
C++11 CSP
Because we haven’t built enough CSP libraries

Dr Kevin Chalmers

School of Computing
Edinburgh Napier University

Edinburgh

k.chalmers@napier.ac.uk



Before we get started...

� Yes you can pull it (although it needs more testing)

� https://github.com/kevin-chalmers/cpp11-csp

https://github.com/kevin-chalmers/cpp11-csp


Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



Little Trajectory - occam to networking

� I started off working with JCSP way back in 2004
� Undergraduate module in Design Patterns including parallel
� An iteration of material Jon had been running as occam for

years

� My undergraduate project looked at code mobility in JCSP

� My PhD work looked at networking and networked mobility



Little Trajectory - networking to occam

� One outcome of this work was a generalised protocol for
networked channel communications

� I developed a .NET version
� Connecting, via channels, JCSP and .NET CSP

� I then set off an occam journey, trying to implement the
networking stack

� And it was too hard
� The networking stack relied too heavily on object-orientation

ideas and some data sharing



Stepping Back - C and MPI

� So I took a step back and thought about redesigning in
another language

� C and C++ being the most likely
� Cross runtime potential with foreign function interface
� I’ll get back to this

� As a sidetrack I started exploring MPI to compare against
what I had

� De facto standard for message passing in distributed parallel

� I became interested in MPI as a potential comm layer, but
this requires a redesign of networking

� Too stream focused

� So, I am really trying to create a framework which sits on top
of MPI

� And the simplest method was to move away from Java to C or
C++



An aside - C++CSP Already Exists!

� Neil Brown did a lot of work on a C++ version of a CSP
library

� Also created C++CSP2

� Also created C++CSP2 Networked

� So why not just use Neil’s work?

� Well, C++CSP2 is not very extensible
� Couldn’t implement the networked channel model I had easily
� Would have to strip down C++CSP2 to achieve what I wanted
� Also relied heavily on Boost and OS specific libraries



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



JCSP Code is Rotten!

� Oh how much do I hate writing JCSP code!

� Actually, I hate writing Java code - JCSP does a good job of
hiding Javaisms�(Chalmers 2015)

� I want to decide if I am passing by value or reference

� I want to decide how and when an object is destroyed

� I want to override operators

� I could go on...



I like the expressiveness of parallel computation in occam

� I do - even though I’ve never been an occam programmer

� What I don’t like is the lack of libraries
� As a programmer I find libraries more important than the

language
� I can work round the language with APIs

� I also find occam a little archaic
� But let’s not start an argument about it

� So I want the simplicity of occam, but with massive library
and platform support

� These two issues quite happily collided



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



C++11 - Not your grandfather’s C++

� C++ is an object-oriented language
� No - but you can write object-oriented code with C++
� A lot of Java programmers (including me) write bad C++ code

� C++ is too complex
� Depends on your approach - you can write complex code with

C++
� I like to tell students that C++ is not a forgiving language

� C++ relies on pointers
� No - most C programmers wrote a lot of bad C++ code

� What C++ is is up for debate
� It is multi-paradigm. If actor models take off you can

guarantee that C++ will get send and receive or similar



New C++ Features

� OK, there are a lot, so I’ll summarise the important bits

Smart pointers Automatic release of resources - no need for
new and delete

Lambda Expressions You can do pretty much standard
functional language stuff - it just gets pretty ugly

Move semantics You can now move resources as well as copy
and reference

� Yes, this is just occam-π mobile data types

Initializer lists Create collections using braces to denote the
members

Variadic templates Compiler does more work for the type
Concurrency FINALLY! We get

� Thread
� Mutex
� Future
� etc.



Modern C++ Design

� OK, last slide before getting onto some code

� Modern C++ design encourages the following approaches

Avoid pointers Most memory should have a handler object
that looks after the resource

PIMPL Private implementation objects surrounded by a
handler

RAII Resource lifetime is linked to the lifetime of its
owner

Generic programming Templates to create reusable code



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



Channels

Creating and Using Channels

// Channels are typed

one2one_chan <int > c;

// Operator overloads for read and write

auto x = c();

c(x);

// Also overloads to automatically convert to chan_in ,

chan_out , etc.



Processes

Processes are Just Functions

// Lambda expression

auto send = [&]() { c(5); };

auto recv = [&]() { cout << c() << endl; };

// Can also bind functions with values

// void sender(chan_out <int > c)

// void receiver(chan_in <int > c)

fork f1(make_proc(sender , c));

fork f2(make_proc(reciever , c));

f1();

f2();



Parallel

par uses Initializer Lists

// Parallel now looks like a control block

par

{

prefix(0, a, b),

delta(b, {c, d}),

succ(c, a),

printer("", "", d)

}();

� I’d like to do something similar with alt - have an idea for
that



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



There is still a bit I’d like to do...

� Building the pattern functions for C++11 CSP got me
interested in parallel patterns

� I’ll talk about this more tomorrow

� I’m almost there with a new networking stack
� Far more versatile and extensible
� Will require only little bits of code to enable new comm layers

� I’d like automatic fork management (i.e. you fork a process
you have to wait for it to complete)

� I’d like other syntactic sugar approaches built in (e.g. alt)



Outline

1 OK why did you do this?

2 OK, but why did you really do this?

3 But C++ is old hat!

4 How to use C++11 CSP

5 Some Examples

6 Patterns and Networking and Other Stuff

7 Summary



Summary

� This is very much a pet project to let me explore ideas

� I’m not aiming for performance, but simplicity of code

� My main aim is to build a new MPI supported network stack
for channel processes

� And hopefully stick that into Go, Rust, etc.

� So, happy enough to share code, but don’t expect support at
the moment



Questions?


	OK why did you do this?
	OK, but why did you really do this?
	But C++ is old hat!
	How to use C++11 CSP
	Some Examples
	Patterns and Networking and Other Stuff
	Summary

