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Abstract. Software Defined Radio(SDR) requires a reliable, fast and flexible method
to chain parametrisable algorithms.Communicating Sequential Processes(CSP) is a
design methodology, which offers exactly these properties. This paper explores the
idea of using a Java implementation of CSP (JCSP) to model a flexible algorithm
chain for Software Defined Radio. JCSP offers the opportunity to distribute algo-
rithms on different processors in a multiprocessor environment, which gives a speed
up and keeps the system flexible. If more processing power is required another pro-
cessor can be added. In order to cope with the high data rate requirement of SDR,
optimized data transfer schemes were developed. The goal was to increase the overall
system efficiency by reducing the synchronisation overhead of a data transfer between
two algorithms. To justify the use of CSP in SDR, a system incorporating CSP was
compared with a conventional system, in single and multiprocessor environments.

1 Introduction

A Software Defined Radio (SDR) is a single device which is capable of performing different
wireless communications functions at different times [1, 2]. Such devices avoid communi-
cation breakdowns by adjusting to new environments. Such a breakdown happened during
the first gulf war (1991): the U.S. military observed that their operations were hindered by
incompatible radio equipment. This was the reason why the SPEAKeasy project [3] was
launched by different branches of the U.S. military as one of the first attempts to create a
Software Defined Radio.

Algorithms are used to model the functionality of an SDR device at a specific time. It
is not efficient to state a specific functionality in the form of a single sequential algorithm,
because this does not allow for reusing parts of the algorithm to model other functionality.
Therefore, it is desirable to have general parametrisable algorithms, generic enough to be
employed in different models. This requires the ability to execute multiple algorithms and to
move data freely between them. The execution of the individual algorithm should only de-
pend on the data, such that only data processing, and not waiting for data, requires processing
resources. This reduces the processing time, because one processor, or a processor network,
can be shared among multiple algorithms. The design of such systems is one of the goals
of Communicating Sequential Processes (CSP) [4]. The sharing of processing resources is
achieved by executing multiple processes concurrently. A process incorporates a rule defin-
ing the relationship between data input and output. For Software Defined Radio the rules
are stated as algorithms. Data can be exchanged between processes by means of channels



326 O. Faust et al. / Chaining Communications Algorithms with Process Networks

connecting the individual processes. Part of the power of CSP is the way the data exchange
is synchronised between individual processes. The formal correctness of a given CSP sys-
tem can be proved mathematically. This allows the separation of the functionality from the
synchronisation, leading to data driven systems. The SDR concept is an extension of a data
driven system, such that not only the data exchange between algorithms is data dependent,
but even the algorithms themselves depend on the data, i.e. the algorithms change depending
on the data to be processed.

The price for having parallelism in an SDR system is the increased synchronisation over-
head, which decreases the data throughput. But data throughput is one of the factors which
limits the capability of a particular SDR system. The practical part of this paper (Section 4)
details buffer reuse as one of the methods to increase the data throughput. For a particular
channel, the total time spent on synchronisation depends on the synchronisation overhead and
on how often the channel is used. If a fixed data-rate is assumed for a particular channel, then
the data frame size will determine how frequently a channel is used. The effect of different
frame sizes on the data throughput is shown in the measurements detailed in Section 6.

2 Discussion: Sequential versus Concurrent Data Processing

Data processing is a repeating three-step process: fetching a data block, processing it and
storing the result. Based on this definition it is possible to state the optimal condition for
data processing: A data processing system is called optimal if it can meet the processing
requirements while utilising as little resources as possible. Under these constraints a data
processing design which utilises a single processor to 100% is optimal, due to the fact that the
processor is the limiting resource. In a sequential design the three steps for data processing
are performed in a single loop. Under practical considerations a sequential design has several
problems.

In a real-time environment, the data fetching, processing, and result storage steps run
with a constant data rate. This means that data fetching and storing steps require time. The
processor does not perform these steps, these are done by external entities. The processor
waits for these entities to signal completion. If the data processing is performed sequentially,
the wait time cannot be utilised for data processing. To achieve the desired output rate, the
processing has to be done in the remaining time, which requires a faster processor. Therefore,
a sequential design is not an optimal solution for real-time signal processing. The situation
worsens when executing a sequential design in a multiprocessor environment, because only
one processor is utilized. The only way to speed up a given sequential design is to use a faster
processor! There is a linear relationship between the execution speed of a sequential design
and the processor speed.

