Workshop:

Dealing with real-time in real world Hybrid Systems

Pieter van Schaik

Altreonic NV

August 24, 2015

Outline

- Overview of Hybrid Systems
- A Practical Example: Yaw Control
- Summary
- Questions for Discussion

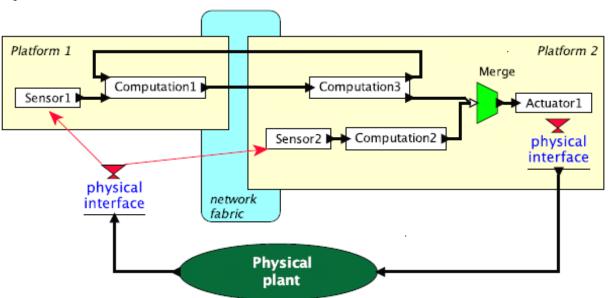
Overview of Hybrid Systems

Abbreviated definition:

"A Hybrid System is a dynamical system with both discrete and continuous state changes"

Simply stated:

A Hybrid System is embedded software controlling a physical process



The Challenge

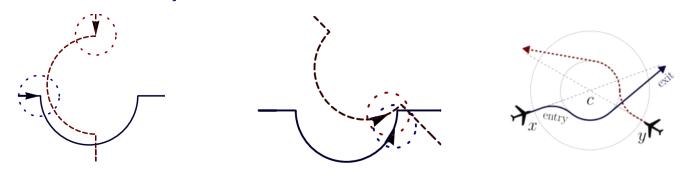
How can we provide people and society with Hybrid Systems that they can trust their lives on?

- Methodology to enable compositional certification
 - Eliminate recertification after integration
- New Formal Modeling Techniques
 - Conventional models focus on discrete systems

Motivating Examples

Air Traffic Control Systems (ACAS X)

Differential Dynamic Logic indicated conflicts with actual advisory



European Train Control System ETCS

Successful verification of cooperation layer of fully parametric ETCS

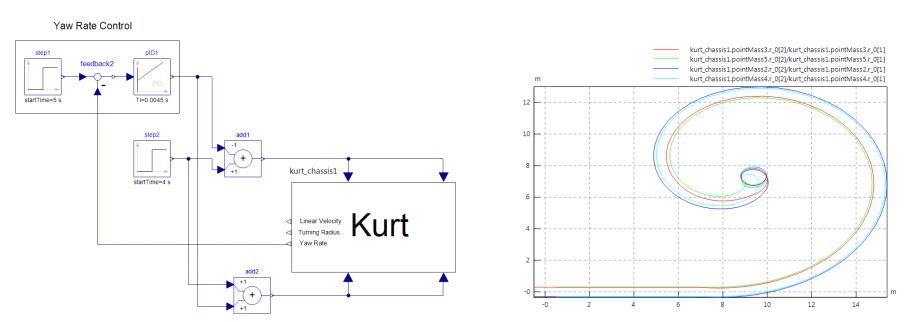
A Practical Example: Yaw Control

- Goal: Formally model discretization of the KURT skidsteer yaw control
 - Specific focus on stability of the closed loop system
- Abridged development embedded in Hybrid Event-B formalism

Reference: R. Banach, E. Verhulst, P. van Schaik. Simulation and Formal Modeling of Yaw Control in a Drive-by-Wire Application. *FedCSIS 2015*

Simulations of Yaw Control

- Initial design validation with Modelica simulation
 - Stability of control strategy
- Simplified PID based control strategy
- PID parameter optimization by practical tuning methods



Modeling Continuous Time Systems

Transfer Function

Derived from linear time invariant (LTI) differential equation using Laplace Transform:

$$F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$$

where
$$s = \sigma + j\omega$$

 Transfer function is the ratio of input and output polynomials in s, evaluated with zero initial conditions

$$\frac{C(s)}{R(s)} = G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

 Location of numerator and denominator roots in complex s-plane characterise transfer function response

