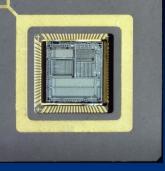

T42 – Transputer Design in FPGA Year-One Design Status Report

Uwe MIELKE ^a and Martin ZABEL ^b,

in collaboration w/ Michael BRUESTLE ^c

^a Electronics Engineer, Dresden, Germany, uwe.mielke@t-online.de
 ^b Institut of Computer Engineering, Technische Universität Dresden, Germany, martin.zabel@tu-dresden.de
 ^c Electronics Engineer, Vienna, Austria, michael_bruestle@yahoo.com

Communicating Process Architectures 2015


T42 in FPGA @ CPA 2015

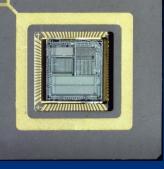
Abstract:

This fringe session will present the current status of our still ongoing IMS-T425 compatible Transputer design in FPGA.

Data path and control path are in a stable working condition. Fetch unit and a basic system control unit are almost functional. Small instruction sequences can be executed from 8Kbyte memory already. Some details arround scheduler micro-code will be

discussed.

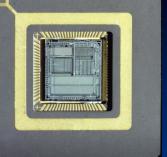
T42 in FPGA @ CPA 2014

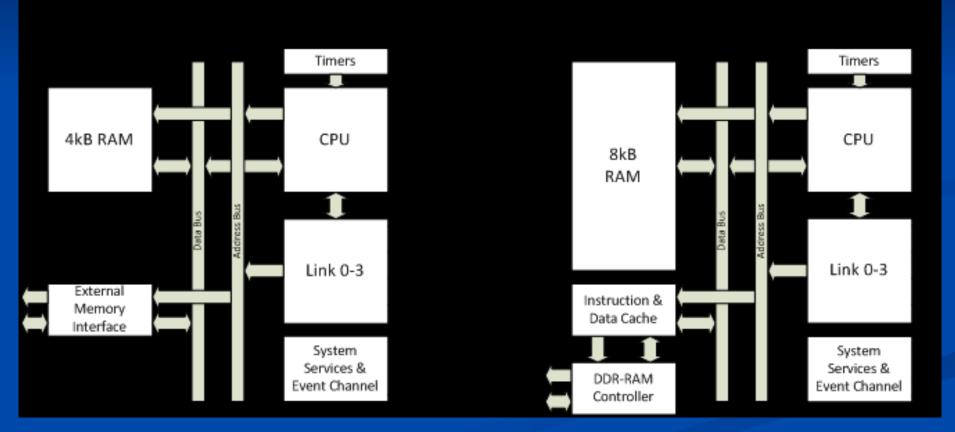

Our Motivation:

Overcome absence of CSP (Transputers and Occam) in public
 Provide a free, IMS-T425 binary compatible, open source VHDL
 Many T42 cores fit into small FPGA e.g. 2 in XC6S-LX9 →16+ in XC2S-LX100
 VHDL is easy to download, easy to improve ... let 's enhance it !
 Computer Engineering Students need toys to play with !
 TU Dresden has experience with own Java MultiCore in FPGA

My (U.M.) personal motivation:

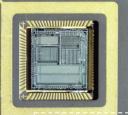
- □ I bunched into concurrency in 1983 ... my diploma thesis: "a RTOS for Z80"
- I 'm addicted to transputers since 1984 = concurrency elegance in hardware !



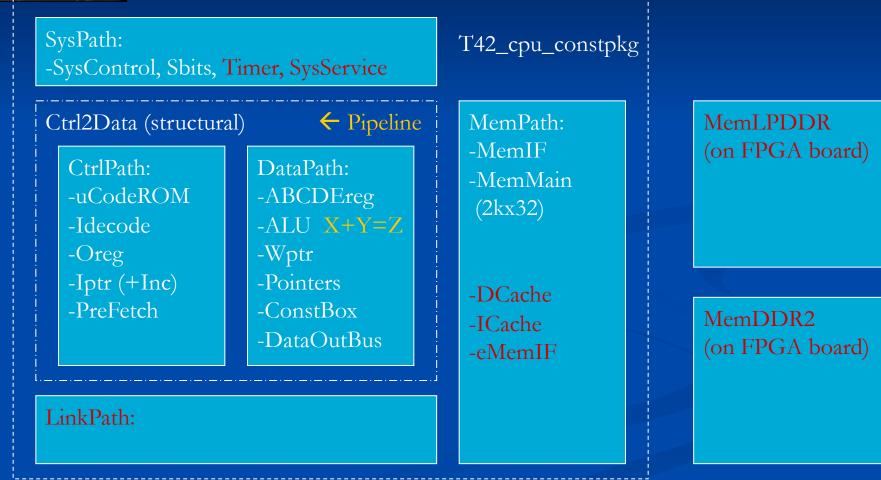

T42 Achievements

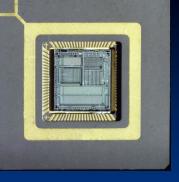
- **T42** Project started May '2013 VHDL Design started Jan '2014
- Data path and control path (1st concept) working ... Apr '2014
- Microcode Assembler (12 AWK scripts) completed ... Jan '2015
- ~50 simple OpCodes implemented, datapath extended Apr '2015
- Pipeline running (from 8 byte prefetch buffer) ... May '2015
 onChip memory added (ldnl, stnl, ...) and verified ... Jun '2015
- Prefetch state machine + Iptr-Incrementor verified ... Jul '2015
- System control unit, status bits, more flags added *... Aug '2015

i.e. core infrastructure is <u>almost complete</u>, but ... still * t.b. verified


