
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

373

Derivation of Scalable Message-Passing
Algorithms Using Parallel Combinatorial List

Generator Functions

Ali E. ABDALLAH and John HAWKINS

Research Institute for Computing,
London South Bank University,

103 Borough Road,
London SE1 0AA,
United Kingdom.

A.Abdallah@lsbu.ac.uk, John.Hawkins@reading.ac.uk

Abstract. We present the transformational derivations of several efficient, scalable,
message-passing parallel algorithms from clear functional specifications. The starting
algorithms rely on some commonly used combinatorial list generator functions such
astails, inits, splits andcp (Cartesian product) for generating useful intermediate
results. This paper provides generic parallel algorithms for efficiently implementing a
small library of useful combinatorial list generator functions. It also provides a frame-
work for relating key higher order functions such asmap, reduce, andscan with
communicating processes with different configurations. The parallelisation of many
interesting functional algorithms can then be systematically synthesized by taking an
“off the shelf” parallel implementation of the list generator and composing it with ap-
propriate parallel implementations of instances of higher order functions. Efficiency
in the final message-passing algorithms is achieved by exploiting data parallelism, for
generating the intermediate results in parallel; and functional parallelism, for process-
ing intermediate results in stages such that the output of one stage is simultaneously
input to the next one. This approach is then illustrated with a number of case studies
which include: testing whether all the elements of a given list are distinct, the max-
imum segment sum problem, the minimum distance of two sets of points, and rank
sort. In each case we progress from a quadratic time initial functional specification
of the problem to a linear time parallel message-passing implementation which uses
a linear number of communicating sequential processes. Bird-Meertens Formalism is
used to concisely carry out the transformations.

1 Introduction

The design of efficient algorithms for many interesting programming problems often relies
on the generation of combinatorial rearrangements of their input lists. A generic description
of such an algorithm can then be seen as taking a list of values, generating useful rearrange-
ments of the input list and processing those intermediate lists, possibly in parallel, in order to
construct the final result. Examples of combinatorial list generator functions include:inits,
tails andsegs which generate, from a given list, the list of all its prefixes, suffixes, and seg-
ments (contiguous sublists) respectively. An algorithm which operates on a combinatorial
list generator function, saygen, usually has the following form:

alg s = (phasen ◦ phasen−1 ◦ · · · ◦ phase1) (gen s)

374 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

wherephasei is usually an instance of a higher order library function. The sequential imple-
mentation of such an algorithm normally exhibits, at least, a quadratic time behaviour. This
is mainly because the size of the intermediate data generated by(gen s) is, at least, quadratic.
In [1, 2] it was shown that the above form can be correctly refined to a pipe of(n+1) commu-
nicating processes, as shown in Fig 1. Here the first processGEN(s) generates sequentially
the result of(gen s) and passes it to the processPH1; and in turn to each of the processes
PHi (where1 ≤ i ≤ n), which implements the corresponding functionphasei.

GEN(s) PH1 PH2 PHn−1 PHn

- - - - -

Figure 1: A pipelined implementation ofALG(s)

The above refinement obtained solely by exploiting pipelined parallelism is still quadratic, at
best, on account of the size of the output ofGEN(s). Therefore, for this kind of algorithm
pipelining alone may not lead to significant improvement in terms of speed. Hence, the only
way to make a substantial improvement is to remove the bottleneck imposed by the sequential
generation of(gen s) and proceed by generating all the elements of(gen s) in parallel, in
a data-parallel fashion, each element on a separate channel. This ensures that all the sub-
lists are generated in parallel in linear time. The structure of the pipelining solution stays
unchanged but this time each phase in the pipe has internal parallelism; it takes inputs and
produces outputs on avector of channels as opposed to a single channel.

This paper provides a number of scalable and efficient message-passing algorithms for
implementing a small library of list generator functions. It exploits both data parallelism,
for generating all the elements of the resulting list in parallel; and pipelining parallelism, for
processing intermediate results in stages such that the output of one stage is simultaneously
input to the next one. To ensure scalability, global communications are eliminated and re-
placed by efficient local communications for routing shared data to all the relevant processing
elements.

We also associate each of several key higher order functions such asmap, reduce, and
scan with two communicating processes which have different layouts: one, operating on a
vector of values, which is suitable for data parallelism; and the other, operating on a stream
of values, which is suitable for functional (or pipelined) parallelism. We show how the com-
position of higher order functions can be correctly implemented as (generalized) piping of
the processes which implement each of these functions.

