation and its refinement technique. More
details can be found in [1, 2], and an example is presented in Section 3.

2.1 Circus

Circus programs are sequences of paragraphs: channel declarations, channel set definitions,
Z paragraphs, or process definitions. A system is defined as a process that encapsulates some
state and communicates through channels.

A channel declaration declares its name and type; if the channel is used purely for syn-
chronisation, then no type is needed. The generic channel declarationchannel [T] c : T
declares a family of channelsc. In this declaration,[T] is a parameter used to determine
the type of the values that are communicated through channelc. We may introduce sets of
channels in achansetparagraph.

Processes may be defined explicitly or in terms of other processes (compound processes).
An explicit process definition is delimited by the keywordsbegin andend: it is formed by a
state definition, a sequence of paragraphs, and a nameless action, which defines its behaviour.
In [2], we have introduced the keywordstatebefore the state declaration in order to make it
clear which schema represents a process state.

Compound processes are defined using the CSP operators of sequence, external (occam
ALT) and internal choice, parallelism and interleaving, or their corresponding iterated oper-
ators, event hiding, or indexed operators, which are particular toCircus specifications. The
parallelism follows the alphabetised approach adopted by [5], instead of that adopted by [14].

An action can be a schema, a guarded command, an invocation of another action, or
a combination of these constructs using CSP operators. Three primitive actions are avail-
able:Skip, Stop, andChaos. The prefixing operator is standard, but a guard construction may
be associated with it. For instance, given a Z predicatep, if the conditionp is true, the action
p & c?x → A inputs a value through channelc and assigns it to the variablex, and then
behaves likeA, which has the variablex in scope. If, however, the conditionp is false, the
same action blocks. Such enabling conditions likep may be associated with any action.

The CSP operators of sequence, external and internal choice, parallelism, interleaving,
their corresponding iterated operators, and hiding may also be used to compose actions.
Communications and recursive definitions are also available.

To avoid conflicts in the access to the variables in scope, parallelism and interleaving of
actions declare a synchronisation channel set and two sets that partition all the variables. In
the parallelismA1 |[ns1 | cs | ns2]| A2, the actionsA1 andA2 synchronise on the channels in
setcs (unlike in occam, where the synchronisation channel set is implicit). BothA1 andA2

have access to the initial values of all variables in bothns1 andns2. However,A1 andA2 may
modify only the values of the variables inns1 andns2, respectively. The changes made byA1

in variables inns1 are not seen byA2, andvice-versa.
Finally, an action may also be a variable block. Further operators are available inCir-

cus [1]; only those that are used in this paper are described here.

2.2 Refinement Strategy

A refinement strategy forCircus is presented [2]. It is based on laws of simulation, a tech-
nique used to prove data refinement in Z, and action and process refinement; some of them are
presented in Appendix A. We present further simulation and refinement laws in Appendix B.

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 283

begin

end

state Sc Sc1 /\ Sc2

• ActC Act1C Act2Cop

Act1C1

Act1Ck

…

Act2C1

Act2Ck

…

begin

end

state Sc1

• Act1C

Act1C1

Act1Ck

…

begin

ActA1

ActAk

end

Sa

a1: TA1; ... an: TAn

• ActA

…

state

begin

ActC1

ActCk

end

Sc

c1: TC1; ... cn: TCn

• ActC

…

state

begin

end

state Sc2

• Act2C

Act2C1

Act2Ck

…

simulation

action refinement

process
refinement

op

=̂ ...

=̂ ...

=̂ ...

=̂ ...

=̂

=̂ ...

=̂ ...

=̂ ...

=̂ ...

=̂

=̂ ...

=̂ ...=̂ ...

=̂ ...

Figure 1: An iteration of the refinement strategy

284 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

Table 1: The System States and Corresponding Actions

System State Abstract FC Action Concrete FC Action Concrete Area Action
fireSysStarts AbstractFireSysStart FireSysStart StartArea
fireSyss AbstractFireSys FireSys AreaCycle
manuals AbstractManual Manual ManualArea
autos AbstractAuto Auto AutoArea
resets AbstractReset Reset ResetArea
countdowns AbstractCountdown Countdown WaitingDischarge
discharges AbstractDischarge Discharge WaitingDischarge
fireSysDs AbstractFireSysD FireSysD AreaD
disableds AbstractDisabled Disabled DisabledArea

The strategy aims at refining an abstract centralised specification to a distributedCircus
program, which involves only executable constructs. The strategy consists of possibly many
iterations involving simulation, actions, and process refinement; in each iteration a process
is split as presented in Figure 1. In this figure, each process is represented as a box. For
instance, before the simulation, we have a process with an internal stateSa, and actions
ActA1, · · ·, ActAk; its behaviour is determined by the main actionActA. First, elements of
the concrete system state are included using simulation; next, the state space and actions
are partitioned in such a way that each partition, represented in the figure by internal boxes,
groups some state components and the actions which access these components; and, finally,
all these partitions become individual processes, which are combined in the same way as
their main actions were in the previous process.

The semantics ofCircus is defined using Hoare and He’s unifying theories of program-
ming. In [2], we have a definition for action refinement; process refinement amounts to
refinement of the main action, with the state components taken as local variables. Backwards
and forwards simulation are also defined and proved sound in [2]. Here, we do not use the
definitions in [2], but simulation and refinement laws.

3 Case Study

Our case study consists of a fire control system that covers two separate areas. Each area is
divided into two zones; two different zones cannot be covered by two different areas. Two
extra zones are used for detection only. Fire detection happens in a zone, and, in consequence,
a gas discharge may occur in the area that contains that zone.

The system includes a display panel composed of lamps that indicates whether the system
is on or off, whether there are system faults, or a fire has been detected, whether the alarm
has been silenced or not, the need to replace the actuators of the system, and gas discharges.

The system can be in one of three modes: manual, automatic, or disabled. In manual
mode, an alarm sounds when a fire is detected, and the corresponding detection lamp is lit
on the display. The alarm can be silenced, and, when the reset button is pressed, the system
returns to normal. In manual mode, gas discharge is manually initiated.

In automatic mode, a fire detection is also followed by the alarm being sounded; however,
if a fire is detected in the second zone of the same area, the second stage alarm is sounded,
and a countdown starts. When the countdown finishes, the gas is discharged and the circuit
fault lamp is illuminated in the display; the system mode is switched to disabled.

In disabled mode, the system can only have the actuators replaced, identify relevant faults
within the system, and be reset. The system is back to its normal mode after the actuators are

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 285

channelswitch, silence, reset
channelactuatorsR, ckOn, ckOff
channeldet : ZoneId
channelswitchM : SwitchMode
channelextDisc: PAreaId
channelfault : FaultId
channelalarm : AlarmStage
channel [T]lamp : T × OnOff
channelbuzzer: OnOff
channelsysSt: SystemState

Figure 2: System External Channels

replaced and the reset button is pressed.
The system may be in one of the states presented in Table 1. Initially, the system is on

fireSysStarts state. After being switched on, its state is changed tofireSyss; in this state, a
fire detection yields to the state being changed tomanuals or autos depending on the system
mode. In the stateresets the system is waiting to be reset; incountdowns, it is waiting for the
clock to finish the countdown. During gas discharge, the system is on thedischarges state,
after which, the state is changed tofireSysDs. Finally, if a fire is detected onfireSysDs, the
system state is changed todisableds.

Some further requirements should also be satisfied: the system must be started with a
switchevent, and, afterwards, the systemon lamp should be illuminated; the system mode
can be switched between manual and automatic mode provided no detection happens. Also,
when the system is reset, all fire detection lamps must be switched off; if a gas discharge
occurred, the actuators need to be replaced, and the system mode is switched to automatic.
Following a fire detection, the corresponding lamp must be lit. After a gas discharge, no
subsequent discharge may happen before the actuators are replaced.

The external channels of the fire control system are presented in Figure 2. Fire detection
is indicated through channeldet, which inputs the zone where it happened. The system mode
can be manually switched using channelswitch. In manual mode, when the conditions that
lead to a gas discharge are met, gas can be manually discharged using the channelextDisc.
Faults are reported to the system through the channelfault. The channelalarmcan be used to
sound the alarm, which can be silenced throughsilence. Channelresetresets the system. The
channelactuatorsRindicates that the actuators have been replaced. The system indicates that
a lamp must be switched using the generic channellamp; it provides the type of lamp and the
new lamp mode. The buzzer is controlled using channelbuzzer. After each state change, the
system reports its current state using channelsysSt. The fire control system may request a
clock to execute the countdown using channelckOn; the clock indicates that the countdown
is finished using channelckOff.

