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What is MicroCSP?

• A run-time system written in C

• Supports CSP constructs
– Point-to-point synchronous channels
– Alternation (including timeouts)
– Dynamic process creation (fork)

• Implements preemptive priority scheduling
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What is MicroCSP?

• Targeted at microcontrollers

– Prototype runs over Linux

• Uses stack very efficiently

– Does context switch only on interrupt

• Single processor

– Multicore implementation appears possible
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Why MicroCSP?

• To provide a good set of constructs for 
writing embedded systems software

• Written under the assumption that hard 
real-time requires preemptive scheduling

– A pervasive belief in my environment

– May not be true -- investigating…
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Why MicroCSP?

• Written for systems with limited memory
– Allocating a stack per process rapidly uses up 

the memory of a small system

– MicroCSP uses a single stack
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How MicroCSP Works

• Initialization and cycle logic of a process are 
contained in a C function
– Function called when the process is scheduled
– Function runs to completion unless preempted
– How is this compatible with process orientation?

• Any CSP process can be put in normal form:
– Some initialization logic
– A single alternation repeated within a loop
– Normal form provides bridge between process 

orientation and C function (“code function”) 
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How MicroCSP Works
Normal form:

..initialization..
WHILE TRUE

..guard..
..etc..

..guard..
..etc..

..guard..
..etc..  

…
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How MicroCSP Works

• The MicroCSP scheduler:
– Handles the ALT and its events

• Including data transfer
– Provides the iteration

• As the result of repeated scheduling

• The C function
– Implements the logic in the branches of the ALT

• ..and the initialization logic
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How MicroCSP Works
Preemption

• Code function runs with interrupts disabled
• Connect interrupt to channel

– Interrupt looks like normal channel input
– Priority scheduling provides preemptive 

response
• Interrupted context restored only when 

return to interrupted priority level
– But interrupts re-enabled immediately
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How MicroCSP Works
Normal Form

• Normal form may be called “event-oriented”
– Analogy from simulation field:

• Process-oriented simulation versus
• Event-oriented simulation

• “Turn process inside out” to get equivalent 
event form

• Or write logic in event form to begin with
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How MicroCSP Works
Normal Form

PROC Element (CHAN INT in?, out!)
WHILE TRUE 

INT x: 
SEQ

in ? x                                      
out ! x

:
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How MicroCSP Works
Normal Form

PROC Element (CHAN INT in?, out!)     PROC Element (CHAN INT in?, out!)           
WHIWHILE TRUE                                             INITIAL BOOL receiving IS TRUE:

INT x:                                            INT x:
SEQ                                               WHILE TRUE

in ? x                                       ALT
out ! x                                      receiving & in ? x 

:                                                            receiving := NOT receiving
NOT receiving & out ! x

receiving := NOT receiving
:
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How MicroCSP Works
Normal Form

Scheduler supplies the iteration:

PROC Element (CHAN INT in?, out!)    PROC Element (ELEMENT.RECORD proc)            
HI   WHILE TRUE                                          ALT

INT x:                                             proc[receiving] & proc[in] ? proc[x]
SEQ                                                proc[receiving] := FALSE

in ? x                                         NOT proc[receiving] & proc[out] ! proc[x]
out  ! x                                       proc[receiving] := TRUE

: :
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How MicroCSP Works
Normal Form

enum {IN=0, OUT=1};

PROC Element (CHAN INT in?, out!)     void Element_code (Element *proc)            
WHIWHILE TRUE                                              switch(selected()) {

INT x:                                            case IN:        // received a value
SEQ                                               deactivate(&proc->guards[IN]);

in? x                                         activate(&proc->guards[OUT]);
out ! x                                       break; 

:                                                            case OUT:     // sent a value                   
activate(&proc->guards[IN]);

out ! x                                           deactivate(&proc->guards[OUT]);
break; 

}                                    
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API
System Initialization

• Initialize system
void initialize(unsigned int memlen);
• Establishes memory for dynamic allocation

• Allow system to run
void run();
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API
Process Creation

• Define a process type
PROCESS(MyProcName)

… parameters and local variables
ENDPROC

• Create a process
MyProcName myProcess;
… initialize myProcess parameters
START(MyProcName, &myProcess, priority);
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API
Process Creation

• Must supply function:
void MyProcName_code(void);
– Called each time process is scheduled

• Any number of MyProcName processes
– Each with its own struct

• Can create process at start-up or within 
running process

• Like fork -- there is no PAR
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API
Process Initialization, Termination

• To learn if is first call to _code function:
_Bool initial();

• To end itself, process calls:
void terminate();
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API
Channels

• Initialize a channel:
void init_channel(Channel *chan);