Since implementations of these library functions are readily available from a repertoire
of parallel designs, the design of many message passing algorithms can then be systemat-
ically derived by simple program transformations and refinements. The parallelisation of
many interesting functional algorithms is directly obtained from “off the shelf” parallel im-
plementations of list generators and composition with appropriate parallel implementations
of instances of higher order functions. This approach is then illustrated with a number of
case studies which include: testing whether all the elements of a given list are distinct, the
maximum segment sum problem, the minimum distance of two sets of points, and rank sort.
In each case we progress from a quadratic time initial functional specification of the problem
to a linear time parallel message-passing implementation which uses a linear number of com-
municating sequential processes. Bird-Meertens Formalism is used to concisely carry out the
transformations.

The rest of this paper is organized as follows. Section 2 introduces some notation based
on BMF and briefly explains some concepts for associating key higher order functions with
communicating processes. Section 3 introduces several combinatorial list generator functions

A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators 375

and provides efficient scalable parallel message-passing algorithms for implementing them.
Section 4 illustrates how the concepts and techniques of the previous two sections can be
used to systematically derive efficient parallel solutions to a number of small case studies.
Section 5 briefly describes related work and, finally, Section 6 concludes this paper.

2 Notation and Basic Concepts

Throughout this paper, we will use the functional notation and calculus developed by Bird
and Meertens [3, 4, 5] for specifying algorithmics and reasoning about them and will use a
CSP style environment (as developed by Hoare [8]) for specifying processes and reasoning
about them. We give a brief summary of the notation and conventions used in this paper. The
reader is advised to consult the above references for further details.

2.1 Lists, Streams and Vectors

Lists are finite sequences of values of the same type. The list concatenation operator is
denoted by++ and the list construction operator is denoted by:. The elements of a list are
displayed between square brackets and separated by commas.

Conventionally we have modelled lists in our parallel implementation as astream, a serial
sequence of messages on a channel. So for a list[x1, x2, ..., xn], we first sendx1 along our
channel, thenx2 and so on up toxn which is then followed by the special messageeot to
denote the end of the transmission. However, as has been explained, this can, in certain
cases, introduce unacceptable bottlenecks into a network. Thus we have the alternative to
streams which we callvectors. Here a separate channel is used for each item in the list and
as such the whole list can then be communicated in parallel. This not only alleviates this
bottleneck for many algorithms but also introduces scope for some data parallelism in our
networks.

2.2 The Map Operator

The operator∗ (pronounced “map”) takes a function on the left, a list on the right, and
applies the function to each element of the list. Informally, we have:

f ∗ [a1, a2, · · · , an] = [f(a1), f(a2), · · · , f(an)]

We can associate with this function two different processes, the first,MAP , corresponds to
functional or task parallelism. It takes a stream of inputs on one channel, sayin, and produces
a stream of output on a channel, sayout. This can be pictured as seen in Figure 2.

- -
[x1, x2, ..., xn] [f x1, f x2, ..., f xn]

MAP (f)

Figure 2: The ProcessMAP .

The second implementation,VMAP , corresponds to data or vector parallelism. It takes
the list of values as inputs on a list of channels (one channel per value) and produces the
resulting list on a list of channels one value per channel. This can be pictured as seen in
Figure 3.

376 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

(f x1)?

F

?

x1

(f x2)?

F

?

x2

. . .

(f xn−1)?

F

?

xn−1

(f xn)
?

F

?

xn

Figure 3: The ProcessVMAP .

2.3 Reduction Operators

The operator/ (pronounced “reduce”) takes an associative binary operator on the left, a list
of values on the right and returns the “summation” of all the elements of the list. This can be
informally described as follows

(⊕)/ [a1, a2, · · · , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

The left reduction operator(⊕6→e) (also known asfoldl) corresponds to a specific inter-
pretation of reduction in which the computation of a list starts withe, as an initial value, and
the result is gradually accumulated by successively applying the operator⊕ while traversing
the list from left to right. Informally, we have:

(⊕6→e) [a1, a2, · · · , an] = (· · · ((e⊕ a1)⊕ a2)⊕ · · ·)⊕ an

The right reduction operator(⊕6←e) (also known asfoldr) is similar to(⊕6→e) except that
the computation proceeds by traversing the list in the opposite direction, that is, from right to
left.