To utilise wait times as well as multiple processors, the fetching, processing and storing
steps should be performed concurrently. Each of the steps forms a small-scale sequential
algorithm. These concurrently executing steps need to exchange the results of their labour.
These exchanges must be safe, i.e. the concurrent operating steps must perform synchronised
data exchange. The synchronisation of the interconnects requires processing power, but this
is a small price to pay for a nearly full utilisation of multiple processors.

3 Some SDR Algorithms

An algorithm produces specific output from specific input, and the input-output relationship
is normally expressed in mathematical terms. The discussion here is restricted to the algo-
rithms used in the system implementation (see Section 4). These algorithms come from the
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area of digital communications, which is a field where Software Defined Radios are widely
employed.

Most of the transmission signals used for digital communications are defined in the base-
band domain. This allows the description of the signal independently from the actual trans-
mission frequency. In a transmitter a Digital Up Converter (DUC) is used to shift the base
band signal to a transmission band. A receiver incorporates a Digital Down Converter (DDC)
for the inverse operation. To state a distributed model for both the DUC and DDC function-
ality, the following five different algorithms are required:

• Up-Sampler,L ↑;

• Finite Impulse Response Filter,FIR ;

• I/Q Combiner,IQ/IF ;

• I/Q Splitter,IF/IQ ;

• Down-Sampler,L ↓;

IF

IQFIRL
Complex
Source Sink

FIRL

I

Q
IF

Digital Up Converter (DUC)

Figure 1: Digital Up Converter algorithm chain

A detailed description of these algorithms can be found in various Digital Signal Processing
text books [5, 6]. Figure 1 shows how these algorithms are connected in order to represent
the DUC functionality. The output of the source is an arbitrary complex baseband signal,
the real part of this signal is represented by an I (Inphase) signal and the imaginary part
is represented by a Q (Quadrature) signal. Representing the base band signal via I and Q
has the advantage that the subsequent algorithms process real instead of complex numbers:
this simplifies the algorithm implementation. The upsampling and filtering combination is
used to increase the sample frequency of the baseband signal. This operation allows the I/Q
Combiner to shift the baseband signal into an intermediate frequency (IF). The IF signal is a
real valued transmission signal. The value of the IF (intermediate frequency) must be stated
as a rational number (numerator and denominator) to ensure that the signal can be created
with a digital system. In other words, it must be possible to represent one or multiple periods
with a finite (integer) number of samples.

IF
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Figure 2: Digital Down Converter algorithm chain

Figure 2 details the block diagram for the DDC. The I/Q splitter shifts the received IF sig-
nal down into the baseband domain. This baseband signal has an unnecessarily high sample
frequency, i.e. the highest possible signal frequency is much lower than half of the sample fre-
quency [7]. The filtering and down sampler combination reduces the sample frequency. This
operation is necessary because the sample frequency determines the processing speed for the
subsequent baseband processing algorithms. For simplicity these algorithms are represented
by the complex sink block in Figure 2.



328 O. Faust et al. / Chaining Communications Algorithms with Process Networks

If the FIR algorithm is parametrisable, the same implementation can be used for DUC and
DDC. This reduces the implementation time and improves the quality of the result, because
well known standard implementations can be used. Due to the fact that a receiver merely
performs the inverse operations of a transmitter, such synergy effects are quite frequent in
digital communication systems. For SDR, the synergy effects are not limited to transmitter
and receiver symmetries, they extend to similarities between different standards [8]. The
DUC and DDC functionalities are perfect examples of synergies across different standards.
If the individual algorithms can be parametrised, there is only one implementation required
to accommodate a multitude of different standards.

4 Implementation Aspects

SDR systems can be used in various types of environments, such as client PCs, broadcasting
or embedded systems. As the algorithms stay the same, they should be executable in the
different environments without any changes. In the Java environment, the compiler translates
the source code into Java Byte code, which is executable by a Java Virtual Machine (JVM).
JVMs are available for nearly all types of environments, making the Java environment ideal
for implementing SDR systems.

NO

Yes

Process Q-Frame 
to Q1-Frame

Process I-Frame 
to I1-Frame

Split Frame
into I- and Q-Frame

IQ-Combine I1 
and Q1-Frame 

to IF-Frame

Write IF-Frame
to destination

Acquisition
successful

?
Exit

Acquire Frame

Figure 3: Finite State Machine of
the DUC chain.

