Managing Hard Real Times
(28 Years Later)

Peter Welch (phw@kent.ac.uk)

CPA 2015, University of Kent, 24th- August, 2015
\ Y g /

Hard Real Times

Received wisdom about hard real-time systems
(where lateness in response means system failure)
IS that a currently running process must be pre-
empted by a higher priority process that becomes
runnable (e.g. by the assertion of a processor event
pin or timeout). Otherwise worst-case response
times cannot be guaranteed.

Hard Real Times

Further, if a higher priority process needs to
synchronise with one of lower priority, the latter
must automatically inherit the priority of the former.
If this does not happen, the opposite happens and
the former effectively inherits the lower priority of
the latter as it waits for it to be scheduled (priority
inversion) — again, worst-case response times fail.

Hard Real Times

The CCSP multicore scheduler for occam-pi (part of

the KRoC package) is, possibly, the fastest and most
scalable (with respect to processor cores) multicore
scheduler on the planet. [Some say ... ©)]

However, its scheduling is cooperative (not pre-
emptive) and it does not implement priority
inheritance (and cannot do so, given the nature of
CSP synchronisation, where processes do not know
the identities of the other processes involved).

Therefore, despite its performance, received wisdom
would seem to rule it out for hard real-time
applications. [®]

Hard Real Times (28 years later)

This talk reviews a paper from OUG-7 proceedings
(1987) that discusses these ideas with respect to
Transputers. No change is needed for modern
multicore architectures. [©]

Peter H. Welch. Managing Hard Real-Time Demands on Transputers.
In: Traian Muntean, ed., Proceedings of OUG-7 Conference and
International Workshop on Parallel Programming of Transputer
Based Machines. LGI-IMAG, Grenoble, France: IOS Press. 1987.

One minor fix, that simplifies the logic and improves
behaviour, can be made. [©]

Hard Real Times

Let’'s start with Conclusions:

9

pre-emptive scheduling is not required for hard
real-time; [©)]

priority inheritance is a design error (dealt with
by correct design, not the run-time system); [©]

the occam-pi/CCSP scheduler can be made to

work even more efficiently for hard real-time
systems than it presently does for soft real-time
(e.g. complex system modelling). [©]

Hard Real Times

real world
real world \
computer system
d
The real world offers r
lots of information, some
of which the computer system real world

needs to gather.

Hard Real Times

real world
real world \
computer system
d
The real world is not r
synchronised with the
computer — if the computer real world

does not take the information,
the real world does not freeze!

Hard Real Times

real world

The computer system
offers information to the
real world, in an attempt real world
to control a small part of it.

Hard Real Times

real world

The real world is not
synchronised with the
computer — if the computer real world
IS late with the information,

the real world does not wait!

Hard Real Times

/
real world ’ ﬂ 7~

computer system

real world

We need a “hard real-time”
shell of processes to
interface between the real
world and the main compute logic.

/ real world

Hard Real Times

/
real world ’ ﬂ ~

computer system

real world

These “hard real-time”
processes do a minimal
amount of work: data gather,
lose data (deliberate), keep records,
actuate and emergency actuate.

real world

Hard Real Times

real world

real world

//
_—
| ~a
They must communicate |
with the main compute logic / real world

without getting blocked
(like the “real world”) ...

Hard Real Times

g
L

computer system

real world

real world

... iIn order for us (ideally,

the compiler) to be able to
compute worst-case response
times to clear the sensors

and drive the actuators.

/ real world

Hard Real Times

real world

real world

//
_—
| ~a
To be simple and fast, |
communications between / real world

“hard real-time” processes
and the main compute logic
are (CSP) synchronised. ® © ©

Event Manager

event.pin

PROC event.manager (CHAN SIGNAL event.pin?, [JCHAN BYTE out!)
WHILE TRUE
SEQ
SIGNAL any:
event ? any
... Find who pulled the pin (from status registers)
... extract data (from data register “i”)
out[i] ! data

Event Manager

event.pin

/76
70,
M/Qr@p .
Zp)

= Must guarantee never to miss an assertion of the event pin.

» Worst case: an event signal has just been taken when another
arrives. We have to find who was responsible for the just-taken
signal, extract the relevant data and send to the relevant server
process for that signal. How long for this?

= Need to have a max delay for outputting the data. XXX

Event Manager & Smart Buffer

event-pin \{ o requeSt D
oy,
/'Q /J/“O"
HCQ ,’ /'[',
Cr

Smart Buffer

request

out

PROTOCOL TAGGED.BYTE IS INT;:; BYTE: -- n.missed; data

PROC smart.buff (CHAN BYTE in?, CHAN BOOL request?,
CHAN TAGGED.BYTE out!)
--- local variabes
WHILE TRUE
PRI ALT
--.- deal with an input
... deal with a request

Smart Buffer

request

out

PROC smart.buff (CHAN BYTE in?, CHAN BOOL request?,
CHAN TAGGED.BYTE out!)
INITIAL INT n.missed IS O:
INITIAL BOOL loaded IS FALSE:
BYTE data:
WHILE TRUE
PRI ALT
in ? data
-.. process the data
BOOL any:
loaded & request ? any
--- process the request

Smart Buffer

request
in
>
out
WHILE TRUE
PRI ALT
in ? data
IF
loaded
n.missed := n.missed + 1
NOT loaded
loaded := true
BOOL any:

loaded & request ? any
... process the request

Smart Buffer

request
in
>
out
WHILE TRUE
PRI ALT
in ? data
-.- process the data
BOOL any:
loaded & request ? any
SEQ

out ! n.missed; data
loaded := FALSE
n.missed := 0

Asynchronous Communication

. request
>

A (high priority) sends information to B (low priority).