(⊕6←e) [a1, a2, · · · , an] = a1 ⊕ (a2 ⊕ (· · · ⊕ (an ⊕ e) · · ·))

Note that the operator used with directed reductions (both left and right) may not be associa-
tive.

As regards implementation of the fold operators, again we have two choices. The first two
processes,FOLDL andFOLDR, again, correspond to functional parallelism.FOLDL is
depicted in Figure 4, andFOLDR would have a similar appearance. Here the process takes
in a stream and returns either a stream or a single result, depending on the nature of the
function used.

- -
[x1, x2, .., xn] (...((e⊕ x1)⊕ x2)...)⊕ xn

FOLDL(⊕, e)

Figure 4: The ProcessFOLDL.

As before, the introduction of vectors requires that we also have a second view of the
operators when the issue of implementation arises. Here we need to envisage a process that
takes in a vector and produces the same result as the previous processes. Thus we have the
process VFOLDL (as seen in Figure 5). Again, VFOLDR has a similar layout.

We may also require fold operators that do not take a base value, often termed as the
functionsfoldl1 andfoldr1, named as such due to only being defined on lists of length 1 or
greater. This can be achieved in the implementation simply by removing the input ofe, and,

A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators 377

? ? ?e
⊕ ⊕ ⊕- - - - -. . .

x1 x2 xn

e⊕ x1 (e⊕ x1)⊕ x2 (...((e⊕ x1)⊕ x2)...)⊕ xn

Figure 5: The processV FOLDL

? ? ?

COPY ⊕ ⊕- - - -. . .

x1 x2 xn

x1 x1 ⊕ x2 (...((x1 ⊕ x2)⊕ x3)...)⊕ xn

Figure 6: The processV FOLDL1

to compensate, replacing the first instance of the folding function withCOPY , which simply
mimics its input as its output. This can be seen in Figure 6 for a refinement offoldl1 applied
to a vector. A similar implementation can be achieved forfoldr1 via the same techniques.

2.4 Sections and Function Composition

Binary operators can besectioned. This means that(a⊕) and(⊕b) both denote functions.
Thus, if⊕ has type⊕ : A→ B → C, then we have

(a⊕) : B → C
(⊕b) : A→ C

for all a ∈ A andb ∈ B. The definitions of these sections are:

(a⊕) b = a⊕ b
(⊕b) a = a⊕ b

For example,f∗ denotes a function which takes a list of values and mapsf to each element
of the list; but(∗xs) denotes a function which takes a function as input and applies it to each
element of the listxs.

Function composition is denoted by◦ . This operator has lower precedence than all other
operators. Thus,f ◦g∗ denotesf ◦ (g∗) and not(f ◦g)∗.

2.5 Refinement to Processes

Function composition corresponds to functional parallelism and can be realized in a concur-
rency framework (for exampleCSP) by process piping (À). Careful checking must be done
to ensure the correctness of this realization that the output of one process must match (have
the same type as) the input of the next process in the pipe. If the common type is a stream,
say [A], we will denote piping byÀ; but if it is a vector of lengthp, we will denote piping
by the operator (Àp).

2.6 Algebraic Laws

One important asset of BMF is its richness in algebraic laws which allow the transformation
of a program from one form to another while preserving its meaning. Here is a short list

378 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

- P - - Q - - P - Q -

P À QThe ProcessesP andQ.

Figure 7: Stream Piping

-

-

-

P

-
-
-
-
-

-
-
-
-
-

Q
-

-

-

-

-

P

-
-
-
-
-

Q
-

-

P À5 QThe ProcessesP andQ.

Figure 8: Piping Generalized.

of frequently used algebraic rules which will be used in later examples. Historically, the
“promotion rules” are intended to express the idea that an operation on a compound structure
can be “promoted” into its components.

(f ◦g)∗ = (f∗) ◦ (g∗) map distributivity
f∗ ◦ ++/ = ++/ ◦ (f∗)∗ map promotion
⊕/ ◦ ++/ = ⊕/ ◦ (⊕/)∗ reduce promotion

3 Combinatorial List Generator Functions

3.1 Segments

A list s is asegmentof t if there existu andv such thatt = u ++ s ++ v. If u = [], thens
said to be aninitial segmentor aprefixof t. On the other hand, ifv = [], thens is called a
final segmentor asuffixof t.

