
Communicating Process Architectures in Light of

Parallel Design Patterns and Skeletons

Dr Kevin Chalmers

School of Computing
Edinburgh Napier University

Edinburgh

k.chalmers@napier.ac.uk

Overview

� I started looking into patterns and skeletons when I wrote some nice helper
functions for C++11 CSP

� par for

� par read

� par write

� I started wondering what other helper functions and blocks I could develop

� Which led me to writing the paper, which I’ve done some further thinking
about

� So, I’ll start with my proposals to the CPA community and add in some
extra ideas not in the paper

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Comparing Pattern Definitions

Table: Mapping Catanzaro’s and Massingill’s view of parallel design patterns.

Catanzaro Massingill
Not Covered Finding Concurrency

Structural Supporting Structures
Computational Not Covered

Algorithm Strategy Algorithm Structures
Implementation Strategy Supporting Structures

Concurrent Execution Implementation Mechanisms

Common Patterns Discussed in the Literature

� Pipeline (or pipe and filter).

� Master-slave (or work farm, worker-farmer).

� Agent and repository.

� Map-reduce.

� Task-graph.

� Loop parallelism (or parallel for).

� Thread pool (or shared queue).

� Single Program - Multiple Data (SPMD).

� Message passing.

� Fork-join.

� Divide and conquer.

Slight Aside - The 7 Dwarves (computational problem patterns)

� Structured grid.

� Unstructured grid.

� Dense matrix.

� Sparse matrix.

� Spectral (FFT).

� Particle methods.

� Monte Carlo (map-reduce).

Pipeline and Map-reduce

Process 1 Process 2 ... Process n

Figure: Pipeline Design Pattern.

f(x)

f(x)

f(x)

f(x)

g(x, y)

g(x, y)

Figure: Map-reduce Design Pattern.

Skeletons

� Pipeline.

� Master-slave.

� Map-reduce.

� Loop parallelism.

� Divide and conquer.

� Fold.

� Map.

� Scan.

� Zip.

Data Transformation - How Functionals Think

� I’ll come back to this again later

� Basically many of these ideas come from the functional people

� Everything in their mind is a data transform

� Having been to a few with functional people (Scotland has a lot of
Haskellers) they see every parallel problem as a map-reduce one

� This has real problems for scalability

Example - FastFlow

Creating a Pipeline with FastFlow

int main()

{

// Create a vector of two workers

vector <ff_node*> workers = {new worker , new worker };

// Create a pipeline of two stages and a farm

ff_pipe <fftask_t > pipeline(new stage_1 , new stage_2 , new

ff_farm <>(workers));

// Execute pipeline

pipeline.run_and_wait_end ();

return 0;

}

Plug and Play with CPA

� We’ve actually been working with “skeletons” for a long time

� The plug and play set of processes capture some of the ideas - but not quite
in the same way

� Some of the more interesting processes we have are:
� Paraplex (gather)
� Deparaplex (scatter)
� Delta
� Basically any communication pattern

� So we already think in this way. We just need to extend our thinking a little.

An aside - Shader Programming on the GPU

Some GLSL

// Incoming / outgoing values

layout (location = 0) in vec3 position;

layout (location = 0) out float shade;

// Setting the value

shade = 5.0;

// Emitting vertices and primitives

for (i = 0; i < 3; ++i)

{

// .. do some calculation

EmitVertex ();

}

EndPrimitive ();

Tasks as a Unit of Computation

Task Interface in C++11 CSP

void my_task(chan_in <input_type > input , chan_out <output_type >

out)

{

while (true)

{

// Read input

auto x = input();

// ...

// Write output

output(y);

}

}

� Unlike a pipeline task we can match arbitrary input to arbitrary output

Tasks as a Unit of Computation

Creating a Pipeline in C++11 CSP

// Plug processes together directly

task_1.out(task_2.in());

// Define a pipeline (pipeline is also a task)

pipeline <input_type , ouput_type > pipe1

{

task_1 ,

task_2 ,

task_3

};

// Could also add processes together

task <input_type , output_type > pipe2 = task_1 + task_2 + task_3;

Programmers not Plumbers

� These potential examples adopt a different style to standard CPA

� Notice that we don’t have to create channels to connect tasks together
� Although the task method uses channels

� This “pluggable” approach to process composition is something I tried away
back in 2006 with .NET CSP

� I don’t think it was well received however

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Descriptive Languages

� Descriptive languages have been put forward to describe skeletal programs

� Limited set of base skeletons used to describe further skeletons

� Aim is to describe the structure of a parallel application using this small set
of components

� The description can then be “reasoned” about to enable simplification
� In other words examine the high level description and determine if a different

combination of skeletons would provide the same “behaviour” which would
be faster (less communication, reduction, etc.)

