
A Super-Simple Run-Time for
CSP-Based Concurrent 
Systems
Michael E. Goldsby
Sandia National Laboratories
Livermore, California USA
August, 2015

1



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

2



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

3



What is MicroCSP?

• A run-time system written in C

• Supports CSP constructs
– Point-to-point synchronous channels
– Alternation (including timeouts)
– Dynamic process creation (fork)

• Implements preemptive priority scheduling

4



What is MicroCSP?

• Targeted at microcontrollers

– Prototype runs over Linux

• Uses stack very efficiently

– Does context switch only on interrupt

• Single processor

– Multicore implementation appears possible

5



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

6



Why MicroCSP?

• To provide a good set of constructs for 
writing embedded systems software

• Written under the assumption that hard 
real-time requires preemptive scheduling

– A pervasive belief in my environment

– May not be true -- investigating…

7



Why MicroCSP?

• Written for systems with limited memory
– Allocating a stack per process rapidly uses up 

the memory of a small system

– MicroCSP uses a single stack

8



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

9



How MicroCSP Works

• Initialization and cycle logic of a process are 
contained in a C function
– Function called when the process is scheduled
– Function runs to completion unless preempted
– How is this compatible with process orientation?

• Any CSP process can be put in normal form:
– Some initialization logic
– A single alternation repeated within a loop
– Normal form provides bridge between process 

orientation and C function (“code function”) 
10



How MicroCSP Works
Normal form:

..initialization..
WHILE TRUE

..guard..
..etc..

..guard..
..etc..

..guard..
..etc..  

…

11



How MicroCSP Works

• The MicroCSP scheduler:
– Handles the ALT and its events

• Including data transfer
– Provides the iteration

• As the result of repeated scheduling

• The C function
– Implements the logic in the branches of the ALT

• ..and the initialization logic

12



How MicroCSP Works
Preemption

• Code function runs with interrupts disabled
• Connect interrupt to channel

– Interrupt looks like normal channel input
– Priority scheduling provides preemptive 

response
• Interrupted context restored only when 

return to interrupted priority level
– But interrupts re-enabled immediately

13



How MicroCSP Works
Normal Form

• Normal form may be called “event-oriented”
– Analogy from simulation field:

• Process-oriented simulation versus
• Event-oriented simulation

• “Turn process inside out” to get equivalent 
event form

• Or write logic in event form to begin with

14



How MicroCSP Works
Normal Form

PROC Element (CHAN INT in?, out!)
WHILE TRUE 

INT x: 
SEQ

in ? x                                      
out ! x

:

15



How MicroCSP Works
Normal Form

PROC Element (CHAN INT in?, out!)     PROC Element (CHAN INT in?, out!)           
WHIWHILE TRUE                                             INITIAL BOOL receiving IS TRUE:

INT x:                                            INT x:
SEQ                                               WHILE TRUE

in ? x                                       ALT
out ! x                                      receiving & in ? x 

:                                                            receiving := NOT receiving
NOT receiving & out ! x

receiving := NOT receiving
:

16



How MicroCSP Works
Normal Form

Scheduler supplies the iteration:

PROC Element (CHAN INT in?, out!)    PROC Element (ELEMENT.RECORD proc)            
HI   WHILE TRUE                                          ALT

INT x:                                             proc[receiving] & proc[in] ? proc[x]
SEQ                                                proc[receiving] := FALSE

in ? x                                         NOT proc[receiving] & proc[out] ! proc[x]
out  ! x                                       proc[receiving] := TRUE

: :

17



How MicroCSP Works
Normal Form

enum {IN=0, OUT=1};

PROC Element (CHAN INT in?, out!)     void Element_code (Element *proc)            
WHIWHILE TRUE                                              switch(selected()) {

INT x:                                            case IN:        // received a value
SEQ                                               deactivate(&proc->guards[IN]);

in? x                                         activate(&proc->guards[OUT]);
out ! x                                       break; 

:                                                            case OUT:     // sent a value                   
activate(&proc->guards[IN]);

out ! x                                           deactivate(&proc->guards[OUT]);
break; 