3.2 Inits and Tails

The functioninits returns the list of initial segments of a list, in increasing order of length.
The functiontails returns the list of final segments of a list, in decreasing order of length.
Thus, informally, we have

inits [a1, a2, . . . , an] = [[], [a1], [a1, a2], . . . , [a1, a2, . . . , an]]
tails [a1, a2, . . . , an] = [[a1, a2, . . . , an], [a2, a3, . . . , an], . . . , []]

The functionsinits+ andtails+ are similar, except that the empty list does not appear in the
result.

A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators 379

[x1..xn] [x2..xn] [x3..xn] [xn]

TL TL TL- - - -. . .

? ? ?
[x1..xn] [x2..xn] [xn]

Figure 9: The processTAILS

We can define the functionstails andinits by explicit recursion equations (see [5]). For
example, the suffixes of a list.

tails [] = [[]]
tails (x : xs) = (x : xs) : (tails xs)

For the examples given in this paper we usetails+, rather thantails, so we will define
a process corresponding to that function only for now. Here each item of the resulting list is
produced on a separate channel- the output is modelled as a vector. The resulting network,
TAILS, is depicted in Figure 9.

The functioninits, which gives us the prefixes of a list can similarly be defined as follows
(see [5]):

inits [] = [[]]
inits (x : xs) = [[]] ++ ((x :) ∗ (inits xs))

This could be implemented with a similar network to that in Figure 9, except that the flow
of data would come from the right instead of the left. This underlines the basic symmetry
that exists betweeninits andtails.

3.3 Segs

The functionssegs returns a list of all segments of a list, andsegs+ returns a list of all
non-empty segments. A convenient definition is

segs = (++)/ ◦ (inits ∗) ◦ tails
segs+ = (++)/ ◦ (inits+ ∗) ◦ tails+

For example,

segs [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3], [], [2], [2, 3], [], [3], []]
segs+ [1, 2, 3] = [[1], [1, 2], [1, 2, 3], [2], [2, 3], [3]]

Notice that the empty list[] appears four times insegs [1, 2, 3] (and not at all insegs+[1, 2, 3]).
The order in which the elements ofsegs x appear is not important for our purposes and we
shall make no use of it. In effect, we shall reduce oversegs with commutative operators only.

3.4 Splits

The functionsplits returns the list of all possible ways of splitting a list into two parts such
that the second part is non-empty. Informally, we have:

splits [a1, a2, · · · , an] = [([], [a1, a2, · · · , an]), ([a1], [a2, · · · , an]),
([a1, a2], [a3, · · · , an]), · · · , ([a1, a2, · · · , an−1], [an])]

380 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

- - - - -. . .SPLIT
(0)

SPLIT
(1)

SPLIT
(n− 1)

xs xs xs xs

[] [x1..xn]
??

[x1] [x2..xn]
??

[x1..xn−1] [xn]
??

Figure 10: The processSPLITS

We can construct functional definition ofsplits using the functionstake anddrop (see [5]):

splits s = [(take i s, drop i s) | i← [0..#s− 1]]

With this function we can associate the networkSPLITS which produces each item of
the resulting list on a separate pair of channels. This is depicted in Figure 10.

3.5 Cartesian Product

The functioncp returns a Cartesian product of its two input listsxs andys, i.e. a list where
every element ofxs is paired with every element ofys. This can be defined quite simply as
follows:

cp xs ys = [(x, y) | x← xs; y ← ys]

Production of this list, as in the previous cases will requireO(n2) steps. However, if we
consider the result as a list of lists, each an element fromxs paired with every element ofys,
the result can then be produced in parallel in linear time. Thus we have a slight redefinition.
We shall call this new functiondcp for distributed Cartesian product.

dcp xs ys = [(pair x) ∗ ys | x← xs]

So, for example:

dcp [1, 2, 3] [′a′,′ b′,′ c′] = [[(1,′ a′), (1,′ b′), (1,′ c′)],
[(2,′ a′), (2,′ b′), (2,′ c′)],
[(3,′ a′), (3,′ b′), (3,′ c′)]]

We can clearly definecp in terms ofdcp to illustrate the relation between the two functions.

cp xs = (++)/ ◦ dcp xs

This function can now be associated with the processCP , pictured in figure 11.

