
A Model-driven Methodology forGenerating and VerifyingCSP-based Java Code

Julio Mariño 1 Raúl N.N. Alborodo 2

1 Universidad Politécnica de MadridBabel research group
julio.marino@upm.es

2 IMDEA Software Institute
raul.alborodo@imdea.org

Communicating Process Architectures CPA2015
Canterbury, August 24 2015

julio.marino@upm.es
raul.alborodo@imdea.org


summary
the paper in a nutshell

this paper is about:
model-driven development of concurrent software
specifying process interaction with formal models
generating code from these models (semi-automatically), and
verifying the resulting code

our contributions:
a textual syntax for specifying process interaction models (that we call shared resources)
as JML-annotated Java interfaces
a couple of generic templates for translating these models into Java classes using the JCSP
(CSP for Java) library
an strategy for verification of the code generated according to these templates, and
some experimental results on the mechanical verification using the KeY tool

(initial) motivation:
teaching trying to teach concurrency to undergrad students for more than 15 years

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 2 / 31



model-driven software development
workflows

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 3 / 31



benefits of model-driven software development
why adding may be necessary for simplifying things

1 Formalizing (part of) the requirements reduces ambiguity in the problem statement.
2 Formal models can be the subject of experiments aimed at early requirement validation.
That is, a mathematical model can be formally verified for detecting inconsistencies or
other flaws.

3 Code is not written from scratch but generated or distilled (semiautomatically) from the
model. This brings several benefits. One of them is portability. This is specially relevant
for concurrent software production, given the volatility of certain languages. A second
benefit is robustness against changes in the requirements – modifying concurrent code by
hand may introduce more errors than re-generating it. Finally, the generative approach
may reduce production costs at this stage.

4 Models can help in the validation, verification and test case generation of the code
obtained from the previous phases.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 4 / 31



shared resources
what is so relevant that deserves to be modeled

key abstractions
concurrency = simultaneous execution +

nondeterminism +
interaction

interaction = communication +
synchronization

synchronization = mutual exclusion serializability +
condition synchronization

P1

P2

P3

R1

Op1 Op2

P4

P5

P6

Op1

R2

Op2

P7

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 5 / 31



shared resources by example
readers & writers

rdr1

rdr2

rdr3

wrt1

wrt2

wrt3

rdrs/wrts

r
w

BR

AR

BW

AW

communication: takes place via change of the resource’s internal state, after applying a
sequence of (serial) operations:

w = 1
r = 0

AW
;

w = 0
r = 0

BR
;

w = 1
r = 1

BR
;

w = 0
r = 2

synchronization: consists in restricting the set of valid sequences of operations (internal
language of the shared resource):

valid traces: BR; AR; BW; AW; BR; BR; AR; AR; BW; AW; . . .
invalid traces: BR; BW; AW; BR; BR; AR; AR; BW; AW; AR; . . .

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 6 / 31



formal specification of a shared resource
readers & writers
CADT ReadersWriters
OPERATIONS
ACTION BeforeRead;AfterRead;BeforeWrite;AfterWrite:

SEMANTICS
DOMAIN:
STATE: (readers : N× writers : N)
INVT: (readers > 0⇒ writers = 0) ∧

(writers > 0⇒ readers = 0 ∧ writers = 1)
INITIAL: writers = 0 ∧ readers = 0

CPRE: writers = 0 ∧ readers = 0
BeforeWrite

POST: writers = 1
PRE: writers = 1
CPRE: true

AfterWrite
POST: writers = 0
CPRE: writers = 0

BeforeRead
POST: readers = 1+ readers in
PRE: readers > 0
CPRE: true

AfterRead
POST: readers = readers in − 1

preconditions (PREs) are often
independent from the resource’s
state
The invariant (INVARIANT) maps
to the loop invariant within the
server code.
The concurrent or
synchronization pre-condition
(CPRE) must hold right before
entering the code for each
operation (might block
execution)
The post-condition (POST) must
hold on exit of the code of each
operation

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 7 / 31



shared resources as abstract state machines
readers & writers

0/0 1/0 2/0 3/0

BR BR BR

AR AR AR

0/1

BW

AW

. . .

