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What is SpiNNaker? 

• It is not: 

 

 

• It is: 

 

Just another massive parallel machine 

A large number     of relatively small     cores 

embedded in a powerful     bespoke hardware 

communication fabric 

1,000,000 
64k:32k D:I memory, 

ARM 9, no floating point 

Bisection bandwidth 
250 Gb/s 

1,000,000 
64k:32k D:I memory, 

ARM 9, no floating point 1,000,000 

Bisection bandwidth 
250 Gb/s 

64k:32k D:I memory, 

ARM 9, no floating point 
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Bio-inspiration: BIMPA 

• How can massively parallel computing 
resources accelerate our understanding of 
brain function? 

 

• How can our growing understanding of brain 
function point the way to more efficient 
parallel, fault-tolerant computation? 
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Outline 

• The SpiNNaker system 

• Configuration 

• Time models itself 

• Neural simulation 
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Machine architecture 

• Triangular 
mesh of nodes 
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• 1 engine = 
256x256 toroid = 
65536 nodes 

• 1 node =  
18 cores 

+ comms  

+ 128M SDRAM 

• 1 core = 
ARM9 

+ 64k DTCM 

+ 32k ITCM 
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A Spinnaker node 

• 6 bi-directional 

comms links 

• Core farm 
• (1 monitor) 

• System... 
• NoC 

• RAM 

• Watchdogs 

• Off-die SDRAM 
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102 

machine 

18 cores  
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Physical construction 

103 machine 

48 nodes: 

48 nodes x  

18 cores 

= 864 cores  
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Physical construction 

104 machine 

24 boards: 

24 boards x  

48 nodes x  

18 cores 

= 20736 cores  
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Physical 
construction 

105 machine 

5 racks:  

5 racks x  

24 boards x  

48 nodes x  

18 cores 

= 103680 cores  
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…and the machine yet 
to be assembled: 

103 machine: 864 cores, 1 PCB, ~75W  104 machine:20,736 cores, 1 rack, ~1900W 
(24 PCBs, operation without aircon)  

105 machine: 103,680 cores, 1 cabinet, ~9kW  

106 machine: 1M cores, 10 cabinets, ~90kW  CPA'15 Kent 
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Scalable system ... 
... arbitrary topology 

• We like tori 

• But the node topology is 

almost arbitrary 
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Outline 

• The SpiNNaker system 

• Configuration 

• Time models itself 

• Neural simulation 
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A conventional multi-
processor program: 

Problem: represented as a network of 

programs with a certain behaviour... 

...embodied as data 

structures and 

algorithms in code... 

...compile, link... 

...binary files 

loaded into 

instruction 

memory... 

MPI farm (or 

similar) 
Myranet (or 

similar) 

Messages addressed at 

runtime from arbitrary 

process to arbitrary process 

Interface presented to the 

application is a homogenous set of 

processes of arbitrary size; 

process can talk to process by 

messages under application 

software control 
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...and you might 
reasonably expect: 

• Blocking and non-blocking send/receive 

• Probing the queues 

• Broadcasting 

• Scatter-gather 

• Parallel I/O 

• Remote memory access 

• Dynamic process management 
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On SpiNNaker... 

• The problem (Circuit under Simulation) is 

defined as a graph 

• Torn into two components: 

– CuS topology  

• Embodied as hardware route tables in the nodes 

– Circuit device behaviour 

• Embodied as software event handlers running on cores 
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On SpiNNaker: 

Problem: represented as 

a network of devices with 

a certain behaviour... 

...behaviour of each device 

embodied as an interrupt 

handler in code... 

...compile, link... 

...binary files loaded into 

core instruction memory... 

Messages 

launched at 

runtime take a 

path defined by 

the firmware 

router 

...problem 

is split into 

two parts... 

...problem topology 

loaded into firmware 

routing tables... 

...abstract problem 

topology... 