The display is composed of the lamps and the buzzer. The lamps can be of three dif-
ferent types; however, the three types of lamps are instances of the same generic process
GenericLamp, which has a componentstatus: OnOff. Initially, all the lamps are switched
off ; they can be switchedonusing an appropriate instance of channellamp.

286 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

AreaId ::= 0 | 1
ZoneId::= 0 | 1 | 2 | 3 | 4 | 5
Mode::= automatic| manual| disabled
SwitchMode== Mode\ {disabled}
OnOff ::= on | off
AlarmStage::= alarmOff | firstStage| secondStage
LampId::= zoneFaultL| earthFaultL| sounderLineFaultL| powerFaultL| sysOnL

| remoteSignalL| actuatorLineFaultL| circuitFaultL | alarmSilencedL
FaultId ::= ZoneF| earthF | sounderLineF| powerF | remoteSignal| actuatorLineF
SystemState::= fireSysStarts | fireSyss | fireSysDs | autos

| countdowns | discharges | resets | manuals | disableds

Figure 3: System Types

3.1 Abstract Fire Control System

The basic types used within the system are presented in Figure 3. The areas and zones are
identified by the typesAreaId andZoneId; the system modes are represented by the type
Mode; the typeSwitchMode, is a subset of typeMode. All the lamps and the buzzer of the
display can be either on or off, which are represented by the typeOnOff. The alarm states are
represented by the typeAlarmStage. The typeLampIdcontains identifiers for all the lamps
in the system’s display. Faults are represented by the typeFaultId. Finally, the system can be
in one of the states of the typeSystemState.

ProcessAbstractFCformalises the requirements previously described. Throughout this
paper we omit some formal definitions for the sake of conciseness; they can be found in [12].
The abstract state is defined by the Z schema namedAbstractFCStpresented below. Z
schemas can either be represented as boxes, asAbstractFCSt, or in a horizontal notation
as we shall see later in this paper.AbstractFCStis composed of five components, which are
declared in the declaration part of the schema:modeindicates the mode in which the fire
control is running;controlZnsis a total function that maps the areas to a set that contains
their controlled zones;actZnsmaps the areas to the zones in which a fire detection has oc-
curred;dischargeindicates in which areas a gas discharged happened; finally,activecontains
the active areas identifications.

processAbstractFC=̂ begin
state AbstractFCSt

mode: Mode
controlZns, actZns: AreaId→ PZoneId
discharge, active: PAreaId

∀a : AreaId•
(mode= manual) ⇒ a ∈ active⇔ #actZns a≥ 1
∧ (mode= automatic) ⇒ a ∈ active⇔ #actZns a≥ 2
∧ actZns a⊆ controlZns a∧ controlZns a= getZones a

The state invariant is declared in the predicate part of the schema; it determines that, if the
system is running inmanualmode (predicatemode= manual), an area isactiveif, and only
if, some zone controlled by it is active. On the other hand, if the mode isautomatic, an area
is active if, and only if, there is more than one active zone controlled by it. Finally, for each
area, its controlled zones are defined by the functiongetZones, whose definition we omit.

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 287

Initially, the system is inautomaticmode, there is no active zone, and no discharge oc-
curred in any area. The state invariant guarantees that there is no active area.

InitAbstractFC
AbstractFCSt′

mode′ = automatic∧ discharge′ = ∅ ∧ actZns′ = {a : AreaId• a 7→ ∅}

Undashed variables represent the variable values before the execution of an operation; on
the other hand, dashed variables represent the variable values after the execution of an op-
eration. The decoration of a schemaSchema=̂ [x1 : T1 . . . xn : Tn | p], is defined as
the decoration of all the components of the schema, and the modification of the predicate
part of the schema to reflect the new names of these components. For instance, we have
that Schema′ =̂ [x′1 : T1 . . . x′n : Tn | p [x′1/x1, . . . , x′n/xn]]. Finally, the inclusion of the
schemaAbstractFCSt′ in the declaration part ofInitAbstractFC, merges the declarations of
both schemas, and conjoins their predicates.

Three operations are used to switch the system mode; they leave the other components
unchanged. The first operation receives the new mode as argument. For any schemaStatethat
describes the state of a system,∆ Stateis a schema that includes bothSchemaandSchema′.
Furthermore, the name of input components must end with a query (?) and the name of output
components must end with a shriek (!).

SwitchAbstractFCMode
∆AbstractFCSt; nm? : Mode

mode′ = nm? ∧ actZns′ = actZns∧ discharge′ = discharge

SwitchAbstractFC2Auto andSwitchAbstractFC2Dis do not receive arguments; they switch
the mode toautomaticanddisabled, respectively.

The schemaAbstractActivateZonereceives a zonenz? and changesactZnsby including
nz? in the set of active zones of the area that controls it;active may also be changed to
maintain the state invariant. All other state components are left unchanged.

AbstractActivateZone
∆AbstractFCSt; nz? : ZoneId

mode′ = mode∧ discharge′ = discharge
actZns′ = actZns⊕ {a : AreaId | nz? ∈ controlZns a•

a 7→ actZns a∪ {nz?}}

The schemaAbstractAutomaticDischargeactivates the discharge in the active areas, only
dischargeis changed. Finally,AbstractManualDischargereceives the areas in which the user
wants to discharge the gas, but discharges only in those that areactive.

All the other actions are defined using CSP operators. Basically, we have one action for
each possible state within the system as described in Table 1.

The actionAbstractFireSysStartstarts by communicating the current system state. Then,
it waits for the system to be switched on through channelswitch, switches on the lamp
SysOnL, initialises the system state and, finally, behaves like actionAbstractFireSys.

AbstractFireSysStart̂= sysSt!fireSysStarts → switch→
lamp[LampId].sysOnL!on→ InitAbstractFC; AbstractFireSys

In actionAbstractFireSys, after communicating the system state, the mode can be manu-

288 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

Figure 4: Refinement Strategy for the Fire Control System

ally switched betweenautomaticandmanual. Furthermore, if any detection occurs, the zone
in which the detection occurred is activated, the corresponding lamp is lit, the alarm sounds
in firstStage, and then, the system behaves likeAbstractManualor AbstractAuto, depending
on the current system mode. If the actuators are replaced, thecircFaultL is switched off, the
system is set toautomaticmode, and waits to bereset. Finally, if any fault is identified, the
correspondinglamp is lit, and the buzzer is switchedon.

AbstractFireSyŝ=
sysSt!fireSyss →

switchM?nm→ SwitchAbstractFCMode; AbstractFireSys
2 det?nz→ AbstractActivateZone; lamp[ZoneId].nz!on→

alarm!firstStage→
(mode= manual) & AbstractManual
2 (mode= automatic) & AbstractAuto

2 actuatorsR→ lamp[LampId].circFaultL!off →
SwitchAbstractFC2Auto; AbstractReset

2 fault?faultId → lamp[LampId].(getLampId faultId)!on→
buzzer!on→ AbstractFireSys

The functiongetLampIdmaps fault identifications to their corresponding lamp in the display.
Throughout this paper, we illustrate the refinement of the fire control system using these

two actions only. For this reason, we omit the definitions of the remaining actions.
The main action of processAbstractFireSysis defined below.

• AbstractFireSysStartend

In the next section, we refineAbstractFCto a concrete distributed system.

3.2 Refinement

The motivation for the fire control system refinement is the distribution of the areas, in or-
der to increase efficienct. Section 3.2.1 presents the target of our refinement, the concrete

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 289

Figure 5: Concrete Fire Control

fire control system. In the following sections, we present the refinement steps summarised
graphically in Figure 4.

In the first iteration, we splitAbstractFCinto two processAreasandInternalFC. The first
models the areas of the system, and is split into two interleavedAreaprocesses in interleaving
in the last iteration. The second is the core of the system, which is split into a display
controllerDisplayCand the system controllerFC in the second iteration.

3.2.1 Concrete Fire Control System

The concrete fire control system has three components: the controller, the display, and the
detection system. They communicate through the channels below.

channeldisplay, manDis: PAreaId
channelswitched, autoDis, anyDis, noDis, countdown, counting
channelgasDischarged, gasNotDischarged: AreaId

The controller indicates discharges to the display throughdisplay. The display acknowledges
this communication through channelswitched. The controller request gas discharges to the
detection process throughmanDisandautoDis. The detection process may reply to these
requests indicating if the gas has been discharged (anyDis) or not (noDis); it may request
a countdown, if it is automaticmode and the conditions for a gas discharge are met. The
controller indicates that it started counting throughcounting. In Figure 5, we summarise the
internal communications of the concrete fire control system.