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 8 / 31



model-driven engineering revisited
applying all of this to developing concurrent Java SW

SPECS

CC
SR(s)

SR

(JML interface)

.tla

testing

code

.erl

.java

.java

KeY

JML-annotated
Java classfiles

.adb

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 9 / 31



shared resource specifications as JML-annotated Java interfaces
a textual, convenient and ready-to-compile representation

1 package es.upm.babel.ccjml.samples.readerswriters.java;

2
3 public interface /*@ shared_resource @*/ ReadersWriters {

4 //@ public model instance int readers;

5 //@ public model instance int writers;

6
7 /*@ public instance invariant

8 @ readers >= 0 && writers >= 0 &&

9 @ (readers > 0 ==> writers == 0) &&

10 @ (writers > 0 ==> readers == 0 && writers == 1);

11 @*/

12
13 //@ public initially readers == 0 && writers == 0;

14
15 /*@ public normal_behaviour

16 @ cond_sync writers == 0 && readers == 0;

17 @ assignable writers;

18 @ ensures writers == 1;

19 @*/

20 public void beforeWrite();

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 10 / 31



shared resource specifications as JML-annotated Java interfaces (cont’d.)
a textual, convenient and ready-to-compile representation

1 @ requires writers == 1;

2 @ assignable writers;

3 @ ensures writers == 0;

4 @*/

5 public void afterWrite();

6
7 /*@ public normal_behaviour

8 @ cond_sync writers == 0;

9 @ assignable readers;

10 @ ensures readers == \old(readers) + 1;

11 @*/

12 public void beforeRead();

13
14 /*@ public normal_behaviour

15 @ requires readers > 0;

16 @ assignable readers;

17 @ ensures readers == \old(readers) - 1;

18 @*/

19 public void afterRead();

20 }

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 11 / 31



implementing shared resources using JCSP
client-server + RPC + . . .

a view from the clients’ side:
SHARED RESOURCE

Server Code

OP1 OP2

P2

P3

P1

Wrapper

Wrapper Receiving method invocations and propagating them as messages to the server
through CSP channels;

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 12 / 31



implementing shared resources using JCSP
client-server + RPC + . . .

server side:
SHARED RESOURCE

Server Code

OP1 OP2

P2

P3

P1

Wrapper

Server Processing the requests received from the wrapper methods and modifying the
shared resource inner state

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 13 / 31



implementing the server
the devil is in the CPREs

When shared resource operations take no arguments or the operation’s CPRE does not
depend on them, one channel per operation and channel enabled when CPRE holds (see,
for instance, readers & writers).
When CPREs may vary depending on the actual parameters operations can take there are
two basic approaches:

I channel replication: Instantiate CPREs with all their possible values, take classes modulo logicalequivalence, then assign a channel to each class. Enable channels according to each CPRE.
I deferred requests: one (always open) channel per operation, requests are stored in the serveruntil CPRE holds.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 14 / 31



CPREs depending on their parameters
multibuffer

CADTMultibuffer
OPERATIONS
ACTION Put: Sequence(ANY )[i ]
ACTION Get: N[i ]× Sequence(ANY )[o ]

SEMANTICS
DOMAIN:
STATE: self = Sequence(ANY )
INVT: Length(self) ≤ MAX
INITIAL: Length(self) = 0

PRE: 1 ≤ Length(r) ≤ bMAX/2c
CPRE: 1 ≤ Length(r) ≤ MAX − Length(self)

Put(r)
POST: self = self in + r
PRE: 1 ≤ n ≤ bMAX/2c
CPRE: 1 ≤ n ≤ Length(self)

Get(n, s)
POST: self in = self + s

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 15 / 31



channel replication
multibuffer

ConsideringMultibuffer example with MAX = 4

CPREput(2)

CPREput(1)

CPREget(1)

CPREget(2)