The code says "send message" but has no 

control where the output message goes - 

the route tables in each node decide 
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OS, S/W environment 

• What you expect: 

– File I/O 

– Console output 

– Memory management 

– Interactive debug 

– Libraries 

– The time 

• What each handler gets: 
– Read access to 72 bits of the 

packet that woke it 

– Knowledge of incoming port 

(0..5) - not very useful 

– I/O to its own memory map 

– Ability to send packets 

– Knowledge of local node and 

core identifier 

– Coarse interval signal 

And that's all, folks 
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SpiNNaker configuration 

Maps each individual neuron to a 

SpiNNaker core 

 

Defines the router tables for each node  
Connectivity of neural topology is 

distributed throughout the system in the 

routing tables 

 

Defines the index structures necessary 

in each core to allow fast retrieval of 

neuron and synapse state 

Defines the packet handling code 

(interrupt handlers) 

1000 neurons per processor 

Offline configuration software maps neurons:cores (~1000:1) 
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SpiNNaker configuration 

Neurons communicate via spikes traveling 

along axons/dendrites 

 

 

 

 

Cores (and hence the neuron models resident 

within them) communicate via 72-bit hardware 

packets traveling through the routing structure, 

hopping from node to node as directed by the 

routing tables in each node 

Biology 

SpiNNaker 
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Event handlers? Interrupts? 

• Packet arrives at a core: 

– Hardware invokes an interrupt handler  

• Tied to a neuron 

– Handler modifies neuron state 

• May/may not launch packets as a consequence 

• Handlers are tiny; they execute; they stop 

 
And that's all you have to play with 
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What exactly is a packet? 

– Hardware 

• Fixed bit length 

– Address event representation (AER) 

– Packets delivered from source neuron to 

target neuron 

• Source node address|source core address|source 

neuron address 

– Physical route embodied in route tables  

• Distributed 
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Outline 

• The SpiNNaker system 

• Configuration 

• Time models itself 

• Neural simulation 
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Time 

Axonal delay O(ms) – 

fn(biological geometry) 

Biology: 

Neuron processing time O(ms) – 

fn(biology & state(history)) 
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Time 

Neuron-neuron wallclock delay 

maximum O(10us) – fn(graph mapping, 

traffic density & engine size) 

Node-node wallclock hop 

delay O(100ns) – fn(graph 

mapping & traffic density) 

Axonal delay stored as parameter in 

synapse state local to neuron model 

Neuron-core mapping – 

fn(graph mapping software) 

SpiNNaker 
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There are different 
sorts of interrupts 

 

 

• Each core 
– Packet handling interrupt 

• Invoked by incoming packet 

• Each node 
– Biological clock tick handling interrupt 

– Clocks are not phase locked 

– Slow O(kHz) 

– '(Biological) time is passing' signal 

– Asserted on every core 
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Back to biology 

A 
B 

• A fires when it fires 

• Pulse propagates to B 

• Arrives when it arrives 

• B integrates incoming pulse(s) 

• Fires when it fires 

No synchronising clock 

Event driven 

Data push 
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Back to SpiNNaker 

In parallel with (and not 

synchronised to) this: 

Biological clock ticks 

Triggers an interrupt with 

each tick 

 

 

 

A 

B 

A fires when it fires 

Launches a packet to B 

Arrives O(us) later 

Triggers 'packet arrived' interrupt 
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A closer look at the 
interrupt handlers 

Packet arrival handler Clock tick handler 

Remove packet from 

router; 

Store in buffer in 

synapse (age = 0) 

Increment age of buffered 

packets; 

If any 'arrived' (age == 

synapse delay), assert 

onto neuron state 

equations; 

Integrate (one timestep) 

neuron state equations 
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Neural simulation 

sn 

s2 

s1 

Σs 

clock 

Individual message 

frequencies < real-

time clock 

Superposition of all inputs: exact timing = 

fn(neuron:core) i.e. independent of CuS (bad) 

BUT message latency << CuS time constants 

(so it doesn't matter) 

Change of neuron state derived locally, 

stored until next (biological) timestep 

 

Change of neuron state broadcast (or 

not) at next (biological) timestep 
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And this works because: 

• Biological wallclock time modelled locally at each node  
– (and thus each neuron modelled within it) 