Controller The processFC is similar to the abstract specification. However, all the state
components and events related to the detection areas and to the display are removed. For
conciseness, some schemas, as the system state presented below, are presented in their hori-
zontal formname=̂ [declaration| predicate].

processFC =̂ begin stateFCSt=̂ [mode1 : Mode]
InitFC =̂ [FCSt′ | mode1 = automatic]

The state of the concrete fire control is composed of only one component,mode1, which
indicates the mode in which the system is running. This mode is initialised toautomatic.

290 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

Three operations can be used to switch the system mode. The first one receives the new
mode as argument.

SwitchFCModê= [∆FCSt; nm? : Mode| mode1 = nm?]

The second and third operations do not receive any argument; they simply switch the system
mode toautomaticor disabled.

The fire control system is responsible for communicating the current system state. After
being switched on, the fire control initialises its state and behaves like actionFireSys. Where
a lamp was switchedon in the abstract specification, an acknowledgment eventswitchedis
received from the the display controller.

FireSysStart̂= sysSt!fireSysStarts → switch→ switched→ InitFC; FireSys

Similar to the abstract system, all the other actions corresponds to a possible state within the
system as described in Table 1.

In actionFireSys, after communicating the system state, the mode can be switched. Fur-
thermore, if any detection occurs, the controller waits for aswitchedsignal, sets the alarm to
firstStage, and behaves likeManualor Auto, depending on the current system mode. Since
the areas are the processes which have the area-zone information, following adetcommuni-
cation, the zone activation is not part of the controller behaviour. If the actuators are replaced,
the system is set toautomaticmode, and waits to bereset. Finally, all the faults are ignored
by this process, except that it waits for aswitchedsignal from the display.

FireSys=̂ sysSt!fireSyss →

switchM?nm→ SwitchFCMode; FireSys
2 det?nz→ switched→ alarm!firstStage→

(mode1 = manual) & Manual
2 (mode1 = automatic) & Auto

2 actuatorsR→ switched→ SwitchFC2Auto; Reset
2 fault?faultId → switched→ FireSys

• FireSysStartend

As for the abstract system, we omit the definition of the remaining actions. The main action
of processFC is FireSysStartpresented above.

Display Controller This process models the display controller requests for the lamps to be
switchedon or off after the occurrence of the relevant events. It waits for the system to be
switched on, switches the lampsysOnL on, and indicates this toFC throughswitched. A
gas discharge is indicated byFC to this process throughdisplay. If the system isreset, the
display switchesoff the buzzer and all the lamps, except the lampscircFaultL andsysOnL.

Areas The processArea is parametrised by the area identifier.

processArea=̂ (id : AreaId• begin

The state of an area is composed of the mode in which it is running, its controlled zones,
the active zones in which a fire detection occurred, a booleandischargethat records whether
a gas discharge has occurred or not, and a booleanactive that records whether the area is

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 291

willing to discharge gas or not.

state AreaState
mode: Mode
controlZns, actZns: PZoneId
discharge, active: Bool

controlZns= getZones id∧ actZns⊆ controlZns
(mode= automatic) ⇒ active= true⇔ #actZns≥ 2
(mode= manual) ⇒ active= true⇔ #actZns≥ 1

The invariant establishes that the componentactZnsis a subset of the controlled zones of this
area, which is defined bygetZones. Besides, if running inautomaticmode, an area is active
if, and only if, all controlled zone areactive. On the other hand, if running inmanualmode,
an area isactiveif, and only if, any controlled zone is active.

Each area is initialised as follows: there is no active zone; no discharge occurred; and it
is in automaticmode. The state invariant guarantees that it is notactive.

InitArea =̂ [AreaState′ | actZns′ = ∅ ∧ discharge′ = false∧ mode′ = automatic]

The schemaSwitchAreaModereceives the new mode and sets the area mode. Schemas
SwitchArea2Auto and SwitchArea2Dis set the aremode to automaticand disabled. All
other state components are left unchanged. A zone can be activated using the operation
ActivateZone. If the given zone is controlled by the area, it is included in theactZns.

Initially, an area synchronises in theswitchevent, initialises its state, and starts its cycle.

StartArea=̂ switch→ InitArea; AreaCycle

During its cycle, if theactuatorsRevent occurs, the mode is switched toautomaticand the
area waits to bereset. If the system mode is switched, so is the area mode. Finally, any
detection may activate a zone, if it is controlled by this area; after this, the area behaves like
eitherAutoAreaor ManualArea, depending on its current mode.

AreaCycle=̂ actuatorsR→ SwitchArea2Auto;ResetArea
2 switchM?nm→ SwitchAreaMode; AreaCycle
2 det?nz→ ActivateZone; (mode= automatic) & AutoArea

2 (mode= manual) & ManualArea
• StartAreaend)

The main action of the processArea is the actionStartArea.
The processConcreteAreasrepresents all the areas within the system. Basically, it is a

parallel composition of all areas. They synchronise on the channel setΣareas.

chansetΣareas == {| switch, reset, switchM, det, silence, actuatorsR,
autoDis, manDis, anyDis, noDis, counting|}

processConcreteAreaŝ= ‖ id : AreaId|[Σareas]| • Area(id)

The internal system is defined as the parallel composition of the fire controlFC and the
display controllerDisplayC. All the communications between them are hidden.

chansetDisplaySync== {| display, switched|}
chansetΣ1 == {| switch, reset, det, display, silence, actuatorsR, fault |}
processConcreteInternalFĈ= FC |[Σ1]| DisplayC\ DisplaySync

The concrete fire control is the parallel combination ofConcreteInternalFCandAreas.

292 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

Internal communications are again hidden.

chansetGSync== {| manDis, autoDis, countdown, counting,
gasDischarged, gasNotDischarged, anyDis, noDis |}

chansetΣ2 == {| switch, reset, det, switchM, silence, actuatorsR|} ∪GSync
processConcreteFC=̂ (ConcreteInternalFC|[Σ2]| Areas) \ GSync

In the following sections, we prove thatAbstractFCis refined byConcreteFC, or rather,
AbstractFCv ConcreteFC.

3.2.2 First Iteration: splitting theAbstractFCinto InternalFCandAreas

Data refinement In this step we make a data refinement in order to introduce a state com-
ponent that is used by the areas. The newmodeA component indicates the mode in which the
areas are running. The processAbstractFCis refined to the processFC1 presented below.

processFC1 =̂ begin
state

FCSt1
mode1, modeA : Mode
controlZns1, actZns1 : AreaId→ PZoneId
discharge1, active1 : PAreaId

∀a : AreaId•
(mode1 = automatic) ⇒ a ∈ active1 ⇔ #actZns1 a≥ 2
∧ (mode1 = manual) ⇒ a ∈ active1 ⇔ #actZns1 a≥ 1
∧ actZns1 a⊆ controlZns1 a ∧ controlZns1 a = getZones a

The stateFCSt1 is the same as that ofAbstractFC, except that it includes an extra compo-
nentmodeA. In order to prove that theFC1 is a refinement of theAbstractFC, we have to prove
that there exists a forwards simulation between the main actions ofFC1 andAbstractFC. The
retrieve relationRetrFCrelates each component in theAbstractFCStto one inFCSt1.

RetrFC
AbstractFCSt; FCSt1

mode1 = mode∧ modeA = mode∧ controlZns1 = controlZns
actZns1 = actZns∧ discharge1 = discharge∧ active1 = active

The laws ofCircus establish that simulation distributes through the structure of an action.
The laws used here are in Appendices A and B; we refine each schema using Law A.1. In the
concrete initialisation, the new state componentmodeA is initialised inautomaticmode.

InitFC1

FCSt′1

mode′1 = automatic∧ mode′A = automatic∧ discharge′1 = ∅
actZns′1 = {a : AreaId• a 7→ ∅}

The following lemma states that this is actually a simulation of the abstract initialisation. The

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 293

symbol¹ represents the simulation relation.

Lemma 3.1 InitAbstractFC¹ InitFC1

Proof. The application of Law A.1 raises two proof obligations. The first one concerns the
preconditions of both schemas.

∀AbstractFCSt; FCSt1 • RetrFC∧ pre InitAbstractFC⇒ pre InitFC1

It is easily proved because the preconditions of both schemas aretrue. The second proof
obligation concerns the postcondition of both operations.