MULTIBUFFER

Server Code

PUT GET

pei : Ei 7→ N

peput ([a1, . . . , an ]) = n
peget (n) = MAX/2+ n

pxi : Dx → Ei

pxput ([a1, . . . , ak ]) = [01, . . . , 0k ]
pxget (n) = n

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 16 / 31



channel replication
multibuffer

ConsideringMultibuffer example with MAX = 4

MULTIBUFFER

Server Code

PUT(obj) GET(n)
2 <= MAX − nData

1 <= MAX − nData

1 <= nData

2 <= nData

0

1 2

3

pei : Ei 7→ N

peput ([a1, . . . , an ]) = n
peget (n) = MAX/2+ n

pxi : Dx → Ei

pxput ([a1, . . . , ak ]) = [01, . . . , 0k ]
pxget (n) = n

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 17 / 31



deferred requests

CPRE depends on some operation parameters x (Dx potentially infinite)
Every request is stored in some data structure as soon as it is received by the server.
Typically, there will be one collection per method;
It must be ensured that no pending request whose synchronization condition holds is left
unattended before entering into a new iteration of the service loop;
Finally, mutual exclusion of the servicing of the requests must be guaranteed by the
server implementation.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 18 / 31



deferred requests
multibuffer

Considering Multibuffer example with MAX = 4

MULTIBUFFER

Server Code

PUT GETputRequests

getRequests

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 19 / 31



deferred requests: multibuffer example
wrapper

single send : when the footprint contains all the actual parameter (e.g. the get operation)
1 One2OneChannel innerChannel = Channel.one2one();

2 chGet.out().write(new GetRequestCSP(n,innerChannel));

3 Object[] res = (Object[]) innerChannel.in().read(); // blocks

4 return res;

5 }

double send : when the footprint does not contain all the parameter information (e.g. the
put operation).

1 One2OneChannel innerChannel = Channel.one2one();

2 chPut.out().write(new PutRequestCSP(els.length,innerChannel))←↩
;

3 // send the data to be inserted

4 innerChannel.out().write(els); // blocks until server can ←↩
take it

5 innerChannel.in().read(); // wait for server to finish

6 }

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 20 / 31



verification : channel replication
proof obligations

key ideas:
code form follows function (template-based programming), so we can JML-annotate
crucial points in the code
goal: reveal tpical errors programmers make in applying the template
actual prrof obligations derived from both template and shared resource specification

proof obligations for the server component
prop cs preservation: immediately after the conditional statement that decides upon the
index that tells the server which call must serve, the CPRE of that call must hold.
prop safe selection: the server code must guarantee that a valid service is selected in
each iteration, i.e. the selected service s must belong to pe range, and has a message
waiting to be read.
prop only one request: only one request is processed in each iteration. Server code
must guarantee this in order to avoid losing requests.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 21 / 31



verification: channel replication
prop cs preservation

Immediately after the switch statement determines which branch will execute, the
corresponding synchronization condition must hold.
Generated Code
int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
/*@ assert (\forall int j;

@ 0<=j && j<syncCond.length;

@ syncCond[j] == CPREi );
@*/

chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
//@ assert CPREl (chosenService);
. . .
break;

. . .
}

}

}

Instrumented Code
public boolean cprePreservation;

public boolean oneMessageProcessed;

. . .
//@ ensures cprePreservation;

public void run(){

. . .
cprePreservation = true;

int chosenService = 42;

while (chosenService != -1){

chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :

cprePreservation &= CPREl (chosenService);
. . .
break;

. . .
}

}

}

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 22 / 31



verification: channel replication
prop cs preservation

Immediately after the switch statement determines which branch will execute, the
corresponding synchronization condition must hold.
Generated Code
int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
/*@ assert (\forall int j;

@ 0<=j && j<syncCond.length;

@ syncCond[j] == CPREi );
@*/

chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
//@ assert CPREl (chosenService);
. . .
break;

. . .
}

}

}

Instrumented Code
public boolean cprePreservation;

public boolean oneMessageProcessed;

. . .
//@ ensures cprePreservation;

public void run(){

. . .
cprePreservation = true;

int chosenService = 42;

while (chosenService != -1){

chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :

cprePreservation &= CPREl (chosenService);
. . .
break;

. . .
}

}

}

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 22 / 31



verification: channel replication
prop safe selection

Server code must guarantee that a valid service is selected in each iteration, i.e. the selected
service s must belong to pe range, and has a message waiting to be read. The aims are:

servicesmust include all input channels and its length must be equal to#rg(pe)
a channel in a position i in servicesmust have its synchronization predicate in the
position i of synCond
their length must be the equal.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 23 / 31



verification: channel replication
prop safe selection

Generated Code
public void run(){

int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
/*@ assert (\forall int j;

