

User Communities

Ab initio simulations

Post-processing

Data analysis

Storage

Computers

Typically 1-5 individual systems

10K - 1M Cores

High Bandwidth Low Latency Interconnect (22 GB/sec and 0.89us)

Increasingly often uses accelerators (GPGPUs MICs etc)

Computers

Typically 1-5 individual systems

10K - 1M Cores

High Bandwidth Low Latency Interconnect (22 GB/sec and 0.89us)

Increasingly often uses accelerators (GPGPUs MICs etc)

CPU

Inst

Reg

North Bridge

Memory

North Bridge

CPU

Core i7 Xeon 5500 Series
Data Source Latency (approximate)

L1 CACHE hit, ~4 cycles

L2 CACHE hit, ~10 cycles

L3 CACHE hit, line unshared ~40 cycles

L3 CACHE hit, shared line in another core ~65 cycles

L3 CACHE hit, modified in another core ~75 cycles

remote L3 CACHE ~100-300 cycles

Local Dram ~60 ns

Remote Dram ~100 ns

North Bridge

GPU

for all buffers:

W: SendReq

SendData OK

E: RunKernel

OK

R: ReadReq

RecvData

OK

[W];[W||E];[W||E||R];...;[E||R];[R]

[W];[W||E];[W||E||R];...;[E||R];[R]

North Bridge

South Bridge

Disk Storage

Hosts Input-files for running jobs Result-files for running jobs Files targeted for tape Files staged from tape

Typically tens of PB disk

Tape Storage

Cheap mass storage for large datasets

Backup of important data

Typically tens of PB

Scheduler

Receives input from

- Users
- Computers

Depends on

- Computers
- Staging from tape
- Real-time reservations
- Grid

Grid

Receives input from • External Schedulers

- Computers
- Tape

Depends on

- Computers
- Staging from tapeExternal schedulers

Visualization

Depends on • Scheduler

- ComputersNetwork

Gateway

100 Gbps primary connection

Hundreds of concurrent connections

⁺ indicates one or more instances

^{*} indicates zero or more instances

Social Soci

Open Problems in HPC for the CPA Community

Extensible Software Defined Networking

[BW allocation, user filters for data, interface to IDS]

Flow-based Access Control

[Access to Interactive nodes, and peeking to output graphics]

Resource Availability Coordination

[Ensuring that data is online before jobs are scheduled]

Buffer Migration Management

[Getting data from slow to fast storage, eliminate waiting]

Peer-Scheduler Coordination

[Communicating between Grid schedulers]

Requirement Checking

[Not starting a job that has no storage quota left]

Opportunistic Backup

[If a file that is marked for backup is accessed for other purposes, do backup in parallel]