Exponential Stability of LTI Systems

Exponential stability analysis with transfer function:

$$G(s) = \frac{10(s+4)(s+6)}{(s+1)(s+7)(s+8)(s+10)}$$

 General terms of the output c(t) with unit step input:

$$g(t) \equiv A + Be^{-t} + Ce^{-7t} + De^{-8t} + Ee^{-10t}$$

i.e. any positive real pole causes unstable behaviour

Hybrid Event-B

- Hybrid Event-B an extension of Event-B
 - All variables are functions of time
 - Mode events and variables discrete events and variables
 - Pliant events and variables variables with continuous evolution over time
 - Interfaces allow access to shared variables

```
MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x,y
VARIABLES u
INVARIANTS
x,y,u \in \mathbb{R}, \mathbb{R}, \mathbb{N}
EVENTS
INITIALISATION
STATUS ordinary
WHEN
t=0
THEN
clk,x,y,u:=1,x_0,y_0,u_0
END
```

```
... ... MoEv
STATUS ordinary
ANY i?,l,o!
WHERE
grd(x,y,u,i?,l,t,clk)
THEN
x,y,u,clk,o!:|
BApred(x,y,u,i?,l,o!,
t,clk,x',y',u',clk')
END
... ...
```

```
PliEv

STATUS pliant
INIT iv(x,y,t,clk)
WHERE grd(u)
ANY i?,l,o!
COMPLY

BDApred(x,y,u,i?,l,o!,t,clk)
SOLVE

\mathcal{D}x = \phi(x,y,u,i?,l,o!,t,clk)
y,o! := E(x,u,i?,l,t,clk)
END
```

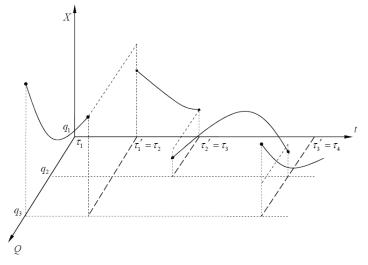
Discrete Event Systems

- Classes of DES models:
 - Untimed DES
 - only concerned with logical behaviour, ex. whether a particular state is reachable
 - > Timed DES
 - concerned with both logical behaviour and timing information, ex. whether a particular state is reachable and when it will be reached
- Stability of DES:

for some set of initial states the system's state is guaranteed to enter a given set and remain there forever

Hybrid Systems

- General Hybrid Dynamical System
 - dynamic behaviour differential/difference equations
 - discrete state space transition map



- Stability of Hybrid Systems
 - dynamic behaviour stability exponential stability
 - properties of the transition map

Formal Modeling Yaw Control

KURT yaw rate mathematical model:

$$\frac{d}{dt}yrm(t) = C_k stc(t)$$

PID controller mathematical model:

$$stc(t) = K_p[yre(t) + \frac{1}{T_I} \int_0^t yre(s) ds + T_D \frac{d}{dt} yre(t)]$$

Substituting yre(t) = YRR - yrm(t) results in:

$$(T_D + \frac{1}{C_k K_P}) \frac{d^2}{dt^2} stc(t) + \frac{d}{dt} stc(t) + \frac{1}{T_I} stc(t) = 0$$

Exponential stability requires that:

$$T_I > 0$$
 and $T_D + \frac{1}{C_k K_P} > 0$

Continuous Time HEB Model

Equivalent Hybrid Event-B system:

```
PROJECT Kurt_Prj
INTERACES
YawCtrl_IF
MACHINES
KurtUser_Mch
Kurt_Mch
YawCtrl_Mch
END
```

```
INTERFACE YawCtrl IF
SEES Kurt Ctx
TIME t
PLIANT
  vrr, vrm, stc,
  vreP, vreI, vreD,
  thr,tal,tar
INVARIANTS
  vrr, vrm, stc \in \mathbb{R}, \mathbb{R}, \mathbb{R}
  vreD, vreP, vreI \in \mathbb{R}, \mathbb{R}, \mathbb{R}
  thr, tal, tar \in \mathbb{R}, \mathbb{R}, \mathbb{R}
INITIALISATION
  WHEN
    t = 0
  THEN
     vrr, vrm, stc := 0,0,0
    vreP, vreI, vreD := 0,0,0
     thr, tal, tar := 0,0,0
  END
END
```

```
CONTEXT Kurt_Ctx
... ...
AXIOMS
... ...
END
```

```
MACHINE KurtUser_Mch
CONNECTS YawCtrl_IF
EVENTS
SteerKurt
STATUS pliant
BEGIN
thr(t) := \Theta(4-t)
yrr(t) := \Theta(t-5)
END
```

```
MACHINE Kurt_Mch
CONNECTS YawCtrl_IF
EVENTS
KurtBehaves
STATUS pliant
SOLVE
Dyrm(t) := C_Kstc(t)
END
END
```

```
MACHINE YawCtrl\_Mch
CONNECTS YawCtrl\_IF
EVENTS

YawControl
STATUS pliant
SOLVE

yreP(t) := yrr(t) - yrm(t)
yreD(t) := DyreP(t)
DyreI(t) = yreP(t)
stc(t) := K_P[yreP(t) + yreI(t)/T_I + T_DyreD(t)]
tal(t) := thr(t) - stc(t)
tar(t) := thr(t) + stc(t)
END
```