@ 0<=j && j<syncCond.length;

@ syncCond[j] == CPREi );
@*/

chosenService = fairSelect(syncCond,services);

. . . process a request onchosenService
}

}

Instrumented Code
//@ ensures wellFormedSyncCond;

public void run(){

wellFormedSyncCond = true;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];
int chosenService = 42;

while (chosenService != -1 ) {

. . . update syncCond array
for (int i =0 ; i < syncCond.length ; i++ ) {

wellFormedSyncCond &= (syncCond[i] == CPREi );
}

wellFormedSyncCond &=

syncCond.length == guards.length;

chosenService =

JCSPKeY.fairSelect(syncCond, guards);

. . . process a request onchosenService
}

}

Errors that can be found: poorly updates of syncCond

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 24 / 31



verification: channel replication
prop safe selection

Generated Code
public void run(){

int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
/*@ assert (\forall int j;

@ 0<=j && j<syncCond.length;

@ syncCond[j] == CPREi );
@*/

chosenService = fairSelect(syncCond,services);

. . . process a request onchosenService
}

}

Instrumented Code
//@ ensures wellFormedSyncCond;

public void run(){

wellFormedSyncCond = true;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];
int chosenService = 42;

while (chosenService != -1 ) {

. . . update syncCond array
for (int i =0 ; i < syncCond.length ; i++ ) {

wellFormedSyncCond &= (syncCond[i] == CPREi );
}

wellFormedSyncCond &=

syncCond.length == guards.length;

chosenService =

JCSPKeY.fairSelect(syncCond, guards);

. . . process a request onchosenService
}

}

Errors that can be found: poorly updates of syncCond

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 24 / 31



verification: channel replication
prop safe selection

Generated Code
public void run(){

int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
/*@ assert (\forall int j;

@ 0<=j && j<syncCond.length;

@ syncCond[j] == CPREi );
@*/

chosenService = fairSelect(syncCond,services);

. . . process a request onchosenService
}

}

Instrumented Code
//@ ensures wellFormedSyncCond;

public void run(){

wellFormedSyncCond = true;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];
int chosenService = 42;

while (chosenService != -1 ) {

. . . update syncCond array
for (int i =0 ; i < syncCond.length ; i++ ) {

wellFormedSyncCond &= (syncCond[i] == CPREi );
}

wellFormedSyncCond &=

syncCond.length == guards.length;

chosenService =

JCSPKeY.fairSelect(syncCond, guards);

. . . process a request onchosenService
}

}

Errors that can be found: poorly updates of syncCond

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 24 / 31



verification: channel replication
prop only one requestOnly one request is processed per server iteration. If using nestsed if, is already guaranteed if
using nested if statements, but when using switch, the execution of more than one branch is
possible.

Generated Code
public void run(){

int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
//@ assert CPREl (chosenService);
. . .
break;

. . .
}

}

}

Instrumented Code
public boolean oneMessageProcessed;

. . .
//@ ensures oneMessageProcessed;

public void run(){

. . .
oneMessageProcessed = true;

int chosenService = 42;

while (chosenService != -1){

int processedMessages = 0;

. . . update syncCond array
chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
. . .
processedMessages ++;

break;

. . .
}

oneMessageProcessed &= processedMessages == 1;

}

}Errors that can be found: missing break statements in each switch pattern.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 25 / 31



verification: channel replication
prop only one requestOnly one request is processed per server iteration. If using nestsed if, is already guaranteed if
using nested if statements, but when using switch, the execution of more than one branch is
possible.

Generated Code
public void run(){

int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
//@ assert CPREl (chosenService);
. . .
break;

. . .
}

}

}

Instrumented Code
public boolean oneMessageProcessed;

. . .
//@ ensures oneMessageProcessed;

public void run(){

. . .
oneMessageProcessed = true;

int chosenService = 42;

while (chosenService != -1){

int processedMessages = 0;

. . . update syncCond array
chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
. . .
processedMessages ++;

break;

. . .
}

oneMessageProcessed &= processedMessages == 1;

}

}

Errors that can be found: missing break statements in each switch pattern.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 25 / 31



verification: channel replication
prop only one requestOnly one request is processed per server iteration. If using nestsed if, is already guaranteed if
using nested if statements, but when using switch, the execution of more than one branch is
possible.