The system under discussion here consists of the algo-
rithm chains shown in Figures 1 and 2. To be able to verify
the correct functioning of the algorithm chain, it was decided
to process files compatible with the FhG Software Radio [9].
This is software that decodes signals according to the Digital
Radio Mondiale (DRM) standard [10]. The FhG Software
Radio is able to decode files containing DRM signals in ei-
ther IF or IQ format. The files contain samples of 16 bit res-
olution, which corresponds to the short data type in Java. As
all the algorithm implementations operate with integer val-
ues, a data conversion has to be performed.

For the Digital Up Converter (DUC) of Figure 1 a com-
plex source, providing the I and Q components, is required.
As the file format stores these two signal components in a
multiplexed form, a de-multiplexing step is required. This
de-multiplexing step will also perform the data type conver-
sion from short to integer. For the Digital Down Converter
(DDC) of Figure 2, an IQ-Multiplexer is required in order to
write files compatible with the Fraunhofer Software.

Processing single samples introduces a high number of
function calls, which in turn decreases the performance of the
system. To avoid this, groups of samples, so-called frames,
are constructed and processed together. Increasing the frame-
size results in a greater delay, as the system has to wait longer
for the frames to become available. The frame-size depends
on the processing system and the particular application. In
SDR the applications are not fixed, some applications allow
more delay than others. For example, a broadcast standard
allows more delay than a communication standard, because a human is able to detect com-
munication delays that are larger than 20ms. This is the reason why in the SDR system
under discussion the frame size must be flexible. This is relatively unusual for CSP systems;
normally all parameters are optimised for fastest processing without latency constraints.
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4.1 Sequential Implementation

For implementing the sequential approach, each algorithm of the DUC and DDC chains is
implemented as a Java class. The DUC and DDC chains require the signal data to be pro-
cessed by the algorithms in a fixed way. Therefore, each chain is represented by a function,
which instantiates the algorithms and calls each of them according to the schedule. This is
equivalent to a finite state machine, as shown in Figure 3 for the DUC chain.

4.1.1 Optimisation of the Sequential Implementation

In the sequential implementation each algorithm allocates a new output buffer and disposes
of the input buffer. Both allocation and disposing of buffers takes time, which could be spared
if the output buffer could be recycled. Since only one algorithm is executing at a time, and
the frame-size does not change during runtime, recycling of the buffer is possible.

4.2 Concurrent Implementation using CSP

CSP is not included in the standard Java distribution, so a Java implementation of CSP had
to be found.Communicating Threads for Java(CTJ) [11, 12, 13, 14] andCommunicating
Sequential Processes for Java(JCSP) [15, 16, 13, 14] seemed to be what we were looking
for. JCSP and CTJ have a similar goal and therefore provide a similar functionality, and to
choose between them was not easy. In the end, the exhaustive documentation, with lots of
examples plus lots of other support material, made JCSP the implementation of choice.

In CSP, each process executes independently from other processes: this makes it pos-
sible to execute multiple processes concurrently. Data exchange between processes is only
possible by using unidirectional channels which act as a synchronisation mechanism. Every
process has channel-inputs and channel-outputs, depending on its communication require-
ments. The combination of processes and their interconnection channels is called a process
network.

To convert the sequential implementation into a concurrent implementation, we have to
transfer the sequential algorithm chain into a process network. To create this process network
it is necessary to identify the independent components of the sequential algorithm chain, and
convert each into a process. Taking a look at block diagrams, Figures 1 and 2, identifies
that each block performs its operation independently from other blocks. Therefore, each
block is converted into a process. This is done by implementing a wrapper class. This
wrapper class has an instance of the algorithm class as member, whilst providing a CSP
conforming interface. To create the corresponding process network is now only a matter of
interconnecting the processes according to the block diagrams.

As the concurrent approach can only utilise as many processors as it has processes, a
large number of processes is desirable. For the developer, on the other hand, a large number
of processes becomes difficult to handle. It is difficult for the programmer to maintain an
overview of the complete method/function: this leads to insecurity. Fortunately, CSP allows
the creation of components and their use in a hierarchical fashion [17]. This is enabled by
the fact that a process network in CSP is nothing else than a process. Therefore, it is pos-
sible to use predefined process networks, as components, to build a larger process network.
This process network’s interface will simply consist of externally connected channel inputs
and outputs. This technique of component building was used to create the DUC and DDC
processes of Figures 1 and 2. The process-networks for the IQ-Combiner and IQ-Splitter are
shown in Figure 4.
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Figure 4: Process Networks for IQ-Combiner and IQ-Splitter.

