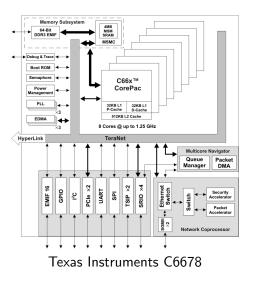
Protected mode RTOS: what does it mean?


Dr. Bernhard Sputh bernhard.sputh@altreonic.com

> Altreonic NV Gemeentestraat 61 Bus 1 3210 Linden Belgium

August 24, 2015

Current Trends in Embedded Systems The RoC (Rack on a Chip)

Assured Reliability Resiliance Level

Level	Definition	Measure
ARRL-0	The component might work	None
	("use as is").	
ARRL-1	The component works as	Testing
	tested.	
ARRL-2	The component meets all its	+Formal proof.
	specifications, if no fault oc-	
	curs.	
ARRL-3	+ Guarante to reach a fail-	+Fault detection, contain-
	safe or reduced operational	ment, and preventing error
	mode upon a fault.	propagation.

Why Protection is needed?

- Formal checking checks only models of the software, and is only sufficent for ARRL-2.
- The industry still develops applications using C/C++.
- Humans are imperfect!
- The environment may induce faults:
 - Bit-flips due to alpha particles.
 - Power glitch induced problems.
 - Faulty components.
 - ▶ ...
- For ARRL-3 fault detection and 'containment' are required, i.e. Protecting against unintended behaviour.

Current Approach Hypervisors

• Function:

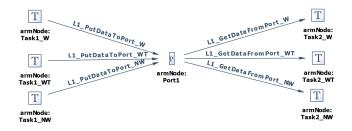
- Separate Applications in different Partitions.
- Partitions cannot access the memory of other partitions.
- Partitions get scheduled in time, i.e. time-sliced in the area of 1 100ms slices.
- Issues:
 - Time-slicing affects real-time behaviour.
 - Memory only protected at the partition level.

VirtuosoNext Approach

- Formally developed distributed RTOS for heterogeneous Systems;
- Virtual Single Processor (VSP) Programming Model;
- Programming with Interacting Entities, a Pragmatic Superset of CSP;
- Static allocation of Entities.
- Priority based Scheduling of Tasks.
- Tasks run separated in memory (memory protection). Currently supported on:
 - ARM-Cortex-M3 (MPU)
 - ARM-Cortex-A9 (MMU)
- Code is marked read only.
- Data is marked not-executable.

Virtual Single Processor Programming Model

- Node: A CPU Core that executes an instance of the Kernel-Task
- Link: A communication channel between two Nodes. For instance:
 - RS-232 / 422 / 485
 - TCP-IP (Ethernet)
 - Shared Memory (in SMP systems)
 - XMOS-Links (deprecated)
 - Bongo drums (in principle)
 - ▶
- Packet:
 - ► All Interactions / Services get represented by a Request-Packet.
 - Packets are routable throughout the System.



Interacting Entities 1/2

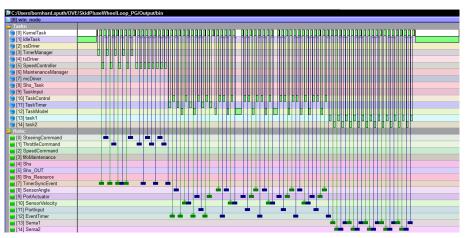
- Active Entities:
 - Tasks: Have their on stack and a Priority.
 - Interrupt Service Routines
- Passive Entities / Hubs:
 - Port: Acts like a Any2Any-Channel in JCSP;
 - FIFO: Acts like a Any2Any-BufferedChannel in JCSP;
 - Event: Binary Signal;
 - Semaphore: Counting Signal;
 - Resource: Lock with Priority Inheritance;
 - BlackBoard: Save System Wide Global Variable;
 - MemoryBlockQueue: Zero-Copy FIFO on a single Node;
 - DataEvent: An Event that can transport also Data;
 - PacketPool: A pool of Packets that can be allocated at runtime.
 - MemoryPool: A pool of MemoryBlocks that can be allocated at runtime.

Interacting Entities 1/2

- Interaction Semantics:
 - ► _W: Wait until Synchronisation can be achieved.
 - _WT: Wait until Synchronisation can be achieved, or the timeout occurs.
 - _NW: Non-Waiting.
 - _A: Asynchronous: The Task can run in parallel while the request is being processed (only locally).

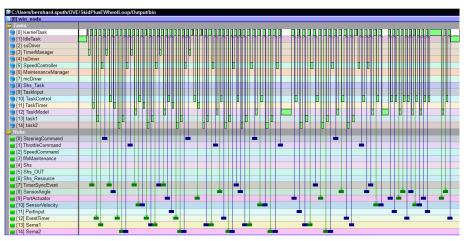
ARM-Cortex-M3 MPU Protected Mode

- Variable region size (32B, 64B, 128B, 4GiB).
- Region alignment depends on region size.
- 8 regions in parallel.
- Context Switch had to be rewritten to reconfigure the MPU.
- The build process now performs memory mapping of Entities.

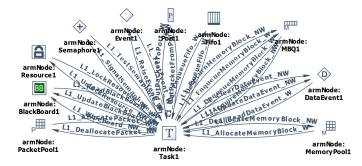


ARM-Cortex-A9 Memory Management Unit (MMU) Protected Mode

- Memory regions composed from 4kiB pages.
- Initialisation of the MMU is complex.
- Context Switch must reconfigure the MMU, impact on run-time;


Impact of Task Priorities in VirtuosoNext 1/2

Three applications at different Priorities.

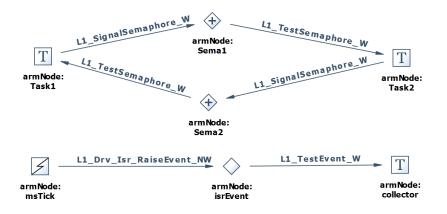

Impact of Task Priorities in VirtuosoNext 2/2

Three applications at the same Priority.

Code size differences between OpenComRTOS-1.6 and VirtuosoNext

	OCR	VN	Difference
ARM-Cortex-M3	18800 B	19060 B	+360 B
ARM-Cortex-A9	20232 B	26932 B	+6700 B

Adding memory protection has a limit impact on the code size.



Impact of Memory Protection on SemaphoreLoop Runtimes

Interrupt Latency Measurement Setup

Impact of Memory Protection on the Interrupt Latency

Interrupt to ISR Latency

		OCR	VN	Difference		
	ARM-Cortex-M3 (50MHz)					
	ARM-Cortex-A9 (700MHz)	100 <i>ns</i>	138 <i>ns</i>	+38 <i>ns</i>		
2	Interrupt to Task Latency					
		OCR	VN	Difference		

 ARM-Cortex-M3 (50MHz)
 $16\mu s$ $17\mu s$ $1\mu s$

 ARM-Cortex-A9 (700MHz)
 994ns 1726ns +732ns

Adding memory protection has a limit impact on the run-time.

Conclusions

Comparing VirtuosoNext to a typical Hypervisor:

- Space partitioning does not require a lot of additional code.
- Lower memory consumption due to fine grain protection scheme.
- Tasks of each Application are still scheduled in order of Priority. Thus real-time behaviour is not affected by the protection.
- Hypervisors are suitable for soft-realtime applications, not for hard-realtime.

Questions?

Thank You for Your attention

http://www.altreonic.com