Generated Code
public void run(){

int chosenService = 42;

int[] services = {. . .};
boolean[] syncCond = new boolean[#rg(pe)];

while (chosenService != -1 ){

. . . update syncCond array
chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
//@ assert CPREl (chosenService);
. . .
break;

. . .
}

}

}

Instrumented Code
public boolean oneMessageProcessed;

. . .
//@ ensures oneMessageProcessed;

public void run(){

. . .
oneMessageProcessed = true;

int chosenService = 42;

while (chosenService != -1){

int processedMessages = 0;

. . . update syncCond array
chosenService = fairSelect(syncCond,services);

switch(chosenService){

. . .
case METHODl :
. . .
processedMessages ++;

break;

. . .
}

oneMessageProcessed &= processedMessages == 1;

}

}Errors that can be found: missing break statements in each switch pattern.
J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 25 / 31



verification: deferred requests
proof obligations

proof obligations for the server component
prop cs preservation: immediately after the server code that retrieves a request to be
processed, the CPRE of the method associated with the request must hold. This restriction
ensures safety of the processing code because changes to the inner state of the resources
are performed only for those requests that represent valid invocations.
prop completeness: If the server exits the code for processing deferred requests – and is
about to loop back to the fairSelect – there should be no valid pending requests.

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 26 / 31



verification: deferred requests
prop cs preservation

Immediately after the server starts processing a deferred request, the CPRE for the relevant
operation must hold

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 27 / 31



verification: deferred requests
prop cs preservation

Generated Code
. . .
public void run(){

. . .
// process deferred requests for operation k
for (int i = 0; i < operation_kRequest.size()) {

. . . dequeue request item from operation k Request

. . . extract operation k footprint from the request item
if (condition_k (operation_k_footprint) {

/*@ assert resource_Invariant && condition_k←↩
(operation_k_footprint)

@ ==> CPRE_k;

@*/

. . . extract the channel, innerChannel, from the request item

. . . input remaining operation k parameters, if any, from
innerChannel

. . . apply operation k to the resource, using footprint and
parameters

//@ assume resource_Invariant && POST_k;

. . . send operation k results (or null) down innerChannel
} else {

. . . enqueue item back on operation k Request
}

}

. . . process deferred requests for all the other operations similarly
}

Instrumented Code
boolean cprePreservation;

. . .
//@ ensures cprePreservation;

public void processDeferredRequests(){

. . .
// process deferred requests for operation k
for (int i = 0; i < operation_kRequest.size()) {

. . . dequeue request item from operation k Request

. . . extract operation k footprint from the request item
if (condition_k (operation_k_footprint) {

/*@ assert resource_Invariant && condition_k←↩
(operation_k_footprint)

@ ==> CPRE_k;

@*/

cprePreservation &= CPRE_k; // let’s see if←↩
it’s true

. . . extract the channel, innerChannel, from the request item

. . . input remaining operation k parameters, if any, from
innerChannel

. . . apply operation k to the resource, using footprint and
parameters

//@ assume resource_Invariant && POST_k;

. . . send operation k results (or null) down innerChannel
} else {

. . . enqueue item back on operation k Request
}

}

. . . process deferred requests for all the other operations similarly
}

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 28 / 31



verification: deferred requests
prop cs preservation

Generated Code
. . .
public void run(){

. . .
// process deferred requests for operation k
for (int i = 0; i < operation_kRequest.size()) {

. . . dequeue request item from operation k Request

. . . extract operation k footprint from the request item
if (condition_k (operation_k_footprint) {

/*@ assert resource_Invariant && condition_k←↩
(operation_k_footprint)

@ ==> CPRE_k;

@*/

. . . extract the channel, innerChannel, from the request item

. . . input remaining operation k parameters, if any, from
innerChannel

. . . apply operation k to the resource, using footprint and
parameters

//@ assume resource_Invariant && POST_k;

. . . send operation k results (or null) down innerChannel
} else {

. . . enqueue item back on operation k Request
}

}

. . . process deferred requests for all the other operations similarly
}

Instrumented Code
boolean cprePreservation;