4.2.1 Improving the Data Throughput

As previously stated, it is desirable to avoid unnecessary buffer allocation and disposal. In
the sequential implementation this was achieved by allocating a single output buffer, which
was then used as input by the following algorithm. Using the same scheme in the concurrent
implementation, where the algorithms are executed in parallel, could result in one algorithm
writing to the buffer while another reads from the same buffer. The result would be wrong,
rendering this implementation useless.

If we assume that each algorithm / process only operates on a single buffer per channel at
one time, it is sufficient to use two buffers which are exchanged between two processes. This
approach has two drawbacks. First, the size of the output buffers is fixed over the complete
runtime of the network. Second, each passing of output frames requires two channel commu-
nications: one to send the new output buffer and one to receive the now empty output buffer.
The two communications increase the synchronisation overheads, increasing the runtime.

In order to avoid the second channel operation, the sending process needs to keep a refer-
ence to both output buffers. One buffer is marked asoutput-buffer, to store processing results,
while the other buffer is marked asaway-buffer. Theaway-bufferis used by the next process
as its input. Once the process has completed processing its input, it sends theoutput-buffer
to the next process and swapsoutput-bufferandaway-buffer. The switching of the buffers is
handled by a so-called BufferKeeper object. Figure 5 illustrates the working of the scheme.

B1

B2

Algorithm
1

Process 1

JCSP
Channel

Buffer Keeper

B1

B2

Algorithm
2

Process 2

Buffer Keeper

Figure 5: Buffer Reuse Scheme in the Algorithm Chain

For this scheme to work it is important to know when the receiver has processed the
previous buffer. This is solved by constraining the receiver to request a new buffer only after
the previous buffer is processed. With this method it is safe to perform the output buffer
switch after the sending operation has succeeded.
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5 Comparison between Sequential and Concurrent Implementation

The concurrent implementation has multiple advantages over the sequential implementation.

5.1 Easy to Apply, Easy to Debug

It is easy to convert sequential algorithms into CSP processes. This is done by creating a
process which performs the channel operations, and uses the algorithm implementation to
create the desired output from the input. This approach provides a clean division between
functionality and synchronisation. This scheme allows the development and verification of
functionality and synchronisation separately. This results in simpler test setups and therefore
faster development.

5.2 CSP Enables Compact Designs

In CSP everything is a process, resulting in process networks also being processes. This
enables the abstraction of recurring process networks in the form of processes. For the user of
the resulting process it does not matter if there is a single process or a process network inside.
These processes allow us to build components [17], which can be tested individually (unit
testing) [18]. This component based approach accelerates and simplifies the development of
algorithm chains, due to the use of previously developed and tested components. The ability
to layer CSP based systems produces compact designs: these can be easier to understand and
are therefore desirable [19]. The DUC chain, for instance, has two layers:

1. Top Layer: Complex Source, Digital Up Converter, Sink.

2. Bottom Layer:

• Complex Source: File Input, IQ-Demux

• Digital Up Converter: I-UpSampler, I-FIR, Q-UpSampler, Q-FIR, IQ-Combiner

• Sink: Int2Short, File Output.

5.3 Taking Advantage of Multiple CPUs

A concurrent implementation can provide a speedupS on multiple CPUs. The speedup is
defined as [20]:

S =
TS

TN

(1)

with

• TS = optimal sequential processing time; the best time that can be achieved on a single
processor using the best sequential algorithm

• TN = concurrent processing time; the actual time achieved on anN -processor system
with the concurrent algorithm and a specific scheduling method being considered.

In our case, the time of the sequential implementation is considered asTS. The scheduling is
fixed by the fact that the sequence of the algorithms is fixed by the task itself. The runtime
of the sequential implementation is nearly independent of the frame-size. For the concurrent
approach, larger frame-sizes result in fewer channel operations and therefore in less synchro-
nisation overhead. That means its runtime decreases with increasing frame-sizes. A graph
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Figure 6: Comparing the runtime of concurrent and sequential implementation, on a dual CPU machine.

showing the dependency of the runtime of sequential and concurrent implementations on the
frame-size is given in Figure 6.