}                                    

18



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

19



API
System Initialization

• Initialize system
void initialize(unsigned int memlen);
• Establishes memory for dynamic allocation

• Allow system to run
void run();

20



API
Process Creation

• Define a process type
PROCESS(MyProcName)

… parameters and local variables
ENDPROC

• Create a process
MyProcName myProcess;
… initialize myProcess parameters
START(MyProcName, &myProcess, priority);

21



API
Process Creation

• Must supply function:
void MyProcName_code(void);
– Called each time process is scheduled

• Any number of MyProcName processes
– Each with its own struct

• Can create process at start-up or within 
running process

• Like fork -- there is no PAR

22



API
Process Initialization, Termination

• To learn if is first call to _code function:
_Bool initial();

• To end itself, process calls:
void terminate();

23



API
Channels

• Initialize a channel:
void init_channel(Channel *chan);

• Get channel ends:
ChanIn *in(Channel *chan);
ChanOut *out(Channel *chan);

• All data transfer done via Alternation
–No read, write (more about this later…)

24



API
Time

• Time (in this implementation) is 64-bit 
unsigned integer
– Nanoseconds since start of program

• To get current time:
Time Now();

25



API
Alternation

• Each process has exactly one Alternation

• All event processing and data transfer are 
done via the Alternation
– More on this later…

• To initialize the Alternation:
void init_alt(Guard guards[], int size);

26



API
Alternation

• Guard may be input, output, timeout, SKIP:
void init_chanin_guard(

Guard *g, ChanIn *c, void *dest, unsigned len);
void init_chanout_guard(

Guard *g, ChanOut *c, void *src);
void init_timeout_guard(

Guard *g, Timeout *t, Time time);
void init_skip_guard(Guard *g);
void init_chanin_guard_for_interrupt(

Guard *g, ChanIn *c, void *dest);

27



API
Alternation

• To receive interrupts through a channel:
void connect_interrupt_to_channel(

ChanIn *c, int intrno);

• To learn the selected branch:
int selected();

28



API
Alternation

• Each Guard has a Boolean precondition:
void activate (Guard *g);
void deactivate(Guard *g);
_Bool is_active(Guard *g);
void set_active(Guard *g, _Bool active);

• Output Guard must be only active guard
–Behaves as a committed output

29



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

30



Implementation
Scheduling

• The scheduler walks the process through 
its Alternation:

31



Implementation
Scheduling

• Process in INITIAL state only at inception
– Scheduler calls _code function and advances 

to QUIESCENT
• Gives process chance to do initialization
• initial() function returns true

32



Implementation
Scheduling

• If process QUIESCENT, scheduler advances to 
ENABLING  and enables branches of the 
Alternation

• If finds ready branch while enabling, scheduler 
advances process to READY

• I/O partner WAITING
• Timeout expired
• SKIP branch (always ready)

• If finds no ready branch, advances to WAITING 
and selects another ready process

33



Implementation
Scheduling

• If advances to READY:
– Disables branches of Alternation
– Discovers selected branch
– Performs data transfer if any
– Advances I/O partner to READY if necessary
– Calls process’s _code function

• The _code function calls selected() to learn 
ready branch and behaves accordingly

34



Implementation
Scheduling

• Priority scheduling:
– When make I/O partner ready, if partner’s priority 

higher:
• Scheduler calls itself with argument = higher priority
• Returns when no ready process at that level or higher

• Preemptive scheduling:
– Interrupt handler makes receiving process ready
– If readied process’s priority higher than that of 

interrupted process, act as above

35



Implementation
Scheduling

• Run queue for each priority level
– Round-robin scheduling within each level

• When process not executing:
– Either in run queue
– Or there is pointer to it in one or more 

channels or timeout requests

36



Implementation
Data Structures

• Process record

next Pointer to next process in run queue

code Pointer to code function

alt Alternation record

memidx Implies memory size of process record

pri Priority

state Scheduling state

37



Implementation
Data Structures

• Alternation record:

guards Pointer to array of guards
nrGuards Size of guard array
index Current or selected branch
count Running branch count
prialt True if priority alt, false if fair alt

38



Implementation
Data Structures

• Process record and application process 
structure contiguous in single allocation:

Process record

Application process data

39



Implementation
Stack Usage

• Stack space usage limited to:
– Working stack needed by application
– One interrupt context per active priority level

• Example:
– In Ring program, suppose 512 bytes adequate 

for working stack plus interrupt context
– Never need more than 512 bytes for stack no 

matter number of processes (single priority level)
• Need dynamic memory for process records, though

40



Implementation
Miscellaneous

• Hardware interface is narrow: 10 functions
• Current version is prototype over Linux

– Uses only main thread (no threads package)
– Implements h/w interface with Linux services
– Simulates interrupts using signals

• Current implementation for single 
processor
– Disable interrupts for critical sections

41



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

42



Performance

nsec per communication/context switch

ring mtring commstime

occam/ccsp 24 25 22

C/ccsp 37 33

Transterpreter 127 129 117

go 239 238 216

MicroCSP 272 273 353

43



Performance

• Fewer than 1400 lines of source code
– Excluding pure comment and blank lines

• Around 5400 bytes of executable code
– 32-bit Intel x86 architecture
– With empty hardware interface

• Size of data structures:
– Process record      20 bytes
– Channel                    8 bytes
– Guard                      16 bytes

44



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

45



Availability

Source code available at:

https://github.com/megoldsby/microcsp

46



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

47



Example: Single-Token Ring
Definitions and Declarations

#include "microcsp.h"                    // SENDS SINGLE TOKEN AROUND A RING
#include <stdbool.h>
#include <stdio.h>                         // underlying system is Linux
#define RING_SIZE 256                // # of processes in ring
#define REPORT_INTERVAL 1000000  
#define NS_PER_SEC  1000000000ULL
Channel channel[RING_SIZE];      // channels connecting the ring
static Time t0;                                //starting time
PROCESS(Element)                     // THE RING ELEMENT'S LOCAL VARIABLES

Guard guards[2];                       //................................... 
ChanIn *input;                           //...................................
ChanOut *output;                      //...................................
int token;                                   //...................................
_Bool start;                               //...................................

ENDPROC                                   //...................................

48



Example: Single-Token Ring
Code Function - Part 1

void Element_code (void *local)         // THE RING ELEMENT'S LOGIC
{ 

enum { IN=0, OUT };                      // branch 0 for input, 1 for output
Element *element = (Element *)local;
if (initial()) {                                     // exactly one guard active 

init_alt(element->guards, 2);      // at any one time 
init_chanin_guard(&element->guards[IN], 

element->input, &element->token, sizeof(element->token));
init_chanout_guard(&element->guards[OUT],

element->output, &element->token);
element->token = 0;                   // if starter, start with o/p else i/p
set_active(&element->guards[IN], !element->start);
set_active(&element->guards[OUT], element->start);

49



Example: Single-Token Ring
Code Function – Part 2

} else {
switch(selected()) {
case IN:                                     // just read token, maybe report rate

if (element->token > 0 && 
(element->token % REPORT_INTERVAL == 0)) {

double sec = (double)(Now() - t0) / NS_PER_SEC;
printf("Rate = %g\n", sec / (double)element->token);

}
element->token++;                // incr token, prepare to write it
deactivate(&element->guards[IN]);
activate(&element->guards[OUT]);
break;

case OUT:                                 // just wrote, prepare to read 
activate(&element->guards[IN]);
deactivate(&element->guards[OUT]);
break;

}
}

}
50



Example: Single-Token Ring
main Logic – Part 1

int main(int argc, char **argv)
{

initialize(70*RING_SIZE+24);                     // initialize the system
int i;                                                            // initialize the channels
for (i = 0; i < RING_SIZE; i++) {

init_channel(&channel[i]);
}
Element element[RING_SIZE];                  // instantiate the ring elements 
Channel *left, *right;                                   // connect the ring elements
for (i = 0, left = &channel[0]; i < RING_SIZE; i++) {

right = &channel[(i + 1) % RING_SIZE];
element[i].input = in(left);
element[i].output = out(right);
element[i].start = false;
left = right;

}

51



Example: Single-Token Ring
main Logic – Part 2

element[0].start = true;                              // make first element starter
t0 = Now();                                                // get the starting time
for (i = 0; i < RING_SIZE; i++) {                // start the ring elements

START(Element, &element[i], 1);
} 
run();                                                      // let them run

}

52



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

53



Related Work

• Transterpreter
– Very good performance
– Portable
– Nearly all of occam-π
– May be suitable for hard real-time
– Released under LGPL

• Does not poison commercial or proprietary use

54



Related Work

• CCSP
– Gold standard for process scheduling
– 32-bit Intel only

• Not easy to port
– Memory requirements?