. . .
//@ ensures cprePreservation;

public void processDeferredRequests(){

. . .
// process deferred requests for operation k
for (int i = 0; i < operation_kRequest.size()) {

. . . dequeue request item from operation k Request

. . . extract operation k footprint from the request item
if (condition_k (operation_k_footprint) {

/*@ assert resource_Invariant && condition_k←↩
(operation_k_footprint)

@ ==> CPRE_k;

@*/

cprePreservation &= CPRE_k; // let’s see if←↩
it’s true

. . . extract the channel, innerChannel, from the request item

. . . input remaining operation k parameters, if any, from
innerChannel

. . . apply operation k to the resource, using footprint and
parameters

//@ assume resource_Invariant && POST_k;

. . . send operation k results (or null) down innerChannel
} else {

. . . enqueue item back on operation k Request
}

}

. . . process deferred requests for all the other operations similarly
}

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 28 / 31



verification: deferred requests
prop completeness

We need to ensure that no pending request can be processed. A request is either processed (if
its CPRE holds) or enqueued again. If it is true, property (prop cs preservation ) guarantees
that is going to be processed. Otherwise,(CPRE does not hold) two cases can be distinguished.

CPRE does NOT depend on the input parameters
//prop_completeness

//@ ensures

n∧
i=1 (methodi Requests > 0 ==> !CPREi );

CPRE DEPENDS on the input parameters
Follow a similiar approach as for prop cs preservation
A new variable completeness is defined
It accumulates the value of the associated CPRE of requests.

//prop_completeness

//@ ensures

n∑
i=1 methodi Request.size() > 0 ==> completeness;

Errors that can be found: ping-pong effect, bad conditions for processing requests, ...

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 29 / 31



verification: deferred requests
prop completeness

We need to ensure that no pending request can be processed. A request is either processed (if
its CPRE holds) or enqueued again. If it is true, property (prop cs preservation ) guarantees
that is going to be processed. Otherwise,(CPRE does not hold) two cases can be distinguished.
CPRE does NOT depend on the input parameters

//prop_completeness

//@ ensures

n∧
i=1 (methodi Requests > 0 ==> !CPREi );

CPRE DEPENDS on the input parameters
Follow a similiar approach as for prop cs preservation
A new variable completeness is defined
It accumulates the value of the associated CPRE of requests.

//prop_completeness

//@ ensures

n∑
i=1 methodi Request.size() > 0 ==> completeness;

Errors that can be found: ping-pong effect, bad conditions for processing requests, ...

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 29 / 31



verification: deferred requests
prop completeness

We need to ensure that no pending request can be processed. A request is either processed (if
its CPRE holds) or enqueued again. If it is true, property (prop cs preservation ) guarantees
that is going to be processed. Otherwise,(CPRE does not hold) two cases can be distinguished.
CPRE does NOT depend on the input parameters

//prop_completeness

//@ ensures

n∧
i=1 (methodi Requests > 0 ==> !CPREi );

CPRE DEPENDS on the input parameters
Follow a similiar approach as for prop cs preservation
A new variable completeness is defined
It accumulates the value of the associated CPRE of requests.

//prop_completeness

//@ ensures

n∑
i=1 methodi Request.size() > 0 ==> completeness;

Errors that can be found: ping-pong effect, bad conditions for processing requests, ...

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 29 / 31



verification: deferred requests
prop completeness

We need to ensure that no pending request can be processed. A request is either processed (if
its CPRE holds) or enqueued again. If it is true, property (prop cs preservation ) guarantees
that is going to be processed. Otherwise,(CPRE does not hold) two cases can be distinguished.
CPRE does NOT depend on the input parameters

//prop_completeness

//@ ensures

n∧
i=1 (methodi Requests > 0 ==> !CPREi );

CPRE DEPENDS on the input parameters
Follow a similiar approach as for prop cs preservation
A new variable completeness is defined
It accumulates the value of the associated CPRE of requests.

//prop_completeness

//@ ensures

n∑
i=1 methodi Request.size() > 0 ==> completeness;

Errors that can be found: ping-pong effect, bad conditions for processing requests, ...
J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 29 / 31



experimental results
using KeY to certify shared resource implementations

Correct implementations (both approaches)
I implementations following the templates
I optimized versions of the previous implementations.

