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Overview of Hybrid Systems
Abbreviated definition:
“A Hybrid System is a dynamical system with both discrete 

and continuous state changes”
Simply stated:
A Hybrid System is embedded software controlling a 

physical process
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The Challenge
How can we provide people and society with Hybrid 
Systems that they can trust their lives on?

• Methodology to enable compositional certification
� Eliminate recertification after integration

• New Formal Modeling Techniques
� Conventional models focus on discrete systems
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Motivating Examples
Air Traffic Control Systems (ACAS X)
• Differential Dynamic Logic indicated conflicts with 

actual advisory

European Train Control System ETCS
• Successful verification of cooperation layer of fully 

parametric ETCS
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A Practical Example: Yaw Control
• Goal: Formally model discretization of the KURT skid-

steer yaw control
� Specific focus on stability of the closed loop system

• Abridged development embedded in Hybrid Event-B 
formalism

Reference: R. Banach, E.Verhulst, P. van Schaik. Simulation and 
Formal Modeling of Yaw Control in a Drive-by-Wire Application. 
FedCSIS 2015
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Simulations of Yaw Control
• Initial design validation with Modelica simulation
� Stability of control strategy

• Simplified PID based control strategy
• PID parameter optimization by practical tuning 

methods

23/08/2015                            From Deep Space to Deep Sea                                  7



Modeling Continuous Time Systems
Transfer Function
• Derived from linear time invariant (LTI) differential 

equation using Laplace Transform:

ωσ jswhere

dtetfsF st

+=

= ∫
∞

−

−

 

)()(
0

• Transfer function is the ratio of input and output 
polynomials in s, evaluated with zero initial conditions
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• Location of numerator and denominator roots in 
complex s-plane characterise transfer function 
response
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Exponential Stability of LTI Systems
• Exponential stability analysis with transfer 

function:
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• General terms of the output c(t) with unit 
step input:
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• i.e. any positive real pole causes unstable 
behaviour
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Hybrid Event-B
• Hybrid Event-B - an extension of Event-B
� All variables are functions of time
� Mode events and variables - discrete events and 

variables
� Pliant events and variables - variables with 

continuous evolution over time
� Interfaces allow access to shared variables
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Discrete Event Systems
• Classes of DES models:
� Untimed DES

• only concerned with logical behaviour, ex. whether a 
particular state is reachable

� Timed DES
• concerned with both logical behaviour and timing 

information, ex. whether a particular state is reachable 
and when it will be reached

• Stability of DES:
for some set of initial states the system's state is 
guaranteed to enter a given set and remain 
there forever
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Hybrid Systems
• General Hybrid Dynamical System
� dynamic behaviour - differential/difference equations
� discrete state space - transition map

• Stability of Hybrid Systems
� dynamic behaviour stability - exponential stability
� properties of the transition map
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Formal Modeling Yaw Control
• KURT  yaw rate mathematical model:
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Continuous Time HEB Model
• Equivalent Hybrid Event-B system:
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General Model of Yaw Control
Addressing more arbitrary steering episodes requires 
solving for:
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Discretizing Yaw Control
Discretizing Hybrid Event-B Yaw Control
• Implementation on a discrete computing platform 

requires sampling
• Strategy of viewing discretizing as a refinement poses 

difficulties:
� formal standpoint is sampling impoverishes the continuous 

model
� degrades information available for consistency proof

• Argument for HEB approach: 
� stability of the discretized system ensures that the system can 

be steered to a desired regime
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Sampled Data Systems
• Sampling frequency must be related to 

characteristics of function being sampled
� Sampling frequency too low -> loss of important 

information
� Sampling frequency too high -> unnecessarily 

cost/complexity

• Important to understand the effects of sampling
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Signal Bandwidth Illustration

https://en.wikipedia.org/wiki/File:Fourier_series_and_transform.gif
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Effects of Sampling
Pictorial representation of the effect of sampling:

• The central signal spectrum can be recovered by low 
pass filtering (anti-aliasing filter)

• Shannon-Nyquist theorem limits sampling interval:
For band limited signals: 
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Sampling Effect Illustration
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Stability of Sampled Data Systems
• Sampling period affects stability:

Example: Consider the following SDS transfer function:
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For T > 0.2 the resulting transfer function is unstable
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Discretized HEB Yaw Control
Resulting discretized Hybrid Event-B model:
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A Practical Example: Yaw Control
Discretized Stability Analysis
• A similar approach to analogue counter part resulted in:
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• For stability, eventually deduce:
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Summary

• Viewing discretization as an instance of 
refinement is demanding

• Many simplifications required to render 
calculations tractable 
� mathematical insight and domain knowledge 

required
• Closer cooperation needed between frequency 

domain and state space approaches
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Questions for Discussion

• Can sampling theory be applied to reconcile 
continuous and discrete views in a way that is 
acceptable to formal techniques?

• Can supporting tools make hybrid system 
formal methods more accessible to engineers?
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