A can send at any time and must never be blocked by B not being
ready to receive (even when B has made a request for data
previously saved in the smart buffer and not yet taken it). x X X

B can receive data at any time but, first, it has to make a request.
Such requests will be blocked if there is nothing loaded in the buffer.

Asynchronous Communication

Lo

= Insert an id process (high priority). Let this get stuck communicating
with the low priority one. That block only happens when it does not
have to guarantee service to the smart buffer — so no problem! ©

PROC id (CHAN TAGGED.BYTE in?, out!)
WHILE TRUE
INT n.missed:
BYTE data: in
SEQ
in ? n.missed; data
out ! n.missed; data

R =

Asynchronous Communication

O—=—

= Initially, it must guarantee worst-case time to accept an input.
Subsequently, no input will happen until its output has been taken.
Only then, must it guarantee service on its input. J J J

PROC id (CHAN TAGGED.BYTE in?, out!)
WHILE TRUE
INT n.missed:
BYTE data: in
SEQ
in ? n.missed; data
out ! n.missed; data

R =

Asynchronous Communication

O request

= Alternatively, we could relieve B from having to make requests by
combining an auto-prompter with the memory cell.

PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)
WHILE TRUE

INT n.missed: BYTE data:
SEQ request

request ! TRUE «— out
in ? n.missed; data in

out ! n.missed; data

Asynchronous Communication

= Alternatively, we could relie %® Ym having to make requests by
combining an auto-prompter w //’)/ qemory cell.

PROC prompt (CHAN BOOL request!, Qg INT in?, out!)
WHILE TRUE %)/\

INT n.missed: BYTE data: 0

SEQ reques %@
request ! TRUE <_ ‘ out
in ? n.missed; data ~

N in
out ! n.missed; data

Asynchronous Communication

request
.
A @ “‘ . B
N y
¥ O
> & O
N\
SRS
. Alternatively, we could re#” ¢ & 4ing to make requests by
combining an auto-pro”” x ¢ o~ O demory cell.
O
S & 2 D i
PROC prompt (CHA .*9 N AN Z,\INT in?, out!)
WHILE TRUE R *6 O %>)
INT n.nis”” ¥ & DA o
SEQ RN 7 reques?o
rec $ —\ & out
TS LN
in % data —

out ! ed: data "

Hard Real Times

Let’'s start with Conclusions:

9

pre-emptive scheduling is not required for hard
real-time; [©)]

priority inheritance is a design error (dealt with
by correct design, not the run-time system); [©]

the occam-pi/CCSP scheduler can be made to

work even more efficiently for hard real-time
systems than it presently does for soft real-time
(e.g. complex system modelling). [©]

Hard Real Times

» pre-emptive scheduling is not required for hard
real-time; [©]

“Imagine each process running on its own silicon ...” [1987 paper]

Using this analogy, the paper showed how worst-case
response times can be calculated — for a transputer,
relying on pre-emption of low by high priority processes
scheduled on a single processing core.

With multcore, we don’t have to imagine ... and we don’t
have to pre-empt. © © ©

Hard Real Times

» pre-emptive scheduling is not required for hard
real-time; [©]

“Imagine each process running on its own silicon ...” [1987 paper]

For XMOS Xcores, this is exactly what happens! Each
process, when it has to guarantee response time, waits
(“like a greyhound”) in its own silicon engine for the
signhal to be unleashed.

We still need the discussed techniques to not be
blocked by another process while on duty! © © ©

Hard Real Times

» pre-emptive scheduling is not required for hard
real-time; [©] 4

“Imagine each process running on its own silicon ...” [1987 paper]

For occam-pi, processes may be confined to run on any
subset of cores (rather than all).

Set those needing to guarantee hard real-time to run on
one set (a singleton is good) and the rest on the rest of

the cores.

The above techniques and analysis just work and no
pre-emption is needed. © © ©

Hard Real Times

> the occam-pi/CCSP scheduler can be made to
work even more efficiently for hard real-time
systems than it presently does for soft real-time
(e.g. complex system modelling). [©]

We don't do this yet but ...

Run different versions of the CCSP scheduler on
different cores ...

On the cores running non-real-time processes, don’t
check for interrupts (event pins, links, timeouts) every
scheduling point ... faster!

On the real-time core, run the single core version ...
faster!

Hard Real Times

systems than
(e.g. complex s

We don't do this yet but\

Run different versions of ti SP scheduler on
different cores ...

On the cores running non-real-ti
check for interrupts (event pins, lin \neouts) every
scheduling point ... faster!

On the real-time core, run the single core
faster!

Hard Real Times

the occa , de to

systems than S ' oft real-time
(e.g. complex s

41s (event pins, lin eouts) every

check for in
' t ... faster!

scheduli

On the
faster!

time core, run the single corex_/sion ...

	Managing Hard Real Times