Erroneous/buggy implementations
I Channel replication:

F implementations with erroneous or incomplete update of the syncCond array.
F missing break statements in switch code;

I Deferred requests:
F incorrect optimizations on the code processing the pending requests
F violations of protocol definitions.
F not taking into account ping-pong effects

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 30 / 31



conclusions and future work
JML extension for shared resources presented
Generation of correct Java code from specifications using model-driven techniques

I Channel replication: CPRE depends on x (with Dx finite)
I Deferred requests: CPRE depends on x (with Dx potentially infinite)

Automatic verification of JML-anotated implementations using the KeY tool and lots of
instrumentation
Examples, including specifications, implementations and verification annotations, can be
found at http://babel.upm.es/˜rnnalborodo/sr_web/.

Completing the experiments with more implementations of the base test suite, perhaps
optimized in non-trivial ways.
Actually extending the JML compiler (e.g. using OpenJML)
Integrating the presented framework in KeY

I Experience gained with instrumentation may serve to make KeY concurrency-aware
First steps towards code compilation for shared resources

I for a subset of the shared resource syntax (codename razor)
More examples to show practicality and scalability of the approaches

I A collection of correct concurrent Java collections on the way

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 31 / 31

http://babel.upm.es/~rnnalborodo/sr_web/


conclusions and future work
JML extension for shared resources presented
Generation of correct Java code from specifications using model-driven techniques

I Channel replication: CPRE depends on x (with Dx finite)
I Deferred requests: CPRE depends on x (with Dx potentially infinite)

Automatic verification of JML-anotated implementations using the KeY tool and lots of
instrumentation
Examples, including specifications, implementations and verification annotations, can be
found at http://babel.upm.es/˜rnnalborodo/sr_web/.
Completing the experiments with more implementations of the base test suite, perhaps
optimized in non-trivial ways.
Actually extending the JML compiler (e.g. using OpenJML)
Integrating the presented framework in KeY

I Experience gained with instrumentation may serve to make KeY concurrency-aware
First steps towards code compilation for shared resources

I for a subset of the shared resource syntax (codename razor)
More examples to show practicality and scalability of the approaches

I A collection of correct concurrent Java collections on the way

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 31 / 31

http://babel.upm.es/~rnnalborodo/sr_web/


Channel Replication

CPRE depends on some operation parameters

CPRE(opi (~x,~y)) ≡ Ci



tautology Ci ⇔ true open channel

depends only on resource state Ci = φ(S) one channel enabled by φ

may depend on ~x : Ci = φ(S ,~x)


channel replication

deferred requests

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 1 / 3



Channel Replication: Formalization

Considering one operation opi (x , y)
x ∈ Dx and y ∈ Dy
CPREopi Ci only depends on x

Ci is independent from y iff ∀ a ∈ Dx .∀ b , b ′ ∈ Dy .Ci [a/x , b/y ]⇔ Ci [a/x , b ′/y ]

Ci is dependent from x iff ∃ a , a ′ ∈ Dx .Ci [a/x ] 6⇔ Ci [a ′/x ]

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 2 / 3



Channel Replication: Formalization

Considering one operation opi (x , y)
x ∈ Dx and y ∈ Dy
CPREopi Ci only depends on x

Ci is independent from y iff ∀ a ∈ Dx .∀ b , b ′ ∈ Dy .Ci [a/x , b/y ]⇔ Ci [a/x , b ′/y ]

Ci is dependent from x iff ∃ a , a ′ ∈ Dx .Ci [a/x ] 6⇔ Ci [a ′/x ]

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 2 / 3



Channel Replication: Formalization (Cont.)

a , a ′ ∈ Dx are equivalent iff Ci [a/x ] and Ci [a ′/x ]
Let Ei be the (finite) set of equivalence classes
opi (a , b ) and opi (a ′, b ) will be routed to the same channel if the precondition holds (or fails)for them both

J.Mariño & R.Alborodo (UPM & IMDEA) Model-based Code Generation Using JCSP CPA2015 3 / 3


	Resource Oriented Design
	model-driven engineering
	Shared Resources
	Channel Replication
	Deferred Requests

	Code Verification
	Instrumentation
	Verification

	Conclusion
	Appendix