More interesting than the raw speedup, which depends on the number of CPUs, is whether
the efficiency of the concurrent implementation scales on multiple CPUs. The efficiencyE,
of a concurrent implementation is defined as:

E =
S

N
=

TS

TN · N
(2)

with N as the number of CPUs in the system. A plot of the efficiency versus the frame-size
is given in Figure 7.

5.4 Wait Cycles Introduced by the IO Subsystem can be used for Signal Processing

The runtime of the sequential approach is defined as the summation of all steps of processing:

TS =
m∑

i=1

ti (3)

with:

• ti = execution time for one step of a sequential implementation
• m = number of steps in a sequential implementations.

Assuming that the sequential algorithm chain is connected to a slow source or sink, the
time spent waiting for the IO subsystem is reflected in the processing time. The concurrent
implementation can utilise this wait time to perform processing. The processing time is
determined solely by the IO subsystem if the processing is faster than the acquiring or storing
of the data. Due to this fact a concurrent implementation, on a single CPU system, can be
faster than a sequential implementation.
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Figure 7: Efficiency of the JCSP implementation, on a dual CPU machine over the frame size.

6 Measurements

All measurements were performed using an HP workstation x4000, equipped with two Intel
P4 Xeon 1.5GHz CPUs with 256kB cache and 512MB Rambus RAM. J2SDK build 1.4.201-
b06 for Linux, available from Sun, was used as the Java environment. The Java environment
was installed on Slackware Linux 9.1 running Linux Kernel 2.6.3, fromkernel.org .

For all measurements, the Digital Up and Down Converter chains were parametrised:

DUC chain:

• Up-sampling factor: 4

• Numerator: 1

• Denominator: 4

DDC chain:

• Down-sampling factor: 4

• Numerator: 1

• Denominator: 4

All measurements represent the combined runtime of the DUC and the DDC chain.

6.1 Efficiency

Measurement Setup:In order to avoid undue influence by the IO sub-system, a source and
sink which operate with virtually no latency were developed. The source supplies a specific
number of samples before signalling end of data. To show that the runtime depends on the
frame-size, the source is able to supply frames of any size. The implementation of the sink
is an empty function, which gets called, but does not perform any processing. This setup
allows us to measure the runtime of the algorithm chains without disturbance from the IO
sub-system.
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The runtime of the implementations were measured assuming a round trip, first digital up
converting the data, then digital down converting it. The DUC chain is sourced with6 · 106

IQ-samples producing24 · 106 IF-samples – due to the performed up-sampling. The DUC
chain is sourced with these24 · 106 samples.

For measuring the optimal sequential processing time (TS), the machine was loaded with
a single CPU kernel. For each frame-size, ten runtime measurements were taken and the
lowest result was taken asTS for this frame-size.

To determine the concurrent processing time (TN ), also ten measurements per frame-size
were performed.

Measurement Results: The efficiency graph in Figure 7, shows the dependency of the con-
current implementation on the frame-size. Generally speaking, the larger the frames get,
the less synchronisation overhead is introduced. In our case the efficiency is over 80% with
frame-sizes of 6000 samples upwards.

6.2 Slow IO Sub-system

The aim of this measurement was to show that a concurrent implementation has advantages
even on a single CPU system. This is for instance the case when a single CPU system acquires
the data to process from a slow IO sub-system without caching.

Measurement Setup: In order to create reproducible measurement results, a data rate con-
trolled source was developed. The data rate was specified as samples per secondsps. The
source holds a variable containing the number of available samples, theas-counter. The as-
counter gets incremented, with a samples per tick valuespt, by a periodic timer thread. In
Java (on Linux) a periodic timer thread can have a minimum period length of 1ms (1000 ticks
per secondtps). The particular kernel version used, provided the necessary timer resolution.
This results inspt = sps

tps
. Once the periodic timer thread has performed the increment, it

wakes up a possibly waiting receiver. If the as-counter value is larger or equal to the frame-
size, the receiver decrements the frame-size from the counter and processes the data. This
scheme provides a stable source for data rates that are integer multiples of 1000. This source
represents a data rate controlled source with cache, since the periodic timer thread always
increments the as-counter. The flowchart of the source is shown in Figure 8. For reasons of
simplicity, the synchronisation is not included.