∀AbstractFCSt; FCSt1; FCSt′1 • RetrFC∧ pre InitAbstractFC∧ InitFC1 ⇒
∃AbstractFCSt′ • RetrFC′ ∧ InitAbstractFC

This proof obligation can also be easily discarded using the one-point rule. When this rule
is applied, we remove the universal quantifier, and then, we are left with an implication in
which the consequent is present in the antecedent. 2

There is no special rule to handle initialisation operations. This is because the behaviour
of a process is defined by its main action; there is no implicit initialisation. An initialisation
schema is just a simplified way of specifying an operation like any other.

All other schema expressions are refined in pretty much the same way. Their definitions
are very similar to the corresponding abstract operations except that the value assigned to
mode1 is also assigned to the new state componentmodeA.

For the remaining actions, we rely on distribution of simulation. The new actions have
the same structure as the original ones, but use the new schemas. By way of illustration, we
present the actionFireSysStart1 that simulatesAbstractFireSysStart.

FireSysStart1 =̂ sysSt!fireSysStarts → switch→ lamp[LampId].sysOnL!on→
InitFC1; FireSys1

To establish the simulation, we need Laws A.2 and A.3. Since all the output and input
values, and guards are not changed, only their second proviso must be proved. They follow
from Lemma 3.1 andFireSys¹ FireSys1.

FireSysStart1 is the main action ofFC1, and we have just proved that it simulates the
main action ofAbstractFC.

• FireSysStart1 end

This concludes this data refinement step.

Action Refinement In this step we changeFC1 so that its state is composed of two parti-
tions: one that models the internal system and another that models the areas. We also change
the actions so that the state partitions are handled separately.

processConcreteFC=̂ begin

The internal system state is composed only by its mode.

InternalFCSt=̂ [mode1 : Mode]

The remaining components are declared as components of the areas partition of the state.

294 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

AreasSt
modeA : Mode
controlZns1, actZns1 : AreaId→ PZoneId
discharge1, active1 : PAreaId

∀a : AreaId•
(modeA = automatic) ⇒ a ∈ active1 ⇔ #actZns1 a≥ 2
∧ (modeA = manual) ⇒ a ∈ active1 ⇔ #actZns1 a≥ 1
∧ actZns1 a⊆ controlZns1 a ∧ controlZns1 a = getZones a

The state ofFCSt1 is declared as the conjunction of the two previously defined schemas.

stateFCSt1 =̂ InternalFCSt∧ AreasSt

The first group of paragraphs access onlymode1. It is initialised toautomatic.

InitInternalFC =̂ [InternalFCSt′; AreasSt′ | mode′1 = automatic]

Another convention is used in the definitions that follow: for any schemaSch, ΞSchrep-
resents the schema that includes bothSchandSch′ and leaves the components values un-
changed. The notationθSchdenotes the bindings of components fromSch.

ΞSchema
Sch
Sch′

θSch= θSch′

The schemaSwitchInternalFCModereceives the new mode as argument, and switches
theInternalFCmode.

SwitchInternalFCModê= [∆InternalFCSt; ΞAreasSt; nm? : Mode| mode′1 = nm?]

Similarly, SwitchInternalFC2Auto and SwitchInternalFC2Dis set theInternalFC mode to
automaticanddisabled, respectively.

The behaviour of this internal system is very similar to that of the abstract one (Table 1);
however, after being switched on, it initialises onlymode1 and behaves like actionFireSys2.
All the operations related to the areas are no longer controlled by the internal system actions,
but by the areas actions. For instance, consider the actionFireSysStart2 below.

FireSysStart2 =̂ sysSt!fireSysStarts → switch→ lamp[LampId].sysOnL!on→
InitInternalFC; FireSys2

When a synchronisation onswitchMhappens, only theInternalFCmode is switched by
actionFireSys2. Furthermore, since the information about the areas are no longer part of
this partition, following adetcommunication, this action does not activate the area in which
the detection occurred. If the actuators are replaced, this action switches the corresponding
lampon, switches onlymode1 to automatic, and waits to bereset. The behaviour, if anyfault

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 295

happens, is not changed.

FireSys2 =̂ sysSt!fireSyss →
switchM?nm→ SwitchInternalFCMode; FireSys2
2 det?nz→ lamp[ZoneId].nz!on→ alarm!firstStage→

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR→ lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

2 fault?faultId → lamp[LampId].(getLampId faultId)!on→
buzzer!on→ FireSys2

The second group of paragraphs is concerned with the areas. They are initialised in
automaticmode; furthermore, there are no active zones, nodischargehas occurred, and no
area isactive.

InitAreas
AreasSt′; InternalFCSt′

mode′A = automatic∧ discharge′1 = ∅
actZns′1 = {a : AreaId• a 7→ ∅}

The areas mode can be switched to a given mode with schemaSwitchAreasMode. The ar-
eas mode can also be switched toautomaticor disabledmode with the schema operations
SwitchAreas2AutoandSwitchAreas2Dis, respectively.

SwitchAreasMode
∆AreasSt; ΞInternalFCSt; nm? : Mode

mode′A = nm? ∧ actZns′1 = actZns1 ∧ discharge′1 = discharge1

The schemaActivateZoneASincludes a given zonenz? in the set of active zones of the
area that controlsnz?.

ActivateZoneAS
∆AreasSt; ΞInternalFCSt; nz? : ZoneId

mode′A = modeA ∧ discharge′1 = discharge1
actZns′1 = actZns1 ⊕ {a : AreaId | nz? ∈ controlZns1 a •

a 7→ actZns1 a∪ {nz?}}

Initially, the areas synchronise onswitch, initialise the state, and start their cycle.

StartAreas=̂ switch→ InitAreas; AreasCycle

In AreasCycle, the actuators can be replaced, setting the mode toautomatic, and the areas
wait to bereset. If the system mode is switched, so is the areas mode. Any detection in a
zonenz leads to the activation ofnz; the behaviour afterwards depends on theAreasmode.

AreasCycle=̂ actuatorsR→ SwitchAreas2Auto;ResetAreas
2 switchM?nm→ SwitchAreasMode;AreasCycle
2 det?nz→ ActivateZoneAS; (modeA = automatic) & AutoAreas

2 (modeA = manual) & ManualAreas

As for the paragraphs of the internal system, the areas have an action corresponding to

296 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

each action in the abstract system (Table 1); the remaining actions are omitted here.
The main action ofConcreteFCis the parallel composition of the actionsFireSysStart2

andStartAreas. These actions actually represent the initial actions of each partition within
the process. They synchronise on the channel setΣ2. All the synchronisation events between
the internal system and the areas are hidden in the main action.

• (FireSysStart2 |[α(InternalFCSt) | Σ2 | α(AreasSt)]| StartAreas) \ GSyncend

Action FireSysStart2 may modify only the components ofInternalFCSt, andStartAreasmay
modify only the components ofAreasSt.

Despite the fact that this is a significant refinement step, it involves no change of data
representation. In order to prove that this is a valid refinement, we must prove that the main
action of processConcreteFCrefines the main action of processFC1; however, they are
defined using mutual recursion, and for this reason, we use the result below in the proof. The
symbolvA represents the action refinement relation.

Theorem 3.1 (Refinement on Mutual Recursive Actions)For a given vector of actions SS

defined in the form SS =̂ [N0, . . . , Nn], where Ni =̂ Fi(N0, . . . , Nn), we have that:

SSvA [Y0, . . . , Yn] ⇐

F0[Y0, . . . , Yn/N0, . . . , Nn] vA Y0,
. . . ,
Fn[Y0, . . . , Yn/N0, . . . , Nn] vA Yn

In order to prove that a vector of actionsSS as defined above is refined by a vector of actions
[Y0, . . . , Yn], it is enough to show that, for each actionNi in SS, we can prove that its definition
Fi, if we replaceN0, . . . , Nn with Y0, . . . , Yn in Fi, is refined byYi. This result is proved in [12].

We want to prove thatFireSysStart1 vA (FireSysStart2 ‖ StartAreas) \ GSync, where
‖ stands for|[α(InternalFCSt) | Σ2 | α(AreasSt)]|. As FireSysStart1 is defined using mutual
recursion, we use the Theorem 3.1, withSS as the vector including all actions involved in the
definition ofFireSysStart1, SS = [FireSysStart1, FireSys1, . . .], to prove this refinement. The
vector[Y0, . . . , Yn] includes(FireSysStart2 ‖ StartAreas) \ GSyncand all the refinements of
each action inSS as a parallel composition of the same form: with the same partition, the
same synchronisation set, and the same hiding.

To prove this refinement, however, using Theorem 3.1, we need a modifiedSS, in which
some actions are preceded by an assumption. We introduce these assumptions using Law B.8.

[FireSysStart1, FireSys1, . . .]
vA [B.8]
[FireSysStart1, {mode1 = modeA}; FireSys1, . . .]