A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators 381

ys ys ys ys ys
PAIR(x1) PAIR(x2) PAIR(xn)- - - - -. . .

? ? ?
(pair x1) ∗ ys (pair x2) ∗ ys (pair xn) ∗ ys

Figure 11: The processCP

3.6 Accumulations

The operator−→// e (or scanl) takes a binary operator, say⊕, on the left; a list of values on
the right; and applies the function(⊕6→e) to all the initial segments of the list. This function
is often being refered to as “prefix sum” when the operator⊕ is associative. We have

(⊕−→// e) s = (⊕6→e) ∗ (inits s)

For example:
(+−→// 0) [1, 2, 3, 4, 5] = [0, 1, 3, 6, 10, 15]

In some cases we may not want to include the base value in the resulting list. For this
purpose, in a similar manner to thefold functions, we also introduce a functionscanl1. This
can be defined as follows:

scanl1 (⊕) e s = (⊕6→e) ∗ (inits+ s)

For example:
scanl1 (+) 0 [1, 2, 3, 4, 5] = [1, 3, 6, 10, 15]

For each of these functions we are given two choices for implementation, in each case
either using streams or vectors. The functionscanl1 can be implemented with stream paral-
lelism using the processSCANL1, as shown in Figure 12. This process will both input and
output a stream. Alternatively, we have a vector implementation, and this is demonstrated
by the processV SCANL1, shown in Figure 13. This process inputs a vector and outputs a
vector.

- -
[x1, x2, .., xn] [e⊕ x1, (e⊕ x1)⊕ x2, ..., (⊕6→e) xs]SCANL1

(⊕, e)

Figure 12: The ProcessSCANL1(⊕, e).

?? ?

? ? ?

⊕ ⊕ ⊕- - -. . .-

x1 x2 xn

e

e⊕ x1 (e⊕ x1)⊕ x2

e⊕ x1 (e⊕ x1)⊕ x2 (⊕6→e) xs

Figure 13: The processV SCANL1(⊕)

382 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

4 Case Studies

4.1 The Maximum Segment Sum Problem

There is a famous problem, called themaximum segment sum(mss) problem, which is to
compute the maximum of the sums of all segments of a given sequence of numbers, positive,
negative or zero. For example,mss [2,−3, 1, 2,−2, 3,−1] = 4 which corresponds to the
segment[1, 2,−2, 3]. For details see Bird’s paper ... In symbols

mss = max / ◦ sum∗ ◦ segs+

Direct evaluation of the right-hand side of this equation requiresO(n3) steps on a list of
lengthn. There areO(n2) segments and each can be summed inO(n) steps, givingO(n3)
steps in all.

mss =
{

definition
}

max / ◦ sum∗ ◦ segs+

=
{

definition ofsegs+
}

max / ◦ sum∗ ◦++/ ◦ inits+∗ ◦ tails+

=
{

map promotion
}

max / ◦++/ ◦ sum∗ ∗ ◦ inits+∗ ◦ tails+

=
{

map distributivity
}

max / ◦++/ ◦ (sum∗ ◦ inits+)∗ ◦ tails+

=
{

definition of accumulation
}

max / ◦++/ ◦ (+−→//) ∗ ◦ tails+

=
{

reduce promotion
}

max / ◦max / ∗ ◦ (+−→//) ∗ ◦ tails+

Implementation is now an almost trivial matter of combining ’off the shelf’ components
that correspond with each stage of our algorithm. This gives us the following network:

TAILS Àn VMAP (SCANL(+))Àn VMAP (FOLD(max))Àn V FOLDR1(max)

wheren is the length of the input list. The resulting network can be seen in Figure 14. This
algorithm will now run in linear time.

4.2 Minimum Distance

Given two lists of points in three dimensional space, the minimum distance function,md
compares every point from the first list with every point from the second list and returns the
distance between the closest of these.

Here we need to make use of the Cartesian product function,cp. We simply need to map
some functiondist to this list, and then find the minimum of this result.

md = (min/) ◦ (dist ∗) ◦ cp

dist (x1, y1, z1) (x2, y2, z2) =
√

(x2− x1)2 + (y2− y1)2 + (z2− z1)2

A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators 383

[x1..xn] [x2..xn] [x3..xn] [xn]

TL TL TL- - - -. . .