• At each time tick 
– Inputs added if age suitable 

– Equations integrated 

– States updated 

• Wallclock packet transit delay is negligible and ignored 

• Biological delay captured in target synaptic model state 

• Differential equations controlling neuron model 
behaviour are not stiff 
– All time constants >> biological clock tick 

– Forward Euler / Runge/Kutta stable 
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Limitations 

• SpiNNaker designed to operate in real time 

– Simulation 'speed' a hard metric to interpret 

 

• Communication via hardware packets 

– 16 bits/node => 65536 nodes/machine 

– 4 bits/core => 16 cores/node 

– 10 bits/neuron => 1024 neurons/core 

• Hard limit of 1,073,741,825 neurons 
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Outline 

• The SpiNNaker system 

• Configuration 

• Time models itself 

• Neural simulation 
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Comparisons 

• LIF 

 

 

 

• Izhikevich 
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Norman the nematode 

• C. elegans 

– ~300 neurons 

– Chemotaxic 

Bessereau Laboratories 
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Of worms and environments 

• Worm locomotion defined by interaction with  

the environment 

 

• Motor neuron is proprioceptive (bidirectional) 

 

• To move, Norman interacts with ambient on a 

distance scale comparable to stride length 
[viscosity/locomotion studies] 

CPA'15 Kent 

24 August 2015 



37 

To do useful science..... 

• If Norman is in a virtual environment 

 

• Coupling at granularity level requiring 

~1 connection/motor neuron 

 

• NOT a few connections/animal 
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Norman abstracted 

Muscle 

Chemosensor 

(sensilla) Head 

Body 

segment 

Motor 

neuron  

Around 25 

stages 

Nervous 

system ~ 300 

neurons 

The physical animal - hosted by 

conventional computing environment 
The neurological animal - 

hosted by SpiNNaker 

Coupling 

bandwidth 

~50 neurons 
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Neuronscape 

– A neurophysiological workbench: 

• Can provide this level of interaction 

• Move the focus to a finer level of granularity in the local 

environment 

• Requires ~ 50 links/animal 

– SpiNNaker can do this 

• Group dynamics ~5000 animals 

• Replace mechanical linkage in the virtual environment 

– Non-neural physical interactions  

– Brokered by SpiNNaker packets 
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Neuronscape - concept 

Artificial environments 

   
De facto technique for neural development studies 
 
Controlled environment - 
 
Real time interaction with : 

● Other Beasties hosted on SpiNNaker 

● Other Beasties hosted on conventional machines 

● Humans - Turing test  
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Neuronscape internals 

Environment server 

"World" 
- Generate visual stimuli 

- Manage physics 

Observation and manipulation 

"Lab bench" 

   Current         Historical             Agents eye         Neuron activity 

 world state      positions                view                (tools from UoM)           

Neuron-environment interaction 

"Body" 

Muscle 

model 

Neuron simulation 

"Brain" 
Photo 

receptors 

Neuron-environment interaction 

"Body" 

Muscle 

model 

Photo 

receptors 

Neuron simulation 

"Brain" 

Neuron-environment interaction 

"Body" 

Muscle 

model 

Neuron simulation 

"Brain" 
Photo 

receptors 

Neuron-environment interaction 

"Body" 

Muscle 

model 

Photo 

receptors 

Neuron simulation 

"Brain" 

Neuron-environment interaction 

"Body" 

Muscle 

model 

Neuron simulation 

"Brain" 
Photo 

receptors 

Neuron-environment interaction 

"Body" 

Muscle 

model 

Photo 

receptors 

Neuron simulation 

"Brain" Visual stimulus 

Forces 

PyNN to SpiNNaker 

PyNN network 
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Group dynamics 

Topological network mapped to 

physical platform 

SpiNNaker node 

Putting it all together 

void ihr() { 

Recv(val,port);               

ghost[port] = val;            

oldtemp = mytemp;             

mytemp = fn(ghost);           

if (oldtemp==mytemp) stop;    

Send(mytemp);                 

} 

Handler (awoken by arrival of 

changed neighbour state) 

Neuron (can see 

only logical 

neighbours) 

Discrete neural 

aggregate 

SpiNNaker platform 

Neuronscape 
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