• Get channel ends:
ChanIn *in(Channel *chan);
ChanOut *out(Channel *chan);

• All data transfer done via Alternation
–No read, write (more about this later…)
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API
Time

• Time (in this implementation) is 64-bit 
unsigned integer
– Nanoseconds since start of program

• To get current time:
Time Now();
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API
Alternation

• Each process has exactly one Alternation

• All event processing and data transfer are 
done via the Alternation
– More on this later…

• To initialize the Alternation:
void init_alt(Guard guards[], int size);
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API
Alternation

• Guard may be input, output, timeout, SKIP:
void init_chanin_guard(

Guard *g, ChanIn *c, void *dest, unsigned len);
void init_chanout_guard(

Guard *g, ChanOut *c, void *src);
void init_timeout_guard(

Guard *g, Timeout *t, Time time);
void init_skip_guard(Guard *g);
void init_chanin_guard_for_interrupt(

Guard *g, ChanIn *c, void *dest);
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API
Alternation

• To receive interrupts through a channel:
void connect_interrupt_to_channel(

ChanIn *c, int intrno);

• To learn the selected branch:
int selected();
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API
Alternation

• Each Guard has a Boolean precondition:
void activate (Guard *g);
void deactivate(Guard *g);
_Bool is_active(Guard *g);
void set_active(Guard *g, _Bool active);

• Output Guard must be only active guard
–Behaves as a committed output
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Implementation
Scheduling

• The scheduler walks the process through 
its Alternation:
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Implementation
Scheduling

• Process in INITIAL state only at inception
– Scheduler calls _code function and advances 

to QUIESCENT
• Gives process chance to do initialization
• initial() function returns true
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Implementation
Scheduling

• If process QUIESCENT, scheduler advances to 
ENABLING  and enables branches of the 
Alternation

• If finds ready branch while enabling, scheduler 
advances process to READY

• I/O partner WAITING
• Timeout expired
• SKIP branch (always ready)

• If finds no ready branch, advances to WAITING 
and selects another ready process
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Implementation
Scheduling

• If advances to READY:
– Disables branches of Alternation
– Discovers selected branch
– Performs data transfer if any
– Advances I/O partner to READY if necessary
– Calls process’s _code function

• The _code function calls selected() to learn 
ready branch and behaves accordingly
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Implementation
Scheduling

• Priority scheduling:
– When make I/O partner ready, if partner’s priority 

higher:
• Scheduler calls itself with argument = higher priority
• Returns when no ready process at that level or higher

• Preemptive scheduling:
– Interrupt handler makes receiving process ready
– If readied process’s priority higher than that of 

interrupted process, act as above
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Implementation
Scheduling

• Run queue for each priority level
– Round-robin scheduling within each level

• When process not executing:
– Either in run queue
– Or there is pointer to it in one or more 

channels or timeout requests
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Implementation
Data Structures

• Process record

next Pointer to next process in run queue

code Pointer to code function

alt Alternation record

memidx Implies memory size of process record

pri Priority

state Scheduling state
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Implementation
Data Structures

• Alternation record:

guards Pointer to array of guards
nrGuards Size of guard array
index Current or selected branch
count Running branch count
prialt True if priority alt, false if fair alt
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Implementation
Data Structures

• Process record and application process 
structure contiguous in single allocation:

Process record

Application process data

39



Implementation
Stack Usage

• Stack space usage limited to:
– Working stack needed by application
– One interrupt context per active priority level

• Example:
– In Ring program, suppose 512 bytes adequate 

for working stack plus interrupt context
– Never need more than 512 bytes for stack no 

matter number of processes (single priority level)
• Need dynamic memory for process records, though
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Implementation
Miscellaneous

• Hardware interface is narrow: 10 functions
• Current version is prototype over Linux

– Uses only main thread (no threads package)
– Implements h/w interface with Linux services
– Simulates interrupts using signals

• Current implementation for single 
processor
– Disable interrupts for critical sections
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Performance

nsec per communication/context switch

ring mtring commstime

occam/ccsp 24 25 22

C/ccsp 37 33

Transterpreter 127 129 117

go 239 238 216

MicroCSP 272 273 353
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Performance

• Fewer than 1400 lines of source code
– Excluding pure comment and blank lines

• Around 5400 bytes of executable code
– 32-bit Intel x86 architecture
– With empty hardware interface

• Size of data structures:
– Process record      20 bytes
– Channel                    8 bytes
– Guard                      16 bytes
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Availability

Source code available at:

https://github.com/megoldsby/microcsp
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Example: Single-Token Ring
Definitions and Declarations

#include "microcsp.h"                    // SENDS SINGLE TOKEN AROUND A RING
#include <stdbool.h>
#include <stdio.h>                         // underlying system is Linux
#define RING_SIZE 256                // # of processes in ring
#define REPORT_INTERVAL 1000000  
#define NS_PER_SEC  1000000000ULL
Channel channel[RING_SIZE];      // channels connecting the ring
static Time t0;                                //starting time
PROCESS(Element)                     // THE RING ELEMENT'S LOCAL VARIABLES

Guard guards[2];                       //................................... 
ChanIn *input;                           //...................................
ChanOut *output;                      //...................................
int token;                                   //...................................
_Bool start;                               //...................................