IMS-T425 vs T42

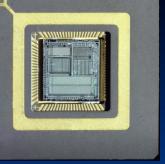
Note: Sys Services take care of external pins & clock – Sys Control is part of CPU.


CPA 2015


Remark: Blocks in red still N/A.

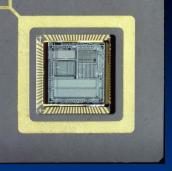
T42 VHDL Top View

T42cpu_all_top (structural)



SW development takes longer than HW ... about half a year effort :

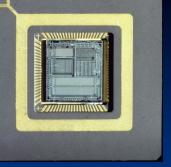
uCode Asm


1.1 PRE PROCESSING - READ BIT POSITIONS OF MICRO-OP'S 1.2 PRE PROCESSING - READ MICRO-OP IDS AND CODING PRIMARY PROCESSING - ASSEMBLE MICROWORDS 2.1 SECONDARY PROCESSING - SORT MICROWORD COLUMNS 2.2 2.3 SECONDARY PROCESSING - SORT MICROWORD ROWS 2.4 <u>SECONDARY PROCESSING - ALLOCATE FIXED ADDRESSES</u> 2.5 SECONDARY PROCESSING - TABULATE BRANCH CAPABILITIES 2.6 SECONDARY PROCESSING - ALLOCATE JUMP+BRANCH LABELS - CALCULATE ROMFEEDBAK ADDR SECONDARY PROCESSING 2.5 3.1 POST PROCESSING - BUILD ROM (BINARY FORMAT) 3.2 POST PROCESSING - WRITE HEX ROM 3.3 POST PROCESSING - BUILD uCodeROM XTLINX DATA2MEM CALL

MicroWord

T42: currently still ... 96bit (about ~30 signals)
T425 seems to have >100bit (uCodeROM ~60kBit)

Б	NTRYVALID;	95;	95;	1 bit	
	IEXTACTION;	94;	94;	1 bit	
Τν	GAP 00 ;	93;	93;	++ 1	
	BIT MODE;	91;	92;		
		91; 87;	92; 90;		
2	GAP 01 ;	86;	90; 86;	4 bit ++ 1	
Ŧ	, 		85;		
		84;			
	PTR_FROM;	83;	83;	1 bit	
	BUS_FROM;	80; 77.	82;	3 bit	
	BUS FROM;	77; 75:	79; 76:	3 bit	
	IADDR_FROM;	75;	76;	2 bit	
	REG_FROM;	72;	74;	3 bit	
	SHIFT IN;	70;	71;	2 bit	
	REG_FROM;	67;	69;	3 bit	
	SHIFT IN;	65;	66;	2 bit	
	ARRY FROM;	63;	64;	2 bit	
	CARRY_MODE;	62;	62;	1 bit	
	C_REG_FROM;	59;	61;	3 bit	
	SHIFT_IN;	57;	58;	2 bit	
	MUX1_FROM;	54;	56;	3 bit	
C	MUX0_FROM;	51;	53;	3 bit	
	_GAP_02;	50;	50;	++ 1	
Ē	REG_FROM;	47;	49;	3 bit	
C	REG_FROM;	45;	46;	2 bit	
Μ	IADDR_MODE;	43;	44;	2 bit	
M	IDATA MODE;	41;	42;	2 bit	
Ζ	FROM_ALU;	35;	40;	6 bit	
E	REG FROM;	32;	34;	3 bit	
F	SHIFT_IN;	30;	31;	2 bit	
M	IDATA FROM;	27;	29;	3 bit	
P	OINT FROM;	23;	26;	4 bit	
E	OINT MODE;	22;	22;	1 bit	
	GAP 03 ;	17;	21;	++ 5	
Ō	CONST FROM;	12;	16;	5 bit	
	GAP ⁰⁴ ;	9;	11;	++ 3	
F	OMFEEDBAK;	0;	8;		



INMOS Patent Research

Scheduler, Timer, Link investigations based on:

 US-Pat-4989133 – INMOS 29Jan1991 System for executing time dependent processes
 US-Pat-4783734 – INMOS 08Nov1988 Computer with variable length process communication
 US-Pat-4794526 – INMOS 27Dec1988 Microcomputer with priority scheduling

Patents are more than 20 years old and open to public now.