Although long, the proof obligation raised by this law application is trivial; we omit it here,
for the sake of conciseness. Using Theorem 3.1 we get the following result.

[
FireSysStart1,
{mode1 = modeA}; FireSys1, . . .

]
vA

[
(FireSysStart2 ‖ StartAreas) \ GSync,
(FireSys2 ‖ AreasCycle) \ GSync, . . .

]

⇐(
FireSysStart1[subst] vA (FireSysStart2 ‖ StartAreas) \ GSync, (1)
FireSys1[subst] vA (FireSys2 ‖ AreasCycle) \ GSync, . . . (2)

)

Here,substcorresponds to the following substitution.

subst=

(
(FireSysStart2 ‖ StartAreas) \ GSync,
(FireSys2 ‖ AreasCycle) \ GSync, . . .

)
/

(
FireSysStart1,
FireSys1, . . .

)

Below,A1 vA [law1, . . . , lawn]{op1} . . . {opn} A2 denotes thatA1 may be refined toA2 using

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 297

laws law1, . . . , lawn, if op1, . . . , opn holds. Lemmas 3.2 and 3.3 prove refinements (1) and
(2), respectively.

Lemma 3.2 (1) FireSysStart1[subst] vA (FireSysStart2 ‖ StartAreas) \ GSync

Proof. We start the refinement using the definitions ofFireSysStart1 and substitution.

FireSysStart1[subst]
= [Definition ofFireSysStart1, Definition of Substitution]
sysSt!fireSysStarts → switch→ lamp[LampId].sysOnL!on→

InitFC1; (FireSys2 ‖ AreasCycle) \ GSync

First, we may expand the hiding since the channelslamp, switch, andsysStare not inGSync.

= [A.15] {{lamp, switch, sysSt} ∩GSync= ∅}(
sysSt!fireSysStarts → switch→ lamp[LampId].sysOnL!on→

InitFC1; (FireSys2 ‖ AreasCycle)

)
\ GSync

The schemaInitFC1 can be written as the sequential composition of two other schemas as
follows. In [2], a refinement law is provided to introduce a schema sequence; however, in our
case, we have a initialisation schema that has no reference to the initial state. For this reason,
we use a new law that is similar to the one in [2]. Some trivial proof obligations are omitted.

= [B.3]

(
sysSt!fireSysStarts → switch→ lamp[LampId].sysOnL!on→

InitInternalFC; InitAreas; (FireSys2 ‖ AreasCycle)

)
\ GSync

Each one of the new inserted schema operations writes in a different partition of the par-
allelism that follows them. For this reason, we may distribute them over the parallelism.
Again, two new laws are used: the first moves a (guarded) schema expression to one side of
the parallelism; commutativity of parallelism is also provided as a new law.

= [B.13, B.14](
sysSt!fireSysStarts → switch→ lamp[LampId].sysOnL!on→

((InitInternalFC; FireSys2) ‖ (InitAreas; AreasCycle))

)
\ GSync

Next, we move thelampevent to the internal system side of the parallelism. This step is valid
because all the initial channels ofAreasCycleare inΣ2, andlamp is not.

= [A.11] {initials(AreasCycle) ⊆ Σ2} {lamp /∈ Σ2}

sysSt!fireSysStarts → switch→((
lamp[LampId].sysOnL!on→

InitInternalFC; FireSys2

)
‖ (InitAreas; AreasCycle)

)

 \ GSync

Now, switchmay be distributed over the parallelism because it is inΣ2.

= [A.14] {switch∈ Σ2}

sysSt!fireSysStarts →

switch→
lamp[LampId].sysOnL!on→

InitInternalFC; FireSys2

 ‖

(
switch→ InitAreas;

AreasCycle

)

\ GSync

Since it is not inΣ2, sysStmay be moved to the internal system side of the parallelism.

298 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

= [B.1, A.11] {sysSt/∈ Σ2}

sysSt!fireSysStarts → switch→
lamp[LampId].sysOnL!on→

InitInternalFC; FireSys2

 ‖

(
switch→ InitAreas;

AreasCycle

)
 \ GSync

Finally, using the definitions ofFireSysStart2 andStartAreaswe conclude this proof.

= [Definition ofFireSysStart2 and StartAreas]
(FireSysStart2 ‖ StartAreas) \ GSync 2

The next lemma we present is the refinement of the actionFireSys1.

Lemma 3.3 (2) {mode1 = modeA}; FireSys1[subst] vA (FireSys2 ‖ AreasCycle) \ GSync

Proof. We start the proof using the definitions ofFireSys1 and substitution.

{mode1 = modeA}; FireSys1[subst]
= [Definition ofFireSys1, Definition of Substitution]
{mode1 = modeA};
sysSt!fireSyss →

switchM?nm→ SwitchFCMode1; (FireSys2 ‖ AreasCycle) \ GSync
2 det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→

(mode1 = manual) & (Manual2 ‖ ManualAreas) \ GSync
2 (mode1 = automatic) & (Auto2 ‖ AutoAreas) \ GSync

2 actuatorsR→ lamp[LampId].circFaultL!off →
SwitchFC2Auto1; (Reset2 ‖ ResetAreas) \ GSync

2 fault?faultId → lamp[LampId].(getLampId faultId)!on→
buzzer!on→ (FireSys2 ‖ AreasCycle) \ GSync

Next, we expand the hiding to the whole action. This is valid because all the events involved
in the expansion are not in the hidden set of channels.

= [A.15] {GSync∩ {sysSt, switchM, det, lamp, alarm, fault, buzzer, reset} = ∅}

{mode1 = modeA};
sysSt!fireSyss →

switchM?nm→ SwitchFCMode1; (FireSys2 ‖ AreasCycle) (3)
2 det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→ (4)

(mode1 = manual) & (Manual2 ‖ ManualAreas)
2 (mode1 = automatic) & (Auto2 ‖ AutoAreas)

2 actuatorsR→ lamp[LampId].circFaultL!off → (5)
SwitchFC2Auto1; (Reset2 ‖ ResetAreas)

2 fault?faultId → lamp[LampId].(getLampId faultId)!on→ (6)
buzzer!on→ (FireSys2 ‖ AreasCycle)

\ GSync

Next, we aim at the refinement of each branch to a parallelism in order to be able to apply
the exchange Law A.12. First, we refine(3) as follows: the schemaSwitchFCMode1 can be
written as the sequential composition ofSwitchInternalFCModeandSwitchAreasMode.

(3) = [A.17] switchM?nm→ SwitchInternalFCMode; SwitchAreasMode;
(FireSys2 ‖ AreasCycle)

Both schemas can be moved to different sides of the parallelism.

= [B.14, B.13]
switchM?nm→

((SwitchInternalFCMode; FireSys2) ‖ (SwitchAreasMode; AreasCycle))

Finally, asswitchM is in Σ2, we may distribute this event over the parallelism. Here, a new

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 299

law (distribution of input channels over parallelism) is used.

= [B.2] {switchM∈ Σ2}(
switchM?nm→

SwitchInternalFCMode; FireSys2

)
‖

(
switchM?nm→

SwitchAreasMode; AreasCycle

)

For (4), we first use the assumption laws in order to move the assumption into the action.

(4)vA [B.9, A.7, A.10, A.16, B.10, B.12]
det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→

{mode1 = modeA}; (mode1 = manual) & (Manual2 ‖ ManualAreas)
2 {mode1 = modeA}; (mode1 = automatic) & (Auto2 ‖ AutoAreas)

Next, we use the assumption to change the guards.

= [A.8]
det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→

{mode1 = modeA};
(mode1 = manual∧ modeA = manual) & (Manual2 ‖ ManualAreas)

2 {mode1 = modeA};
(mode1 = automatic∧ modeA = automatic) & (Auto2 ‖ AutoAreas)

The assumptions can then be absorbed by the guards.

= [A.4, A.5, A.10, A.16]
det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→

(mode1 = modeA ∧ mode1 = manual∧ modeA = manual) &
(Manual2 ‖ ManualAreas)

2 (mode1 = modeA ∧ mode1 = automatic∧ modeA = automatic) &
(Auto2 ‖ AutoAreas)

Now, using a new law, we distribute the guards over the parallelism, slightly changing them.

= [B.5]
det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→

(
mode1 = modeA ∧
mode1 = manual

)
&

Manual2

 ‖

(
mode1 = modeA ∧
modeA = manual

)
&

ManualAreas

2

(
mode1 = modeA ∧
mode1 = automatic

)
&

Auto2

 ‖

(
mode1 = modeA ∧
modeA = automatic

)
&

AutoAreas

Now, since the guards invalidate each other, we may apply an exchange law. Furthermore,
we simplify the guards.