ENDPROC                                   //...................................
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Example: Single-Token Ring
Code Function - Part 1

void Element_code (void *local)         // THE RING ELEMENT'S LOGIC
{ 

enum { IN=0, OUT };                      // branch 0 for input, 1 for output
Element *element = (Element *)local;
if (initial()) {                                     // exactly one guard active 

init_alt(element->guards, 2);      // at any one time 
init_chanin_guard(&element->guards[IN], 

element->input, &element->token, sizeof(element->token));
init_chanout_guard(&element->guards[OUT],

element->output, &element->token);
element->token = 0;                   // if starter, start with o/p else i/p
set_active(&element->guards[IN], !element->start);
set_active(&element->guards[OUT], element->start);
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Example: Single-Token Ring
Code Function – Part 2

} else {
switch(selected()) {
case IN:                                     // just read token, maybe report rate

if (element->token > 0 && 
(element->token % REPORT_INTERVAL == 0)) {

double sec = (double)(Now() - t0) / NS_PER_SEC;
printf("Rate = %g\n", sec / (double)element->token);

}
element->token++;                // incr token, prepare to write it
deactivate(&element->guards[IN]);
activate(&element->guards[OUT]);
break;

case OUT:                                 // just wrote, prepare to read 
activate(&element->guards[IN]);
deactivate(&element->guards[OUT]);
break;

}
}

}
50



Example: Single-Token Ring
main Logic – Part 1

int main(int argc, char **argv)
{

initialize(70*RING_SIZE+24);                     // initialize the system
int i;                                                            // initialize the channels
for (i = 0; i < RING_SIZE; i++) {

init_channel(&channel[i]);
}
Element element[RING_SIZE];                  // instantiate the ring elements 
Channel *left, *right;                                   // connect the ring elements
for (i = 0, left = &channel[0]; i < RING_SIZE; i++) {

right = &channel[(i + 1) % RING_SIZE];
element[i].input = in(left);
element[i].output = out(right);
element[i].start = false;
left = right;

}
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Example: Single-Token Ring
main Logic – Part 2

element[0].start = true;                              // make first element starter
t0 = Now();                                                // get the starting time
for (i = 0; i < RING_SIZE; i++) {                // start the ring elements

START(Element, &element[i], 1);
} 
run();                                                      // let them run

}
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Related Work

• Transterpreter
– Very good performance
– Portable
– Nearly all of occam-π
– May be suitable for hard real-time
– Released under LGPL

• Does not poison commercial or proprietary use
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Related Work

• CCSP
– Gold standard for process scheduling
– 32-bit Intel only

• Not easy to port
– Memory requirements?
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Related Work

• C++CSP
– Single processor
– Possibly easy to port
– Superseded by C++CSP2

• C++CSP2
– Many-to-many threading model

• multicore
– Linux/Windows
– Released under LGPL
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Related Work

• RMoX
– Operating system written in occam-π
– Intel x86 only
– Multicore
– Released under GPL
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Related Work
• JCSP Micro Edition

– Reduced version of JCSP to fit on microcontroller
– Aimed at mobile phones, embedded systems
– Requires underlying JVM

• Does garbage collection
– 90 KB of class files

• JCSP Robot Edition
– Further reduced version of JCSP
– Runs on LEGO Brick over LeJOS java kernel and 

JVM
• No garbage collection
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Related Work

• ProcessJ
– C/Java-like syntax for occam- π-like language
– Compiler can produce various outputs

• Transterpreter bytecode (portability)
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Future Work

• Depends on my investigation of real-time 
cooperative scheduling
– Would prefer higher-level language like 

occam-π
• Multicore
• Shared channel ends
• Barriers
• PAR
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Conclusions
• MicroCSP presents a realization of CSP constructs 

with the simplicity of implementation and memory 
efficiency of an event-driven approach
– With working example

• Provides benefits of CSP-based development
– Compositional program construction
– Race conditions ruled out
– No semaphores or locks
– Relations between components explicit (channels)
– Priority inversion is avoidable
– Can check design with FDR
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Questions & Discussion

• michaelegoldsby at gmail.com
• megolds at sandia.gov
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