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Overview of Hybrid Systems

Abbreviated definition:

“A Hybrid System is a dynamical system with both discrete
and continuous state changes”

Simply stated:

A Hybrid System is embedded software controlling a
physical process
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The Challenge

How can we provide people and society with Hybrid
Systems that they can trust their lives on?

 Methodology to enable compositional certification
» Eliminate recertification after integration

* New Formal Modeling Techniques
» Conventional models focus on discrete systems
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Motivating Examples

Air Traffic Control Systems (ACAS X)

» Differential Dynamic Logic indicated conflicts with
actual advisory
Y

European Train Control System ETCS

» Successful verification of cooperation layer of fully
parametric ETCS

RBC
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A Practical Example: Yaw Control

e Goal: Formally model discretization of the KURT skid-
steer yaw control

» Specific focus on stability of the closed loop system

* Abridged development embedded in Hybrid Event-B
formalism

Reference: R. Banach, E.Verhulst, P. van Schaik. Simulation and
Formal Modeling of Yaw Control in a Drive-by-Wire Application.
FedcCs/s 2015
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Simulations of Yaw Control

 Initial design validation with Modelica simulation
» Stability of control strategy

e Simplified PID based control strategy

* PID parameter optimization by practical tuning
methods

Yaw Rate Control

step1 piD1
feedback2
j }/
startTime=5 s Ti=0.0045 s

A
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Modeling Continuous Time Systems

Transfer Function

e Derived from linear time invariant (LTI) differential
equation using Laplace Transform.

As)= | Aoedr
wheres =0 + jo

* Transfer function is the ratio of input and output
polynomials in s, evaluated with zero initial conditions
—1
+...
Cls) _ Gls) = b 5" +ém_lai’1” b,
A(s) as' +a, s +..+a,

e Location of numerator and denominator roots in

complex s-p/ane characterise transfer function
response
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Exponential Stability of LTI Systems

* Exponential stability analysis with transfer
function:

s = 10(s+4)(s5+6)

(s+1D(s+7)(s+8)(s+10)

* General terms of the output ¢/¢/ with unit
step input:

o(=A+Be’' +Ce" +De™ + Ee "’

* j.e. any positive real pole causes unstable
behaviour
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Hybrid Event-B

 Hybrid Event-B - an extension of Event-B
» All variables are functions of time

> Mode events and variables - discrete events and
variables

> Pliant events and variables - variables with
continuous evolution over time

» Interfaces allow access to shared variables
MACHINE HyEvBMch e e
TIME ¢ MoEv PIiEv
CLOCK clk STATUS ordinary STATUS pliant
PLIANT x,v ANY i?.1,0! INIT iv(x, vt clk)
VARIABLES u WHERE WHERE grd(u)
INVARIANTS grd(x,v,u,1?,1,t,clk) ANY i?.1,0!
x,vu € R,RN THEN COMPLY
EVENTS x v uclk,o! | BDApred(x,v,u,
INITIALISATION BApred(x,y,u,i?,1.0!, i?,1.0!.t,clk)
STATUS ordinary toelk,x’ ' ad cll) SOLVE
WHEN END Dx =
r=0 O(x,y,u,1?,1,0!.t,clk)
THEN y,0! =
clic,x,v,u = 1.x9,v0,o E(x,u,1?. 1.t clk)
END END
END
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Discrete Event Systems

* Classes of DES models:
> Untimed DES

» only concerned with logical behaviour, ex. whether a
particular state is reachable

> Timed DES

« concerned with both logical behaviour and timing
information, ex. whether a particular state is reachable
and when it will be reached

 Stability of DES:

Jor some set of initial states the system's state s
guaranteed to enter a given set and remain
there forever
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Hybrid Systems

* General Hybrid Dynamical System
» dynamic behaviour - differential/difference equations
» discrete state space - transition map

« Stability of Hybrid Systems
» dynamic behaviour stability - exponential stability
» properties of the transition map
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Formal Modeling Yaw Control

« KURT yaw rate mathematical model:

d
= yrm(f) = Cstc(7)

e PID controller mathematical model:

1) = K, Lyrel1) + %iw@dﬁ 7, )

o Substituting yre(t) = YRR - yrm(t) results in:

(7, + : ) < SZC(Z‘)-FiSZ‘C(Z‘)-i-iSZ‘C(f) =0
°CK, df 2t 7,

e Exponential stability requires that:
1

7,>0and 7, + >0

kK P
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Continuous Time HEB Model

* Equivalent Hybrid Event-B system:

PROJECT Kurt Prj CONTEXT Kurt Cix MACHINE YawCtrl Mch
INTERACES CONNECTS YawCtrl IF
YawCtrl IF AXIOMS EVENTS
MACHINES YenvControl
KurtUser_Mech END STATUS pliant
Kurt Mch SOLVE
YowCtrl_Mch MACHINE Kurtlser Meh vreP(t) = yrr(t) —yrm(t)
END CONNECTS YawCtri IF wreD(t) = DyreP(t)
EVENTS Dyrel(t) = yreP(t)
INTERFACE JYawCrl IF SteerKurt ste(r) = i
SEES Kurt Crx STATUS pliant Kp[vreP(t) +yrel(t)/ T+ IpyreD(t)]
TIME ¢ BEGIN tal(t) = thr(t) —ste(t)
PLIANT thr(t) = ©(4—1) tar(t) = thr(r)+ste(t)
VIT, VI, StC, wr(t) = O(t—3) END
vrePyrel yreD, END END
thrtal tar END
INVARIANTS
vrryrm,ste € R, R, R MACHINE Kurt _Mch
vreD,yreP yrel € R, R, R CONNECTS YawCri_IF
thrytal tar € R, R, R EVENTS -
INITIALISATION KurtBehaves
WHEN STATUS pliant
=0 SOLVE
THEN Dyrm(t) = Cgste(t)
yrr,yrm,ste = 0,0,0 END
yrePyrel,vreD = 0,0,0 END
thrtal ,tar = 0,0,0
END
END
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General Model of Yaw Control

Addressing more arbitrary steering episodes requires
solving for:
%stc(f) = Astc(7) +b(7)
where A is constant, stc/?/ depends on stc/t) and stct),
b/t)is dependent on the inhomogeneous term:
a’ d’ 1 &

—5 () +—= i) + —— yri(7))

WD) = (T,
)= o 77 7 i
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Discretizing Yaw Control

Discretizing Hybrid Event-B Yaw Control

Implementation on a discrete computing platform
requires sampling
Strategy of viewing discretizing as a refinement poses

difficulties:

» formal standpoint is sampling impoverishes the continuous
model

» degrades information available for consistency proof

Argument for HEB approach:

» stability of the discretized system ensures that the system can
be steered to a desired regime
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Sampled Data Systems

e Sampling frequency must be related to
characteristics of function being sampled

» Sampling frequency too low -> loss of important
information

» Sampling frequency too high -> unnecessarily
cost/complexity

* Important to understand the effects of sampling
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Signal Bandwidth Illustration

[

https://en.wikipedia.org/wiki/File:Fourier_series_and_transform.gif
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Effects of Sampling

Pictorial representation of the effect of sampling:

[F*ljw)]

| Fijw)l

VAN

27 Ax
0 T . T
Frequency (w) Frequency (w)

* The central signal spectrum can be recovered by low
pass filtering (anti-aliasing filter)

* Shannon-Nyquist theorem limits sampling interval:
For band limited signals:
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Sampling Effect lllustration

X(1)

X, (H[? [dB]

Time domain sampling and corresponding spectrum, (ig/f ., = 1.13)

Time domain sampling and corresponding spectrum, (fg/f,,, = 2.07)

T T T
] ] original (analog)
T i I . ¢ samplgd o

4

3

2 - [\ . reconstructed g

L N LI\ A A
g SN LN

(1)

IX4(H[? [dB]

frequency f/f.,

Time domain sampling and corresponding spectrum, (f5/f 4, = 3.00)

|

Ic)riginall (analkog)

1

I{:\riginalll (analBg)

sampled o 7] sampled o 7
. reconstructed 7] A reconstructed .
VAYAAN = : AA

frequency 1/f 5

X

IX4(0? [dB]