= [A.12, A.6]
det?nz→ ActivateZone1; lamp[ZoneId].nz!on→ alarm!firstStage→(

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

)
‖

(
(modeA = manual) & ManualAreas
2 (modeA = automatic) & AutoAreas

)

Next, we move the outputs channels to the left-hand side of the parallelism. This follows
from the fact that the initial channels of bothManualAreasandAutoAreasare inΣ2, and

300 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

alarmandlampare not.

= [B.1, A.11]
{initials(ManualAreas) ∪ initials(AutoAreas) ⊆ Σ2} {Σ2 ∩ {alarm, lamp} = ∅}
det?nz→ ActivateZone1;

lamp[ZoneId].nz!on→
alarm!firstStage→

(mode1 = manual) &
Manual2

2 (mode1 = automatic) &
Auto2

‖

(modeA = manual) &
ManualAreas

2 (modeA = automatic) &
AutoAreas

The schemaActivateZone1 can easily be transformed toActivateZoneASusing the schema
calculus. The resulting schema can also be distributed over the parallelism. Finally, channel
detcan be distributed over the parallelism, since it is inΣ2.

= [Schema Calculus, B.14, B.13, B.2] {det∈ Σ2}

det?nz→ lamp[ZoneId].nz!on→
alarm!firstStage→

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

 ‖

det?nz→ ActivateZoneAS;
(modeA = manual) &

ManualAreas
2 (modeA = automatic) &

AutoAreas

Using similar strategies, we refine(5) and(6) to the following external choice.

(5, 6) = [. . .]

actuatorsR→
lamp[LampId].circFaultL!off →

SwitchInternalFC2Auto; Reset2

 ‖

actuatorsR→
SwitchAreas2Auto;

ResetAreas

2

(
fault?faultId → lamp[LampId].(getLampId faultId)!on→

buzzer!on→ FireSys2

)
‖ AreasCycle

We are left with the external choice of parallel actions. Since the initial channels of the first
three parallel actions are in the setΣ2, we may apply the exchange law as follows.

= [A.12]
sysSt!fireSyss →

switchM?nm→ SwitchInternalFCMode; FireSys2
2 det?nz→ lamp[ZoneId].nz!on→ alarm!firstStage→

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR→ lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

‖

switchM?nm→ SwitchAreasMode; AreasCycle
2 det?nz→ ActivateZoneAS;

(modeA = manual) & ManualAreas
2 (modeA = automatic) & AutoAreas

2 actuatorsR→ SwitchAreas2Auto; ResetAreas

2

(
fault?faultId → lamp[LampId].(getLampId faultId)!on→

buzzer!on→ FireSys2

)
‖ AreasCycle

With small rearrangements, we have that the right-hand side of the first parallelism corre-
sponds to the definition of the actionAreasCycle. So, we have that both branches of the

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 301

external choice have this action as the right-hand side of the parallelism. Since all the initials
of AreasCycleare inΣ2, we may apply the distribution of parallelism over external choice.

= [A.13] {initials(AreasCycle) ⊆ Σ2}
sysSt!fireSyss →

switchM?nm→ SwitchInternalFCMode; FireSys2
2 det?nz→ lamp[ZoneId].nz!on→ alarm!firstStage→

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR→ lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

2 fault?faultId → lamp[LampId].(getLampId faultId)!on→
buzzer!on→ FireSys2

‖ AreasCycle

Finally, we can distributesysStand use the definition ofFireSys2 to conclude our proof.
Again, this is valid because all the initials ofAreasCycleare inΣ2, andsysStis not.

= [B.1, A.11] {initials(AreasCycle) ⊆ Σ2} {Σ2 ∩ {sysSt} = ∅}

sysSt!fireSyss →
switchM?nm→ SwitchInternalFCMode; FireSys2
2 det?nz→ lamp[ZoneId].nz!on→ alarm!firstStage→

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR→ lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

2 fault?faultId → lamp[LampId].(getLampId faultId)!on→
buzzer!on→ FireSys2

‖ AreasCycle

= [Definition ofFireSys2]
(FireSys2 ‖ AreasCycle) \ GSync 2

Using these lemmas, and those related to the remaining actions, which are omitted here,
we prove thatFC1 is refined byConcreteFC.

Process RefinementWe partitioned the state of the processFC1 into InternalFCStand
AreasSt. Each partition has its own set of paragraphs, which are disjoint, since, no action
in one changes a state component in the other. Furthermore, the main action of the refined
process is defined in terms of these two partitions. Therefore, we may apply Law A.18 in
order to split processConcreteFCinto two independent processes as follows.

processConcreteFC=̂ (InternalFC|[Σ2]| Areas) \ GSync

The ConcreteFCis redefined as the parallel composition ofInternalFC andAreas. Their
definitions can be deduced from the definition ofConcreteFC.

3.2.3 Second Iteration: splittingInternalFC into two controllers

In this iteration, we splitInternalFC into two separated partitions: the first one corresponds
to theFC controller, and the other theDisplayControler (see Figure 4).

Action Refinement We rewrite the actions so that theFC paragraphs no longer deal with
the display events, which are dealt byDisplayC. The fire control state is left unchanged.

processConcreteInternalFĈ= begin
FCSt=̂ [mode1 : Mode]

Furthermore, the display controller has no state at all. The new state is defined as follows.

302 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

stateInternalFCSt1 =̂ FCSt

The operations over theInternalFCStare slightly changed: they are renamed and affect
theFCSt, which is the same as theInternalFCSt. Their definitions, and those of all actions
overFCSthave the same definition and description as those ofFC. The display paragraphs
are those ofDisplayC, which can be found in Section 3.2.1.

The main action of theConcreteInternalFCis as follows.

• (FireSysStart|[α(FCSt) | Σ2 | α(DisplayCState)]| StartDisplay) \ DisplaySyncend

We have the parallelism of actionFireSysStartand StartDisplay, with the channels used
exclusively for their communication hidden. Again, sinceFireSysStart2, FireSysStart, and
StartDisplayare defined using mutual recursion, we use Theorem 3.1 to prove that the process
InternalFC is refined byConcreteInternalFC.

Process RefinementEach partition inConcreteInternalFChas its own set of paragraphs,
which are disjoint. Furthermore, we define the main action of the refined process in terms of
these two partitions. Applying Law A.18, we get the following result.

processConcreteInternalFĈ= (FC |[Σ1]| DisplayC) \ DisplaySync

The processesFC and theDisplayCwere already described in the specification of the con-
crete system in Section 3.2.1.

3.2.4 Third Iteration: splitting theAreasinto individualAreas

This last iteration aims at splittingAreasin individual processesAreafor each area.

Data Refinement First, we must apply a data refinement to the original processAreas.

processAreas1 =̂ begin

We introduce a local stateAreaStateof an individualArea. Its definition is very similar to
that of the concrete system, but includes an identifierid : AreaId. The global stateAreasStis
rewritten with a total function fromAreaId to local states. The invariant is slightly changed
to handle the new data structure.

state
AreasSt1
areas: AreaId→ AreaState

∀a : AreaId• (areas a).id = a
∧ ((areas a).mode= automatic) ⇒

(areas a).active= true⇔ #(areas a).actZns≥ 2
∧ ((areas a).mode= manual) ⇒

(areas a).active= true⇔ #(areas a).actZns≥ 1
∧ (areas a).actZns⊆ (areas a).controlZns
∧ (areas a).controlZns= getZones a

The retrieve relation is very simple and is defined below.

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 303

RetrieveAreas
AreasSt; AreasSt1

∀ a : AreaId• (areas a).mode= modeA
∧ (areas a).controlZns= controlZns1 a
∧ (areas a).actZns= actZns1 a
∧ (areas a).discharge= true⇔ a ∈ discharge1
∧ (areas a).active= true⇔ a ∈ active1

The mode in each of the local areas is that ofAreas; the controlled and active zones of an
area is defined as the corresponding image in the global state; a discharge has occurred in an
area, if it is indischarge1; and finally, the area is active if it is inactive1.

We introduce the paragraphs related to the local stateAreaState. Basically, we have
a corresponding local action for each global action. They are identical to those presented
within the processArea in the concrete system, and are omitted at this point for conciseness.

Next, we redefine each of the global operations. Basically, all global operations have an
effect in each of the individual local states. For instance,InitAreasis refined below.