RISC-pb2l

� Describes a collection of general purpose blocks

Wrappers describe how the function is to be run (e.g. sequentially or in
parallel)

Combinators describes communication between blocks

1-to-N or a deparaplex
N-to-1 or a paraplex
policy for example unicast, gather, scatter, etc.

Functionals run parallel computations (e.g. spread, reduce, pipeline)

Example - Task Farm

TaskFarm(f) = /Unicast(Auto) • [|∆|]n • .Gather

Reading from left to right:

/Unicast(Auto) denotes a 1-to-N communication using a unicast policy that is auto
selected. auto means that work is sent to a single available node to
process from the available processes.

• is a separator between stages of the pipeline.

[|∆|]n denotes that n computations are occurring in parallel. ∆ is the
computation being undertaken, which is f in the declaration
TaskFarm(f).

• is a separator between stages of the pipeline.

.Gather denotes a N-to-1 communication using a gather policy.

SkeTo

� Uses a functional approach to composition
� For example map

mapL(f, [x1, x2, . . . , xn]) = [f(x1), f(x2), . . . , f(x3)]

� And reduce

reduceL(⊕, [x1, x2, . . . , xn]) = x1 ⊕ x2 ⊕ · · · ⊕ xn
� We can therefore describe a Monte Carlo π computation as:

pi(points) = result

where

f(x, y) = sqr(x) + sqr(y) <= 1

result = reduceL(+,mapL(f, points))/n

Thinking about CSP as a Description Language

� OK, I’ve not thought about this too hard
� I’ll leave this to the CSP people

� However I see the same sort of terms used in the descriptive languages
� Description
� Reasoning
� Communication
� etc.

� Creating a set of CSP “blocks” that could be used to describe skeleton
systems could be interesting

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

What Doesn’t Work for Parallelism

� There has been discussion around what doesn’t work for exploiting
parallelism in the wide world (don’t blame me, blame the literature)

� automatic parallelization.
� compiler support is limited to low level optimizations.
� explicit technologies such as OpenMP and MPI require too much effort.

� The creation of new languages is also not considered a viable route (again
don’t shoot the messenger)

� So how do we use what we have?

CCSP as a Runtime

� To quote Peter - “we have the fastest multicore scheduler”

� So why isn’t it used elsewhere?

� I would argue we need to use the runtime as a target platform for existing
ideas

Example OpenMP

OpenMP Parallel For

#pragma parallel for num_threads(n)

for (int i = 0; i < m; ++i)

{

//... do some work

}

� Pre-processor generates necessary code

� OpenMP is restrictive on n above - usually 64 max

� A CCSP runtime could overcome this

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Skeletons Aimed at MPI

� Just one slide!

� Most skeleton frameworks use MPI under the hood
� Help exploit parallelism using MPI

� This is something any CPA skeleton framework would have to look into
supporting

� Handily I’m working on that just now

� As we consider communication more it shouldn’t be that difficult.

Outline

1 Creating Patterns and Skeletons with CPA

2 CSP as a Descriptive Language for Skeletal Programs

3 Using CCSP as a Lightweight Runtime

4 Targeting Cluster Environments

5 Summary

Summary

� This work is really about pointing to some potential future directions for
CPA

� I have put forward four proposals:

To the community at large The description and implementation of parallel
design patterns and skeletons with CPA techniques

To the CSP people The use of CSP as a description language for these
skeletons

To the CCSP developers The use of CCSP as a runtime to support parallel
execution (such as OpenMP)

To the distributed runtime developers The use of these ideas in distributed
computing to better target cluster computing

� We also need to disseminate these ideas to the wider parallel community if
we want them to use these techniques

Questions?

	Creating Patterns and Skeletons with CPA
	CSP as a Descriptive Language for Skeletal Programs
	Using CCSP as a Lightweight Runtime
	Targeting Cluster Environments
	Summary