To remove the caching feature from this source, it is necessary to stop incrementing the
as-counter while there is no reader waiting. This was done by introducing a reader waiting
flag, which is only set when a reader is waiting. The periodic timer thread checks this flag
and only when it is set increments the as-counter. The only problem is, that in the case that
the processing of a frame takes less than 1ms, the runtime is only determined by the source.
This is due to the fact that for the timer thread the receiver-waiting flag is constantly set. This
results in a measurement where the sequential approach would have always requested the
next frame, before it processed the current frame. In short, the source would behave as if it
would perform caching. Therefore, the measurements were done only with large frame-sizes,
which in any case took longer to process than 1ms. The source was parametrised to provide
a total of72 · 106 samples with a sample rate of1 · 106 samples/s. This results in the source
requiring72s to provide the data.

For this test run a frame-size of100, 000 samples was chosen. For each test case, 10 runs
were performed and the mean value used to produce Figure 9.
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Measurement Results: The bar graph in Figure 9 compares the runtime of sequential and
concurrent implementations, using different sources. The sequential implementation requires
96s to process data from a slow source. The slow source alone requires72s to provide the
data, leaving96s−72s = 24s, which is the processing time of the sequential implementation.
The sequential implementation sourced by the low latency (fast) source requires24.6s to
process the same amount of data. This supports the validity of the statement made in Equation
3 that the runtime of the sequential approach is the summation of all steps of processing.

The concurrent implementation, on the other hand, requires72.1s, which is very close to
the72s the source requires to provide the data. This shows that a concurrent implementation
can utilise wait times introduced by external entities to perform processing. A concurrent
implementation can have runtime advantages even on a single processor system.
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Figure 9: Impact of a slow source on the runtime of the different implementations on a single CPU machine
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7 Conclusions

The use of CSP technology in SDR systems is beneficial, because of increased flexibility
and reliability. Compared with other, monolithic, implementations the CSP approach offers
a speedup in multiprocessor systems, because the algorithms can be executed in parallel.
Multiprocessor systems require some sort of synchronization in order to keep track of which
algorithm is used to process what data. For Software Defined Radio systems these synchro-
nization methods are not the core problem, therefore it is advisable to use a standard method.
CSP represents such a standard method, which offers the opportunity to prove the absence of
deadlocks. Other implementations which cater for parallel processing require sophisticated
synchronization methods. In the best case these other synchronization methods are reinven-
tions, but most of the time they fall short in reliability and flexibility compared with the CSP
approach.

A flexible way of distributing the processor load is required in order to make full use of
a multiprocessor environment. CSP offers the opportunity to utilize additional processing
resources. The question is: how good are the algorithms when distributed over the available
processors. SDR requires mainly an algorithm chain where the processing speed is deter-
mined by the time requirement of the slowest process in the chain. The goal for a load
balancer is to find an optimal processing load distribution in a multiprocessor system. This
task is left for a future undertaking.
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[13] Peter H. Welch, Andŕe W. P. Bakkers, G. S. Stiles, and Gerald H. Hilderink. CSP for Java: Multithreading
for All. In Barry M. Cook, editor,Proceedings of WoTUG-22: Architectures, Languages and Techniques
for Concurrent Systems, pages 277–278. IOS Press, the Netherlands, 1999.

[14] Peter H. Welch, Gerald H. Hilderink, and Nan C. Schaller. Using Java for Parallel Computing - JCSP
versus CTJ. In Peter H. Welch and Andr W. P. Bakkers, editors,Communicating Process Architectures
2000, pages 205–226. IOS Press, the Netherlands, 2000.

[15] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In H.R.Arabnia, editor,Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), volume 1, pages 51–57. CSREA, CSREA Press, June 2000.

[16] Peter H. Welch. Java Communicating Sequential Processes Home Page. Available at:http://www.
cs.ukc.ac.uk/projects/ofa/jcsp/ Retrieved July, 2004.

[17] Peter H. Welch. Communicating Processes, Components and Scalable Systems. Homepage, May 2001.
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/components.pdf .

[18] Steven C. McConnell.Code Complete: A Practical Handbook of Software Construction. Microsoft Press,
One Microsoft Way, Redmond, Washington, 1993.

[19] Eric Steven Raymond.The Art of Unix Programming. Pearson Education, Inc., Pearson Education Inc,
Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston, MA 02116, first edition, 2004.

[20] Randy Chow and Theodore Johnson.Distributed Operating Systems & Algorithms. Addison Wesley,
2725 Sand Hill Road, Menlo Park, CA 94025, 1997.