InitAreas1
AreasSt′1

∀ a : AreaId• (areas′ a).actZns= ∅ ∧ (areas′ a).discharge= false
∧ (areas′ a).mode= automatic

The proof of the simulations are simple, but long. As before, for the main action, we rely
on the fact that forwards simulation distributes through action constructors. The new actions
have the same structure as the original ones, but use new schema actions.

StartAreas1 =̂ switch→ InitAreas1; AreasCycle1
AreasCycle1 =̂ actuatorsR→ SwitchAreas2Auto1;ResetAreas1

2 switchM?nm→ SwitchAreasMode1; AreasCycle1
2 det?nz→ ActivateZoneAS1;

(∀a : AreaId• (areas a).mode= automatic) & AutoAreas1
2 (∀a : AreaId• (areas a).mode= manual) & ManualAreas1

Since all the output and input values are not changed, in the application of Law A.2 we only
rely on distribution. On the other hand, all the guards are changed. Both provisos raised by
Law A.3 need to be proved. For instance, to prove the refinement ofAreasCycle1 we need
the following lemma.

Lemma 3.4 For any Mode m,

∀AreasSt; AreasSt1 • RetrieveAreas⇒
modeA = M ⇔ ∀ a : AreaId• (areas a).mode= M

Proof. The proof of this lemma follows from predicate calculus, using theRetrieveAreasto
relatemodeA with each individual area’smode. 2

The main action of the areas,Areas1, is the simulation of the original action.

• StartAreas1 end

This concludes this data refinement step.

304 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

Action Refinement In order to apply a process refinement that splits theAreasprocess into
individual areas, we redefine each of the paragraphs within the processes areas as a promotion
of the corresponding original one.

The local paragraphs and the global state remain unchanged. However, a promotion
schema is introduced; it relates the local state to the global one.

Promotion
∆AreasSt1; ∆AreaState; id? : AreaId

θAreaState= areas id? ∧ areas′ = areas⊕ {id? 7→ θAreaState′}

The global operations are refined to a definition in terms of the corresponding local oper-
ations. For instance, the initialisation is refined as follows.

InitAreas1 =̂ ∀ id? : AreaId• InitArea∧ Promotion

This can be proved using the action refinement laws presented in [12]. The redefinition of
the remaining operations are trivially similar and omitted here.

The functionpromote2 promotes a givenCircus action. The promotion of schemas is as
in Z, and the promotion ofSkip, Stop, Chaos, and channels do not change them.

promote2(c.e→ A) =̂ c.promote2(e) → promote2(A)

References to the local components have to become references to the corresponding compo-
nent in the global state; all other references remain unchanged. An implicit parameter is a
functionf that maps indexes to instances of the local state. Another implicit parameter is the
index i that identifies an instance of the local state in the global state.

promote2(x) =̂ (f i).x providedx is a component ofL.st
promote2(x) =̂ x providedx is not a component ofL.st

This function is very similar to the functionpromote presented in [2]; however, it does not
promote channels as the original one does.

Each action is defined as an iterated parallelism of the promotion of the corresponding
local operation, but substituting the areaid by the indexing variablei. Each branch of the
parallelism may change its corresponding local stateareas i; the remaining branchesj, such
thatj 6= i, may change the remaining local statesareas j. For instance, the actionsStartAreas1
andAreasCycle1 can be rewritten as follows.

StartAreas2 =̂ ‖ i : AreaId|[θ (areas i) | Σareas | ⋃
j:AreaId|j 6=i θ (areas j)]| •

(promote2 StartArea) [id, id? := i, i]

The remaining actions are rewritten in a very similar way. Finally, we replace the main action.

• StartAreas2 end

SinceStartAreas1 andStartAreas2 use mutual recursion, we use Theorem 3.1 again.

Process RefinementThis last process split needs a new process refinement law. Law 3.1
presented below applies to processes containing a local and a global stateLStateandGState,
local paragraphs that do not affect the global state, a promotion schema, and global para-
graphs expressed in terms of the promotion of local paragraphs to the global state using
iterated parallelism. The operationL.pps ↑ GStateconjoins each schema expression in the
paragraphsL.ppswith ΞGState; this means that they do not change the components ofGState.
The results of this application are two processes: a local processL parametrised by an iden-
tifier id and a global processG defined as an iterated parallelism of local processes.

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 305

Law 3.1

processG =̂ begin
LState=̂ [id : Range; comps| predl]
stateGState=̂ [f : Range→ LState| ∀ j : domf • (f j).id = j ∧ predg]
L.schemaj ↑ GState
L.actionk ↑ GState
L.act ↑ GState

Promotion
∆LState; ∆GState; id? : Range

θLState= f id? ∧ f ′ = f ⊕ {id? 7→ θLState′}

G.schemaj =̂ ∀ id? : Range• L.schemaj ∧ Promotion
G.actionk =̂ ‖ i : Range|[θ (f i) | cs | ⋃

j:Range|j 6=i θ (f j)]| •
(promote2 L.actionk) [id, id? := i, i]

G.act =̂ ‖ i : Range|[θ (f i) | cs | ⋃
j:Range|j 6=i θ (f j)]| •

(promote2 L.act) [id, id? := i, i]
• G.act end

= processL =̂ (id : Range• begin stateLState=̂ [comps| predl]
L.schemaj L.actionk • L.act end)

processG =̂ ‖ id : Range|[cs]| • L(id)

We can apply this law toAreas1 in order to express theAreasprocess as the following
parallelism of individualAreaprocesses.

processConcreteAreaŝ= ‖ id : AreaId|[Σareas]| • Area(id)

TheAreadefinition corresponds to that in the concrete system.

4 Conclusions

In this work, we present a development of a case study on theCircus refinement calculus.
Using the refinement strategy presented in [2], we derive a distributed fire protection system
from an abstract centralised specification. The result of the refinement presented here does
not involve only executable constructs; additional simple schema refinements using [15] were
omitted here. Our case study has motivated the proposal of new refinement laws; some of
them can be found in Appendix B. There are more than fifty new laws, including process
refinement laws. Their definitions can be found in [12]. Furthermore, some laws presented
in [2] were found to be incorrect and corrected here. For instance, Law B.15 did not have any
proviso in its original version in [2].

Refinement has been studied for combinations of Object-Z and CSP [16]; however, as far
as we know, nothing has been proposed in a calculational style like ours. In [17], Olderog
presents a stepwise refinement for action systems, in which most refinement steps involve
sequential refinements; the decomposition of atomic actions introduces parallelism. The main
difference of action systems formalism andCircus is that, using CSP operators,Circus has
a much richer control flow than the flat structure of action systems, where auxiliary variables
simulating program counters guarantee the proper sequencing of actions.

306 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

The development of programs is supported by a design calculus foroccam-like [18]
communicating programs in [19]; semantics of programs and specifications are presented in a
uniform predicative style, which is close to that used in the unifying theories of programming.
This work is another source of inspiration forCircus refinement laws.

In this paper, we show that, usingCircus, we were able to specify elegantly both be-
havioural and data aspects of an industrial scale application. The refinement strategy pre-
sented in [2] was also proved to be applicable to large systems. In our case study, the de-
velopment consists of three iterations: the first one splits the system into a system controller
and the sensors. In the second iteration, the control is subdivided into two different con-
trollers: one for the system and one for the display. Finally, the third iteration splits the
sensors into individual processes, one for each area.

All the laws presented in [2] and [12] are currently being proved using the theorem prover
ProofPower-Z. These proofs make the basis for a tool that supports our refinement strategy
and the application of a considerable subset of the existing refinement laws ofCircus. By
providing this tool, we intend to transform theCircus refinement calculus into a largely used
development method in industry.

References

[1] A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in Circus. In L Eriksson and
PA Lindsay, editors,FME 2002: Formal Methods - Getting IT Right, volume 2391 ofLecture Notes in
Computer Science, pages 451–470. Springer-Verlag, unknown 2002.

[2] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement Strategy for Circus.Formal
Aspects of Computing, 15(2-3):146–181, November 2003.

[3] J. C. P. Woodcock and J. Davies.Using Z – Specification, Refinement, and Proof. Prentice-Hall, 1996.

[4] J. M. Spivey.The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1992.

[5] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in Computer Science.
Prentice-Hall, 1998.

[6] C. A. R. Hoare and J. He.Unifying Theories of Programming. Prentice-Hall, 1998.

[7] A. J. Galloway. Integrated Formal Methods with Richer Methodological Profiles for the Development of
Multi-perspective Systems. PhD thesis, University of Teeside, School of Computing and Mathematics,
1996.

[8] K. Taguchi and K. Araki. The State-based CCS Semantics for Concurrent Z Specification. In M. Hinchey
and Shaoying Liu, editors,International Conference on Formal Engineering Methods, pages 283 – 292.
IEEE, 1997.