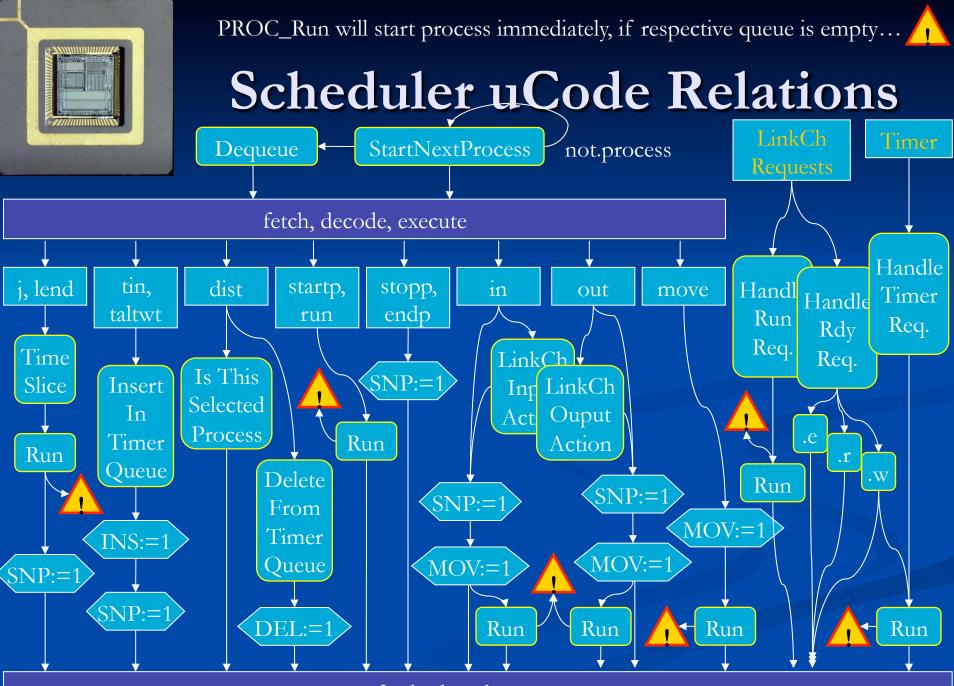
"Scheduler" uCode PROC 's

Scheduler:

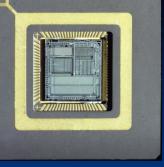
- Dequeue
- Run
- StartNextProcess

Links, Timer, Move:

- HandleRunRequest
- HandleReadyRequest
- HandleTimerRequest
- BlockCopyStep
- Insert Step
- Delete Step
- IsThisSelectedProcess

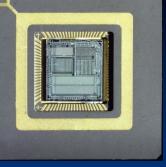

Timer:

- TimeSlice
- InsertInTimerList
- DeleteFromTimerList


Links:

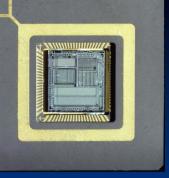
- CauseLinkInput
- CauseLinkOutput
- MakeLinkReadyStatusEnquiry
- EnableLink
- LinkChannelInputAction
- LinkChannelOutputAction

More...?



fetch, decode, execute

Open Questions

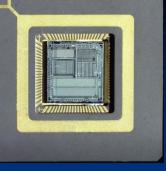

System Control ... reverse engineering tasks:
Loop bits (DEL, INS, MOVE) for low & high prio ?
How many HW Status Bits have to be set in parallel ?
How to distinguish link requests (Ch/run/rdy) ?

Open Questions

System Control ... reverse engineering tasks:
▲ Loop bits (low/high prio): DEL, INS, COPY, (IOrun)
▲ How many HW Status Bits have to be set in parallel
▲ How to distinguish link requests (Ch/run/rdy) → Pat.
■ What was the purpose of the DIST SBit ?

Data Path & uCode Refinement ... t.b.d.

The most interesting work starts here :

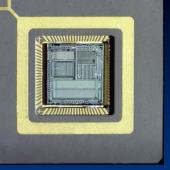

Next Steps ... till end 2015

System Control Unit need to be tested and verifyed including:
Scheduler uCode: StartNextProcess (SNP bit), Dequeue, Run
OpCodes: in, out, move (MOVE step bit) ... in Memory only
OpCodes: startp, endp, runp, stopp, ... alt

Timer VHDL to be added...

- Scheduler uCode: Timeslice
- OpCodes: tin (INS step bit), ... taltwt ... dist (DEL step bit)

Link VHDL ... still t.b.d.


T42 Summary

It can be demonstrated by simulation that ...

- Data Path and Control Path (pipeline) are in stable working condition.
- Prefetch Unit and System Control are almost functional, i.e. small instruction sequences can be executed and 32x2k memory can be read and written.

Outlook :

Scheduler micro-code will become the challenge now, any additional inputs are welcome ... Thank You!

Remark

Why there is no project website (www.transputer.eu) yet ?
Focus on design first and get results = T42 running. (maintain documentation, presentation comes later)
A website is time consuming → permanent effort (I 'm a single person w/ limited physical resources)

PS.: I 've spend a lot of time on Website design trials and a Word Press evening course already ...