55



Related Work

• C++CSP
– Single processor
– Possibly easy to port
– Superseded by C++CSP2

• C++CSP2
– Many-to-many threading model

• multicore
– Linux/Windows
– Released under LGPL

56



Related Work

• RMoX
– Operating system written in occam-π
– Intel x86 only
– Multicore
– Released under GPL

57



Related Work
• JCSP Micro Edition

– Reduced version of JCSP to fit on microcontroller
– Aimed at mobile phones, embedded systems
– Requires underlying JVM

• Does garbage collection
– 90 KB of class files

• JCSP Robot Edition
– Further reduced version of JCSP
– Runs on LEGO Brick over LeJOS java kernel and 

JVM
• No garbage collection

58



Related Work

• ProcessJ
– C/Java-like syntax for occam- π-like language
– Compiler can produce various outputs

• Transterpreter bytecode (portability)

59



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

60



Future Work

• Depends on my investigation of real-time 
cooperative scheduling
– Would prefer higher-level language like 

occam-π
• Multicore
• Shared channel ends
• Barriers
• PAR

61



MicroCSP
1. What is MicroCSP? 
2. Why MicroCSP?
3. How MicroCSP Works
4. API
5. Implementation
6. Performance
7. Availability
8. Example
9. Related Work
10. Future Work
11. Conclusions

62



Conclusions
• MicroCSP presents a realization of CSP constructs 

with the simplicity of implementation and memory 
efficiency of an event-driven approach
– With working example

• Provides benefits of CSP-based development
– Compositional program construction
– Race conditions ruled out
– No semaphores or locks
– Relations between components explicit (channels)
– Priority inversion is avoidable
– Can check design with FDR

63



Questions & Discussion

• michaelegoldsby at gmail.com
• megolds at sandia.gov

64


	A Super-Simple Run-Time forCSP-Based Concurrent Systems
	MicroCSP
	MicroCSP
	What is MicroCSP?
	What is MicroCSP?
	MicroCSP
	Why MicroCSP?
	Why MicroCSP?
	MicroCSP
	How MicroCSP Works
	How MicroCSP Works
	How MicroCSP Works
	How MicroCSP WorksPreemption
	How MicroCSP WorksNormal Form
	How MicroCSP WorksNormal Form
	How MicroCSP WorksNormal Form
	How MicroCSP WorksNormal Form
	How MicroCSP WorksNormal Form
	MicroCSP
	APISystem Initialization
	APIProcess Creation
	APIProcess Creation
	APIProcess Initialization, Termination
	APIChannels
	APITime
	APIAlternation
	APIAlternation
	APIAlternation
	APIAlternation
	MicroCSP
	ImplementationScheduling
	ImplementationScheduling
	ImplementationScheduling
	ImplementationScheduling
	ImplementationScheduling
	ImplementationScheduling
	ImplementationData Structures
	ImplementationData Structures
	ImplementationData Structures
	ImplementationStack Usage
	ImplementationMiscellaneous
	MicroCSP
	Performance
	Performance
	MicroCSP
	Availability
	MicroCSP
	Example: Single-Token RingDefinitions and Declarations
	Example: Single-Token RingCode Function - Part 1
	Example: Single-Token RingCode Function – Part 2
	Example: Single-Token Ringmain Logic – Part 1
	Example: Single-Token Ringmain Logic – Part 2
	MicroCSP
	Related Work
	Related Work
	Related Work
	Related Work
	Related Work
	Related Work
	MicroCSP
	Future Work
	MicroCSP
	Conclusions
	Questions & Discussion