5 4 3 -2

From Deep Space to Deep Sea

-1 0 1
frequency f/f.,




Stability of Sampled Data Systems

 Sampling period affects stability:
Example: Consider the following SDS transfer function:

10(1-¢”
z—(11e” -10)

For 7> 0.2 the resulting transfer function is unstable

/(z) =
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Discretized HEB Yaw Control

Resulting discretized Hybrid Event-B model:

DC

Altreonic

PROJECT KwrtD Prj
REFINES 27— Kuwit Prj
INTERACES
YawCwiD_IF
MACHINES
KurtUserD Mch
KurtD Mch
YanwCirlD Mch
END

INTERFACE Y¥mwCtriD _IF
REFINES 27— YawCirl IF
SEES KurtD Cix
TIME ¢
PLIANT
VITD,VI'Mp,
step, stch
vrePp,) 'rePSj' R
yrelp,vieDp,
thrp,talp,tarp
INVARIANTS
vrrp,yimp € R R
step,sich € B,R
yrePp,) 'rePSj' eRR
vrelp,vreDp € R, R
thrp,talp,tarp € R, R R
thrp = thr
VITp =T
[vrmp —yrm| < Byym
[step —ste| < Bste
\srrg' —ste| < Biste
[vrePp —yreP| < Byop
lvrePy — vreP| < Byp
‘.‘TCID —yrel| < Byt
[vreDp —yreD| < Byrep
[talp —tal| < Bear
|tarp —tar| < Biar

INITIALISATION

WHEN
=0
THEN

0
vrelp,yvreDp = 0,
thrp,talp,tarp =
END
END

CONTEXT KurtD_Crx
EXTENDS Kurf Crx

AXIOMS

NT =1
END

MACHINE KurtD Mch
REFINES -?7— Kurt Mch
CONNECTS YawCriD IF
EVENTS
KurtBehavesPli
REFINES KurtBehaves
STATUS pliant
COMPLY  skip
END
KurtBehavesMo
STATUS ordinary
WHEN (SneNetf=nT)
yrmp = yvimp+ CxTsicp
END
END

MACHINE KurtUserD _Mch
REFINES KurtUser Mch
CONNECTS YawCtiD _IF
EVENTS
SteerKurt
REFINES  SreerKurt
STATUS pliant

BEGIN
thrp(t) = ©(4—1)
wirp(t) = ©(t—135)
END
END

23/08/2015

MACHINE YawCtrlD Mch
REFINES -77— YawCiri_Mch
CONNECTS YawCtlD IF
EVENTS
YewControlPli
REFINES YawControl
STATUS pliant
COMPLY  skip
END
YenwControlMo
STATUS ordinary
WHEN (GneNet=nT)

yrePp = yiTp—yrinp
wePh = yrePp
yrelp = yrelp+ TvrePp

wreDp = (yrePp—yreP¥)/T

step = “Kp[wrePp+yrelp/ T+ TpyreDp)”

s'f(*g‘ = stcp

talp = thrp —step

tarp = thrp+step
END

END
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A Practical Example: Yaw Control

Discretized Stability Analysis
e A similar approach to analogue counter part resulted in:

SICp 13— ZSfCD,mz +S80Cp 40 = _C/(Kp[];)(”cp,mz - 2*5750,441 + Sch,A’)

+ 7(stCp 4y = S1Cp411) + Tzsfcy,mz /7,

e Requires solving for:

W +CKI? I T,+T+7,-2]CK W +CK,[1/CK,-27,-TW
+CK,7,=0

e For stability, eventually deduce:

1>CK,7,
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Summary

* Viewing discretization as an instance of
refinement is demanding

 Many simplifications required to render
calculations tractable

» mathematical insight and domain knowledge
required

* Closer cooperation needed between frequency
domain and state space approaches
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Questions for Discussion

* Can sampling theory be applied to reconcile
continuous and discrete views in a way that is
acceptable to formal techniques?

e Can supporting tools make hybrid system
formal methods more accessible to engineers?
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