
Øyvind Teig
www.teigfam.net/oyvind/home

Autronica Fire and Security AS, Trondheim, Norway. Autronica is a part of UTC Building & Industrial Systems, a unit of United Technologies Corporation

Not that blocking!

@CPA 2015 fringe http://www.wotug.org/cpa2015/

)

http://www.teigfam.net/oyvind/home

Maybe the other blocking?

So that this blocking isn’t?

Based on the blog note "Not so blocking after all" by Øyvind Teig.
See http://www.teigfam.net/oyvind/home/technology/092-not-so-blocking-after-all/

The blog note also contains a thread with comments from Tony
Gore, Roger Shepherd, Matt Pedersen, Jon Kerridge, Marc Smith,

Larry Dickson, David May, Chris Jones, Rick Beton and Ian East,

some of which I have incompletely pasted from here:  

http://www.teigfam.net/oyvind/home/technology/092-not-so-blocking-after-all/

Abstract
1. Communicating to fellow programmers that the concept of

"blocking" in process-oriented design is perfectly acceptable,
while using a word with basically negative connotations, is
difficult.

2. The bare need to do it often means that misunderstanding this
concept is harmful.

3. The first contender on a "blocking channel" has also correctly
been said (by several people) to "wait" on the channel.

4. A better correspondence between the negative meaning and the
semantics is when "blocking" describes serious side effects on
the temporal properties of other concurrent components.

5. This is the correctly feared blocking.

6. This fringe presentation will explore this further and invite
discussion.

Chris Jones  
I suspect the term has been lifted from the telecoms industry where telephone
exchange equipment was considered to be non-blocking when a caller was
guaranteed always to be able to get an immediate connection to another non-
busy user on a fully functioning, non-blocking exchange. In the UK, local
exchanges were non-blocking while trunk connections were not. I would have
thought the usage referring to the possibility of sending a commu- nication was
still pertinent.

Roger Shepherd  
This sounds likely and the difference between this and what happens in a (for
example) occam program is interesting. In an occam program the
communication channel is always available, however the “other party” is not.
So, in the telephone sense the communication is non-blocking – it’s just that
the other party might not be there, and if you are making a call (output) you
have have to hang on the line until the other party answers.

Historically (1/2)

Chris Jones  
When the early telephone exchanges were being devised, they were very
concerned about blocking, not just from the point of view of convenience but
mechanically. These were electro-mechanical switches with the real possibility
of latching up or locking mechanically in unwanted ways like typewriters when
several keys were pressed too close together in time and they arms would lock
together preventing further typing until they were manually released.

Roger Shepherd  
The issue in telephones is precisely whether the switch allows another call to be
established or whether some calls may be “blocked” because a circuit cannot
be established.

Historically (2/2)

Tony Gore 
I think it was a common term in use by April 1986 when I joined Inmos. I
think some terms in common use were used a bit loosely. A channel that was
waiting for the other end of the communication to become ready “blocked” the
process from proceeding. Thus my recollection is that “blocking on a channel”
was commonly used to describe a process that couldn’t proceed until the
communication could proceed.

Roger Shepherd  
I can’t say that I like “block” – but it usage is certainly old and is common for
multitask systems where the ability to create an extra task/thread/whatever to
do communication is considered to be advantageous – hence “non-blocking
communication”.
On the subject of language, I think the term “synchronous” is plain wrong
when used to describe (occam) channel communication. The processes are
“synchronised” by the communication; the communication is “asynchronous” –
there is no clock which causes the communication to happen.

Discussion (1/5)

Jon Kerridge 
Of course if we go back even further there were semaphores to which Dijkstra
gave the names P and V for the operations on semaphores and as I understand
it P and V were the first letters of the Dutch words for wait and signal.
Marc Smith  
I think you have hit upon a significant language barrier when we discuss
channel communications outside of our CSP community. Even though I have
heard the phrase “to block on a channel” I never really thought of it as
blocking.
The term blocking never bothered me because I just understood it in the sense
of synch’ing.