General Model of Yaw Control

Addressing more arbitrary steering episodes requires solving for:

$$\frac{d}{dt}\mathbf{stc}(t) = \mathbf{Astc}(t) + \mathbf{b}(t)$$

where **A** is constant, stc(t) depends on stc(t) and stc'(t), **b**(t) is dependent on the inhomogeneous term:

$$inh(t) = \frac{1}{C_K} (T_D \frac{d^3}{dt^3} yrr(t) + \frac{d^2}{dt^2} yrr(t) + \frac{1}{T_I} \frac{d}{dt} yrr(t))$$

Discretizing Yaw Control

Discretizing Hybrid Event-B Yaw Control

- Implementation on a discrete computing platform requires sampling
- Strategy of viewing discretizing as a refinement poses difficulties:
 - formal standpoint is sampling impoverishes the continuous model
 - degrades information available for consistency proof
- Argument for HEB approach:
 - stability of the discretized system ensures that the system can be steered to a desired regime

Sampled Data Systems

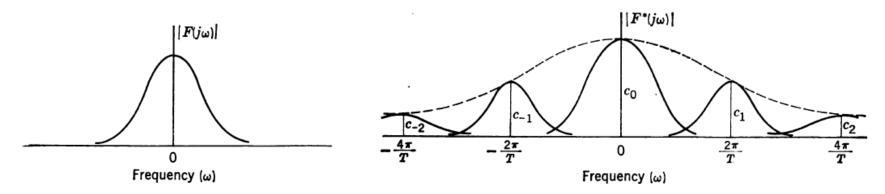
- Sampling frequency must be related to characteristics of function being sampled
 - Sampling frequency too low -> loss of important information
 - Sampling frequency too high -> unnecessarily cost/complexity
- Important to understand the effects of sampling

Signal Bandwidth Illustration

https://en.wikipedia.org/wiki/File:Fourier_series_and_transform.gif

Effects of Sampling

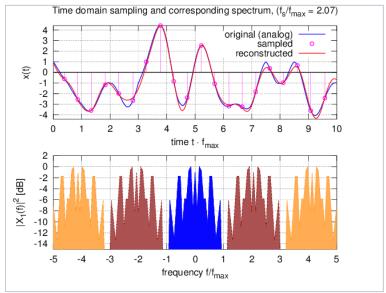
Pictorial representation of the effect of sampling:

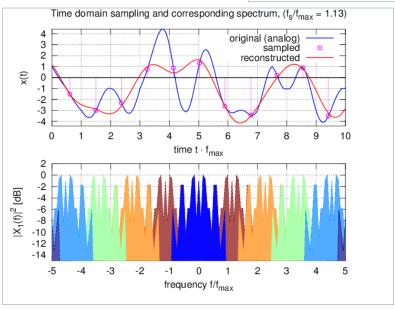


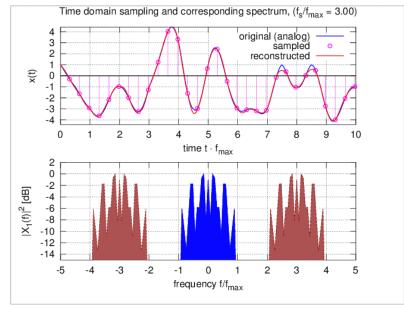
- The central signal spectrum can be recovered by low pass filtering (anti-aliasing filter)
- Shannon-Nyquist theorem limits sampling interval: For band limited signals:

$$T_{s_{\text{max}}} = \frac{\pi}{W}$$

Sampling Effect Illustration







Stability of Sampled Data Systems

Sampling period affects stability:

Example: Consider the following SDS transfer function:

$$T(z) = \frac{10(1 - e^{-T})}{z - (11e^{-T} - 10)}$$

For T > 0.2 the resulting transfer function is unstable

Discretized HEB Yaw Control

Resulting discretized Hybrid Event-B model:

```
PROJECT KurtD_Prj
REFINES -??- Kurt_Prj
INTERACES
YawCtrlD_IF
MACHINES
KurtUserD_Mch
KurtD_Mch
YawCtrlD_Mch
END
```

```
INTERFACE YawCtrlD IF
REFINES -??- YawCtrl IF
SEES KurtD Ctx
TIME t
PLIANT
  yrr_D, yrm_D,
  stc_D, stc_D^{pr},
  yreP_D, yreP_D^{pr},
  yreI_D, yreD_D,
  thr_D, tal_D, tar_D
INVARIANTS
  yrr_D, yrm_D \in \mathbb{R}, \mathbb{R}
  stc_D, stc_D^{pr} \in \mathbb{R}, \mathbb{R}
  yreP_D, yreP_D^{pr} \in \mathbb{R}, \mathbb{R}
  yreI_D, yreD_D \in \mathbb{R}, \mathbb{R}
  thr_D, tal_D, tar_D \in \mathbb{R}, \mathbb{R}, \mathbb{R}
  thr_D = thr
  yrr_D = yrr
   |yrm_D - yrm| < B_{vrm}
   |stc_D - stc| < B_{stc}
   |stc_D^{pr} - stc| < B_{stc}
   |vreP_D - vreP| < B_{vreP}
  |yreP_D^{pr} - yreP| < B_{yreP}
   |yreI_D - yreI| < B_{vreI}
   |vreD_D - vreD| < B_{vreD}
   |tal_D - tal| < B_{tal}
   |tar_D - tar| < B_{tar}
```

```
INITIALISATION
WHEN
t = 0
THEN
yrr_{D},yrm_{D} := 0,0
stc_{D},stc_{D}^{D} := 0,0
yreP_{D},yreP_{D}^{D} := 0,0
yreI_{D},yreD_{D} := 0,0
tln_{D},tal_{D},tar_{D} := 0,0,0
END
END
```

CONTEXT KurtD Ctx

EXTENDS Kurt Ctx

END

```
AXIOMS
NT = 1
...
END

MACHINE KurtUserD_Mch
REFINES KurtUser_Mch
CONNECTS YawCtrlD_IF
EVENTS
SteerKurt
REFINES SteerKurt
STATUS pliant
BEGIN
thr_D(t) := \Theta(4-t)
yrr_D(t) := \Theta(t-5)
END
```

```
MACHINE KurtD\_Mch
REFINES -??-Kurt\_Mch
CONNECTS YawCtrlD\_IF
EVENTS
KurtBehavesPli
REFINES KurtBehaves
STATUS pliant
COMPLY skip
END
KurtBehavesMo
STATUS ordinary
WHEN (\exists n \in \mathbb{N} \bullet t = nT)
yrm_D := yrm_D + C_KTstc_D
END
```

```
MACHINE YawCtrlD Mch
REFINES -??- YawCtrl_Mch
CONNECTS YawCtrlD IF
EVENTS
  YawControlPli
    REFINES YawControl
    STATUS pliant
    COMPLY skip
    END
  YawControlMo
    STATUS ordinary
    WHEN (\exists n \in \mathbb{N} \bullet t = nT)
      yreP_D := yrr_D - yrm_D
      yreP_D^{pr} := yreP_D
      yreI_D := yreI_D + TyreP_D
      yreD_D := (yreP_D - yreP_D^{pr})/T
       stc_D := {}^{\prime\prime}K_P[vreP_D + vreI_D/T_I + T_D vreD_D]^{\prime\prime}
       stc_D^{pr} := stc_D
      tal_D := thr_D - stc_D
      tar_D := thr_D + stc_D
    END
END
```

A Practical Example: Yaw Control

Discretized Stability Analysis

A similar approach to analogue counter part resulted in:

$$stc_{D,k+3} - 2stc_{D,k+2} + stc_{D,k+1} = -C_K K_P [T_D(stc_{D,k+2} - 2stc_{D,k+1} + stc_{D,k}) + T(stc_{D,k+2} - stc_{D,k+1}) + T^2 stc_{D,k+2} / T_D]$$

Requires solving for:

$$W^{3} + C_{k}K_{p}[T^{2} / T_{I} + T + T_{D} - 2 / C_{k}K_{p}]W^{2} + C_{k}K_{p}[1 / C_{k}K_{p} - 2T_{D} - T]W$$
$$+ C_{k}K_{p}T_{D} = 0$$

For stability, eventually deduce:

$$1 > C_k K_P T_D$$

Summary

- Viewing discretization as an instance of refinement is demanding
- Many simplifications required to render calculations tractable
 - mathematical insight and domain knowledge required
- Closer cooperation needed between frequency domain and state space approaches

Questions for Discussion

- Can sampling theory be applied to reconcile continuous and discrete views in a way that is acceptable to formal techniques?
- Can supporting tools make hybrid system formal methods more accessible to engineers?

