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1. Introduction, background and motivation
Some context to understand why ISI was developed.

2. The current state of storage simulation
What techniques are we using today, and what are
the advantages and disadvantages?

3. Our approach to interchangeability
What is interchangeability in simulation and
implementation?

4. Scalability results
What makes the ISI approach viable for large scale
(storage) simulation?

5. Summary
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introduction and motivation



motivation

To understand how large scientific data sets can be
stored efficiently.
Efficiency in

• Performance
• Resources usage
• Locality
• Energy consumption

We focus on energy consumption.
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about me

Former systems operator at HPC/UCPH. Did storage and
compute.

• Nordic T1 facility (storage & compute for ATLAS and
ALICE)

• Multi PB disk, multi PB tape, thousands of compute
cores.

Now, PhD student on the CINEMA project, working on
storage techniques.
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motivation
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the problems

The energy bill associated with storage is an ever larger
part of the data center budget.
Most common technique to reduce energy consumption
and maximize performance:

• Hierarchical Storage Management (HSM)
The notion of managing data according to popularity,
age, size etc. Move passive data to cheaper lower tier
storage (usually tape).

SSDs HDDs Tape
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the problems

HSM uses many reasonably good techniques including
(but not limited to):

• LRU-caching and aging
• Manual tagging of data (i.e. “please do NOT move my
data!”).

• Generally, on-demand retrieval. No prediction.
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the problems

HSM is too general to efficiently store what we define as
known data sets.
We focus on scientific and industrial tomography
imaging.

Imaging data exhibits known workloads and structure.

We should acknowledge and exploit that.
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the problems

In the data center, durability and reliability is most
commonly provided by large RAID systems, but erasure
codes are rapidly gaining traction.
In RAID, all drives must spin simultaneusly. There are
solutions to this in the literature, including:

• Power-aware RAID (or gear shifting).
• Intelligent data placement (e.g. locality optimized).

They are all general in nature.
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the problems

The principle of “optimizing for the common case” has
always been a good strategy.

“This data was just used —
let’s keep it around for a week... or so”

But, the common case isn’t at all common when working
with well-defined scientific data.

“This data has just been acquired —
the physicist won’t use it for months... if ever”
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solutions

What is possible if we exploit what is known?

• Raw data can be moved directly to tape
• Stream filtering

But how to quantify any possible benefits?

Simulation of storage hierarchies, workloads and
data acquisition and consumption.
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building a storage system

Developing a large-scale storage system where the
design isn’t exactly known in advance, could go
something like this:

1. Simulate a model and identify a design.
2. Implement a prototype from the design.
3. Measure the prototype and validate it and the model
against predictions.

4. Repeat. Feed the results of the validation back into
the simulator and/or model and repeat from step 1.

The process is sound, but can we improve it?
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improvements

Interchangeability of simulation and implementation
Eliminating the simulation–prototyping–measure cycle.

Simulation

Prototyping

Measurement
ISI

Design

Implementation

Validation
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storage simulation

Simulate the system model using Discrete Event
Simulation (DES).

A DES is a priority queue of events, handled sequentially.
Each event has a time stamp, updates the model and
adds new events to the queue when handled.
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storage simulation

Main loop of a DES.

Algorithm 1 Discrete Event Simulation

1: procedure DES-LOOP(Q)
2: while Q ̸= ∅ do
3: e← Dequeue(Q)
4: T← Clock(e) ▷ update world clock
5: Process(e) ▷ process event and add new
6: end while
7: end procedure
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storage simulation

An event is processed by a handler. Typically a huge
function with a single switch-statement.

Parallel DES (PDES), generalizes this by allowing multiple
processes to have a local priority queue.

17



parallel des

ROSS (Rensselaer’s Optimistic Simulation System) is an
optimistic PDES.

• Extremely high performance
• Runs on millions of cores
• Relies on Reverse Computation

In summary: a savage beast
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interchangeable simulation and implementation

Model the system components as the individual
processes they are.

The process logic directly implements a prototype.

Requires an environment supporting millions of
independently communicating processes:

• Language based: Go, Erlang, occam-π
• Library based: ZeroMQ

Substantial reduction in time spent going from modeling
to prototype.
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interchangeable simulation and implementation

Do measurement at the same points that does
simulation.

No (explicit) priority queues. Communication is done
directly between interacting entities.

Communicate instead of dictating events.
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discrete vs. real-time

Simulated durations are calculated in the processes that
does the work.

Interchangeability allows components to be swapped
around and possibly mixing discrete time for some
components with real-time for other components.
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simulating a rather huge tape library

• 90 days of constant I/O
• Three types of entities: clients, tape drives and
changers

• Fixed ratio of 16 : 8 : 1
• Up to 250,000 processes simulated.
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i/o communication path

clienti

chchangers

chdrives

1: req{chclienti}

2: req{chchangeri} 3: chchangeri ← resp{chdrivei}

4: chclienti ← resp{chdrivei}

drivei
5: req{chclienti}

6: chclienti ← resp{}
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go

Open source concurrent programming language, created
and primarily developed by Google.
Designed to be highly productive and easy to learn.
Follows the principle of least surprise.
Key features:

• CSP and π-calculus style channels and processes as
low level language features.

• Garbage-collected
• Compiled
• Statically typed
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func client(lib *library) {
ch := make(chan response, *chanBufSize)

for {
lib.changers <- request{mount, ch, clock}

resp = <-ch
clock = clock.Add(resp.t)

waitTime += resp.t

t += resp.t

resp.ch <- request{read, ch, clock}

resp = <-ch
clock = clock.Add(resp.t)
t += resp.t
ioTime += resp.t

}
}
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scalability results
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results (parallel)
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unbuffered channels

Processes 1 core 2 cores 4 cores 8 cores
25 2.14 4.14 4.04 4.00
100 9.22 4.96 5.82 6.15
250 23.90 10.77 10.71 13.39
1000 101.09 37.75 32.00 37.77
2500 245.64 80.37 70.10 75.45
10000 292.40 365.42 585.33 243.83
25000 397.34 419.40 652.45 528.45
100000 881.00 726.77 902.13 1788.21
250000 1839.43 1307.85 1392.19 3671.10
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buffered channels

Processes 1 core 2 cores 4 cores 8 cores
25 2.22 2.11 2.96 2.91
100 5.11 4.96 4.44 4.58
250 27.09 12.63 9.86 10.78
1000 110.72 43.19 32.16 33.19
2500 110.83 122.83 76.30 72.19
10000 123.91 121.59 174.01 315.17
25000 136.47 123.72 176.50 322.98
100000 153.77 136.59 184.69 309.25
250000 691.15 139.34 191.30 311.50
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summary and future work

• Rapid transition from simulation/modeling to
prototype

• Communicate instead of dictating events
• No reverse computation
• Scales well with at least Go

• Further refinement and packageing of the ISI
patterns.

• Look into locality management of Goroutines.
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Thank you

Questions?
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