[9] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through Determinism. In D. Gollmann,
editor,ESORICS 94, volume 1214 ofLecture Notes in Computer Science, pages 33 – 54. Springer-Verlag,
1994.

[10] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and J. Derrick, editors,
Formal Methods for Open Object-Based Distributed Systems (FMOODS’97), volume 2, pages 423 – 438.
Chapman & Hall, 1997.

[11] Carroll Morgan.Programming from Specifications. Prentice-Hall, 2nd edition, 1994.

[12] M. V. M. Oliveira. The development of a fire control system in circus. Technical report, University
of Kent, Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK, May 2004. At
http://www.cs.kent.ac.uk/˜mvmo2/circus/fcs.pdf.

[13] Data Sheet MPE.130. At http://www.cs.kent.ac.uk/˜mvmo2/circus/mpe130.html.

[14] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall International, 1985.

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 307

[15] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC - A Refinement Calculus for Z.Formal Aspects of
Computing, 10(3):267 – 289, 1999.

[16] G. Smith and J. Derrick. Specification, refinement and verification of concurrent systems - an integration
of Object-Z and CSP.Formal Methods in Systems Design, 18:249–284, May 2001.

[17] R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms.Science of Computer Programming,
13(2-3):133 – 180, 1990.

[18] G. Jones and M. Goldsmith.Programming in occam 2. Prentice-Hall, 1988.

[19] E. R. Olderog. Towards a design calculus for communicating programs. In J. C. M. Baeten and J. F.
Groote, editors,CONCUR’91: Proc. of the 2nd International Conference on Concurrency Theory, pages
61–77. Springer, Berlin, Heidelberg, 1991.

308 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

A Existing Refinement Laws

Simulation Laws

Law A.1 ASExp¹ CSExp
provided

• ∀P1.st; P2.st; L • R∧ preASExp⇒ preCSExp

• ∀P1.st; P2.st; P2.st′; L • R∧ preASExp∧ CSExp⇒ (∃P1.st′; L′ • R′ ∧ ASExp)

Law A.2 c!ae→ A1 ¹ c!ce→ A2

provided ∀P1.st; P2.st; L • R⇒ ae= ce and A1 ¹ A2.

Law A.3 ag & A1 ¹ cg & A2

provided ∀P1.st; P2.st; L • R⇒ (ag⇔ cg) and A1 ¹ A2.

Action Refinement Laws

Law A.4 { g}; A = { g}; g & A

Law A.5 g1 & (g2 & A) = (g1 ∧ g2) & A

Law A.6 g2 & AvA g3 & A provided g2 ⇒ g3

Law A.7 {p}; (A1 2 A2) = ({p}; A1) 2 ({p}; A2)

Law A.8 { g1 }; (g2 & A) = { g1 }; (g3 & A) provided g1 ⇒ (g2 ⇔ g3)

In the following law we refer to a predicateass′. In general, for any predicatep, the predicate
p′ is formed by dashing all its free undecorated variables. We consider an arbitrary schema
that specifies an action inCircus: it acts on a stateStand, optionally, has input variablesi?
of typeTi, and output variableso! of typeTo.

Law A.9 [∆St; i? : Ti; o! : To | p ∧ ass′] = [∆St; i? : Ti; o! : To | p ∧ ass′]; {ass}

Law A.10 {p} vA Skip

Law A.11 (A1; A2) |[ns1 | cs | ns2]| A3 = A1; (A2 |[ns1 | cs | ns2]| A3)
provided

• initials(A3) ⊆ cs;

• cs∩ usedC(A1) = ∅;
• wrtV(A1) ∩ usedV(A3) = ∅

Law A.12 (A1 |[cs]| A2) 2 (B1 |[cs]| B2) = (A1 2 B1) |[cs]| (A2 2 B2)
provided A1 |[cs]| B2 = A2 |[cs]| B1 = Stop

Law A.13 A1 |[cs]| (A2 2 A3) = (A1 |[cs]| A2) 2 (A1 |[cs]| A3)
provided initials(A1) ⊆ cs and A1 is deterministic

M. Oliveira et al. / Refining Industrial Scale Systems in Circus 309

Law A.14 c→ (A1 |[cs]| A2) = (c→ A1) |[ns1 | cs∪ {|c|} | ns2]| (c→ A2)
syntactic restriction c /∈ usedC(A1) ∪ usedC(A2) or c ∈ cs

Law A.15 F(A \ cs) = F(A) \ csprovided cs∩ usedC(F()) = ∅

Law A.16 Skip; A = A = A; Skip

Law A.17

[∆S1; ∆S2; i? : T | preS1 ∧ preS2 ∧ CS1 ∧ CS2]
=
[∆S1; ΞS2; i? : T | preS1 ∧ CS1]; [ΞS1; ∆S2; i? : T | preS2 ∧ CS2]

syntactic restrictions

• α(S1) ∩ α(S2) = ∅
• FV(preS1) ⊆ α(S1) ∪ {i?} and FV(preS2) ⊆ α(S2) ∪ {i?}
• DFV(CS1) ⊆ α(S′1) and DFV(CS2) ⊆ α(S′2)

• UDFV(CS2) ∩ DFV(CS1) = ∅.

Process Refinement Laws

Law A.18 Let qd and rd stand for the declarations of the processes Q and R, determined by
Q.st, Q.pps, and Q.act, and R.st, R.pps, and R.act, respectively, and pd stand for the process
declaration above. Then pd= (qd rd processP =̂ F(Q, R)) providedQ.pps and R.pps are
disjoint with respect to R.st and Q.st.

B New Refinement Laws.

Action Refinement Laws.

Law B.1 c→ A = (c→ Skip); A

Law B.2 c?x→ (A1 |[ns1 | cs | ns2]| A2) = (c?x→ A1) |[ns1 | cs | ns2]| (c?x→ A2)
provided c /∈ usedC(A1) ∪ usedC(A2) or c ∈ cs

Law B.3 [S′1; S′2 | preS1 ∧ preS2 ∧ CS1 ∧ CS2] = [S′1 | preS1 ∧ CS1]; [S′2 | preS2 ∧ CS2]
provided

• α(S1) ∩ α(S2) = ∅
• FV(preS1) ⊆ α(S1) and FV(preS2) ⊆ α(S2)

• DFV(CS1) ⊆ α(S′1) and DFV(CS2) ⊆ α(S′2)

• UDFV(CS2) ∩ DFV(CS1) = ∅

Law B.4 2i
gi & (Ai |[ns1 | cs | ns2]| A) = (2i

gi & Ai) |[ns1 | cs | ns2]| A
provided initials(A) ⊆ cs

310 M. Oliveira et al. / Refining Industrial Scale Systems in Circus

Law B.5 (g1 ∧ g2) & (A1 |[ns1 | cs | ns2]| A2) = (g1 & A1) |[ns1 | cs | ns2]| (g2 & A2)
provided g1 ⇔ g2 or initials(A1) ∪ initials(A2) ⊆ cs

In the following law we refer to a predicateassump′.

Law B.6 [State′ | p ∧ assump′] = [State′ | p ∧ assump′]; {assump}

Law B.7 {g1} vA {g2} provided g1 ⇒ g2

Law B.8 µ P • V(P) vA µ P • V(P)[{g}; Fi(P)/Fi(P)]
provided {g}; (F(P) before Xi) vA (F(P) before Xi); {g} for all F(P) in V(P)
where P= X1, . . . , Xn, V(P) = F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn), and V(P)[exp/Fi(P)]
express the substitution of the i-th element of the vector V(P) by the expression exp.

Law B.9 {g}; c!x→ A = c!x→ {g}; A

Law B.10 {g}; c?x→ A = c?x→ {g}; A provided x /∈ FV(g)

Law B.11 {g}; c→ A = c→ {g}; A

Law B.12 {g}; [d | p] = [d | p]; {g} provided g ∧ p⇒ g′

Law B.13

(2i
gi & SExpi); (A1 |[ns1 | cs | ns2]| A2) vA ((2i

gi & SExpi); A1) |[ns1 | cs | ns2]| A2

provided

• ⋃
i wrtV(SExpi) ⊆ ns1 ∪ ns′1

• ⋃
i wrtV(SExpi) ∩ usedV(A2) = ∅

Law B.14 A1 |[ns1 | cs | ns2]| A2 = A2 |[ns2 | cs | ns1]| A1

Law B.15 A |[cs]| Stop= Stop|[cs]| A = Stop provided initials(A) ⊆ cs