(2/5)Discussion

David May 
There seems to be widespread confusion about ‘blocking’. The problem is
that a common technique in shared memory concurrency involves ‘blocking’ on
access to shared state and various techniques have been devised to avoid or
reduce the need for this. Although these work for some algorithms, there is no
general technique to eliminate ‘blocking’, and many algorithms rely on it – if
a process depends on (for example) the sum of the results of 1000 others (a
reducing operation) it will have to ‘block’ until they have all completed.

All of these ‘non-blocking’ techniques are more difficult to understand and
verify than the blocking equivalents; also they use indivisible instructions
(such as compare and swap) which have to access the shared (deep and high
latency) parts of the memory hierarchy; also the hardware has to ‘block’ in
order to implement the indivisible instructions. So these techniques are
probably not as efficient as they may seem.

(3/5)Discussion

Rick Beton  
For this reason and for reasons others have mentioned, I feel that it is wrong to
describe channels with this terminology because it evidently causes nuances
and misunderstandings in those not very familiar with a CSP or Occam way of
doing things. ‘Waiting’ on a channel communication is helpfully different.
Many people would describe a zero-buffer channel as “synchronous” but an
infinite-place buffer channel as “asynchronous” because the sender never
waits in the latter case. This terminology is flawed in my view; how do you
differentiate between an infinite-buffer channel and a one-place buffer channel?
The latter could behave “synchronously” or “asynchronously” depending on
the current dynamic state; clearly, using synchronous and asynchronous in this
way lacks rigour. Alas, it seems to be pervasive though.

(4/5)Discussion

Ian East  
I’d then distinguish the three known forms of synchronisation permitting
synchronous communication : common clock (as in current digital systems),
handshake (used in a typical system bus) and rendezvous.

David May 
I have just looked through the early drafts and published versions of occam
manuals.

None of them talks about ‘blocking’. It’s all about processes being ‘ready’ to
communicate (sometimes ‘ready and waiting’) to communicate. On a channel,
communication takes place when ‘both processes are ready’.

Discovered ‘hang on a channel’ in an early Inmos-authored magazine article!

(5/5)Discussion

Ø
yv

in
d

 T
e

ig

This blocking stops the showblockingThe show goes on with this blockingblocking

Which blocking do you mean?blocking

This blocking stops the worldblocking

=
yielding?

= blocking? = deadlock!= waiting?

Wikipedia article on non-blocking algorithm was that:

«Literature up to the turn of the 21st century used “non-blocking”
synonymously with lock-free. However, since 2003, the term has been
weakened to only prevent progress-blocking interactions with a preemptive
scheduler. In modern usage, therefore, an algorithm is non-blocking if the
suspension of one or more threads will not stop the potential progress of the
remaining threads. They are designed to avoid requiring a critical section.
Often, these algorithms allow multiple processes to make progress on a
problem without ever blocking each other. For some operations, these
algorithms provide an alternative to locking mechanisms.»

Wikipedia

Wikipedia article on non-blocking algorithm is that:

«In computer science, an algorithm is called non-blocking if failure or
suspension of any thread cannot cause suspension or failure of another
thread; for some operations, these algorithms provide a useful alternative
to traditional blocking operations. A non-blocking algorithm is lock-free if
there is guaranteed system-wide progress, and wait-free if there also is
guaranteed per-thread progress»

Wikipedia (now)

Wikipedia article on non-blocking algorithm is that:

«In computer science, an algorithm is called non-blocking if failure or
suspension of any thread cannot cause suspension or failure of another
thread; for some operations, these algorithms provide a useful alternative
to traditional blocking operations. A non-blocking algorithm is lock-free if
there is guaranteed system-wide progress, and wait-free if there also is
guaranteed per-thread progress»

Does guarantee have to do with fulfilling specification?

guaranteed
guaranteed

Wikipedia ("guaranteed"?)

Ø
yv

in
d

 T
e

ig

This blocking stops the showblockingThe show goes on with this blockingblocking This blocking stops the worldblocking

=
yielding?

= blocking? = deadlock!= waiting?

Spec of others not knownSpec of others known OK! Spec of others unknown or  
known to be pathological?:

golang-nuts and golang-dev
I started the thread Yielding instead of blocking on a channel? on golang-nuts on
25Sep2014. There were some interesting comments.

The final say there is of course Rob ‘Commander’ Pike’s:

«The word “block” is the correct term. Please let’s leave this alone. «

«The word "block" is the correct term»