? ? ?
[x1..xn] [x2..xn] [xn]

SCANL
(+)

SCANL
(+)

SCANL
(+)

? ? ?
[x1, x1 + x2, ...] [x2, x2 + x3, x2 + x3 + x4, ...] [xn]

FOLD
(max)

FOLD
(max)

FOLD
(max)

? ? ?

COPY MAX MAX- - - -. . .

. . .

. . .

m1 m2 mn

result

Figure 14: A network to solve the maximum segment sum problem for the list xs

However, given the nature ofdcp, producing a list of lists, we need a little remodeling to
achieve the actual definition.

md xs =
{

definition
}

min / ◦dist∗ ◦ (cp xs)

=
{

definition ofcp
}

min / ◦dist∗ ◦++/ ◦ (dcp xs)

=
{

map promotion
}

min / ◦++/ ◦ (dist ∗) ∗ ◦ (dcp xs)

=
{

reduce promotion
}

min / ◦min / ∗ ◦ (dist ∗) ∗ ◦ (dcp xs)

The implementation can now be constructed as before, giving us the network:

CP (xs)Àn VMAP (MAP (dist))Àn

VMAP (FOLD(min))Àn V FOLDL1(min)

Againn is the length of the input list. This is depicted in Figure 15.

4.3 Lists with Distinct Elements

Consider the problem of testing whether all the elements of a list are distinct. That is, no
element of the list occurs more than once in the list.

Essentially we need to compare every element in the list with every other, see if they dif-
fer, and thenand all these results together. This can be achieved with the following function:

distinct = (∧/) ◦ noteq ∗ ◦ tails+

Given a functionnoteq which takes a list and dictates if the first item is different to all the
others.

noteq = (∧)/ ◦ diff
diff (x : xs) = (6= x) ∗ xs

384 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

ys ys ys ys
PAIR(x1) PAIR(x2) PAIR(xn)- - - -. . .

? ? ?
MAP
(dist)

MAP
(dist)

MAP
(dist)

? ? ?

(pair x1) ∗ ys (pair x2) ∗ ys (pair xn) ∗ ys

FOLD
(min)

FOLD
(min)

FOLD
(min)

? ? ?

COPY MIN MIN

[dst x1 y1, ...] [dst x2 y1, ...] [dst xn y1, ...]

- - - -. . .

. . .

. . .

m1 m2 mn

m1 (min m1 m2) result

Figure 15: A network to solve the minimum distance problem for the lists xs and ys

[x1..xn] [x2..xn] [x3..xn] [xn]

TL TL TL- - - -. . .

? ? ?
[x1..xn] [x2..xn] [xn]

DIFF DIFF DIFF

? ? ?

FOLD(∧) FOLD(∧) FOLD(∧)

? ? ?

COPY AND AND- - - -. . .

. . .

. . .

r1 r2 rn

r1 (r1 ∧ r2) result

Figure 16: A network to solve the distinct elements problem for the list xs

This allows us to give a slight redefinition ofdistinct:

distinct = (∧/) ◦ (∧/) ∗ ◦diff ∗ ◦ tails+

The above definition can then be transformed quite straightforwardly to the following
network:

TAILS Àn VMAP (DIFF)Àn VMAP (FOLD(∧))Àn V FOLDL1(∧)

wheren is the length of the input list. The results can be seen in Figure 16.

4.4 Parallel Enumerate Sort

For each element in the input list[a1, a2, · · · , an], therank sortalgorithm aims at computing
its final position (rank) in the sorted list. This is simply achieved by counting the number of
elements in the list having smaller value ([9]). Ifj elements have smaller value thanai then

A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators 385

- - - - -SPLIT
(0)

SPLIT
(1)

SPLIT
(n− 1)

xs xs xs xs

[] [x1..xn]
??

[x1] [x2..xn]
??

[x1..xn−1] [xn]
??

RANK RANK RANK

? ? ?

. . .

. . .

(x1, r1) (x2, r2) (xn, rn)

Figure 17: A network performing rank sort on the listxs

ai is the(j +1)th element of the sorted list. If two or more elements have the same value, the
algorithm must be slightly amended in order to produce a unique rank for each element in
the unsorted list. This is achieved by counting the number of elements having smaller value
or the same value and smaller index in the unsorted list. Formally, the rank of theith element
of the list [a1, a2, · · · , an] is captured as:

rank i [a1, a2, · · · , an] = #{j ∈ {1..n} | aj < ai ∨ (aj = ai ∧ j < i)}
The functional specification of therank sortingalgorithm is:

rsort :: [α]→ [(α, num)]; rank :: ([α], [α])→ (α, num)
rsort = (rank ∗) ◦ splits
rank (s, x : t) = (x, #filter (< x) s + #filter (≤ x) t)

The resulting implementation can be found in Figure 17.

5 Conclusion

In this paper we have presented a number of frequently used combinatorial list generator
functions and showed how they can be efficiently implemented in parallel as networks of
interacting processes. These list generator functions are the building blocks for many inter-
esting algorithms and their proposed parallel implementations can be the basis for systemat-
ically parallelising such algorithms.

This paper attempts to combine both data parallelism and functional parallelism in one
framework which is founded on concurrency. It also develops some real world algorithms
which make use of this framework. Both the functions and algorithms which use them had at
least quadratic (sequential) execution time and in every case we have successfully developed
linear time parallel implementations.

The focus has been on these combinatorial functions, and how a mixture of data and
functional parallelism can be used to remove the previous bottleneck of communicating their
results (lists of lists). In the process we have introduced models for data parallelism into a
transformational framework which previously concentrated solely on functional parallelism
(see [1]).

We have presented an essentially skeletonic approach to implementation. Given a speci-
fication composed of several more commonly used functions, we can simply take each func-
tion in turn, find a pre-defined parallel implementation known to be efficient, and then link
these all together to create our network. This approach has several advantages. The first and
perhaps most obvious is speed of development. In addition, as already mentioned, our pre-
defined ’off the shelf’ components are already known to be efficient, and, whereas we cannot

386 A.E. Abdallah and J. Hawkins / Parallel Combinatorial List Generators

always guarantee that the resulting network will be optimal, we will in almost all cases see
a substantial increase in execution time. Finally, this approach removes some of the burden
of understanding the inherent parallelism from the programmer, which can allow them to
concentrate more on what is actually required from an algorithm, rather than how is best to
implement it. This highly systematic approach may then even lead to an entirely automatic
tool for transformation from specification to parallel implementation. This is an area we are
already investigating.

This work could be extended to include a larger class of combinatorial list generator
functions, and a further study of the effects of higher order functions on vectors. We may
then identify situations quite different to those encountered in this work where this combined
parallelism could be used to great effect.

References

[1] A.E. Abdallah, Derivation of Parallel Algorithms from Functional Specifications to CSP Processes, in:
Bernhard M̈oller, ed.,Mathematics of Program Construction, LNCS 947, (Springer Verlag, 1995) 67-96

[2] A. E. Abdallah, Synthesis of Massively Pipelined Algorithms for List Manipulation, in L. Bouge and
P. Fraigniaud and A. Mignotte and Y. Robert (eds), Proceedings of theEuropean Conference on Parallel
Processing, EuroPar’96, LNCS 1024, (Springer Verlag, 1996), pp 911-920.

[3] R. S. Bird, An Introduction to The Theory of Lists, in: M. Broy, ed.,Logic of Programming and Calculi of
Discreet Design, (Springer, Berlin, 1987) 3-42.

[4] R. S. Bird, Functional Algorithm Design, in: Bernhard Möller, ed.,Mathmeatics of Program Construction,
LNCS 947, (Springer Verlag, 1995) 2-17

[5] R. S. Bird and P. Wadler,Introduction to Functional Programming, (Prentice-Hall, 1988).

[6] M. I. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation, in: Research Mono-
graphs in Parallel and Distributed Computing, (Pitman 1989).

[7] J. Darlington, A. Field and P.G. Harrison,Parallel Programming Using Skeleton Functions, in: A. Bode,
M. Reeve and G. Wolf, eds., Parallel Architectures and Languages Europe (PARLE’93), LNCS 694.

[8] C. A. R. Hoare,Communicating Sequential Processes. (Prentice-Hall, 1985).

[9] Donald E. Knuth,The Art of Computer Programming, Volume III: Sorting and SearchingAddison-Wesley
1973

