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Abstract. For a number of years, the Communicating Process Architecture (CPA)
community have developed languages and runtimes supporting message passing con-
currency. For these we always provide a set of reusable processes called plug and play.
These components provide a rich set of functions to the new CPA programmer, en-
abling them to develop applications. In this paper, we describe recent work in taking
the plug and play ideology and applying it to the area of algorithmic skeletons. We
have based our work on the RISC-pb2l specifications of Danelutto et. al. to provide
a base set of skeletal components, focusing on the communication behaviours they
exhibit.
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Introduction

Skeletal frameworks provide simple methods to develop parallel software. They are aimed
at domain experts who are not parallel programmers. Skeletal frameworks do this by provid-
ing mechanisms for building parallel applications through reusable blocks. These ideas have
become important as multi- and many-core architectures became the norm.

The Communicating Process Architectures (CPA) community (www.wotug.org) has
been developing parallel applications for over 30 years. The CPA manifesto focuses on com-
munication between processes via channels (message passing). The nature of CPA promotes
the same block ideas that skeletal frameworks do. The CPA community have developed plug
and play libraries as reusable blocks for common problems and communication patterns.
Many of these plug and play blocks share similarities with common skeletal blocks.

In this paper we present work examining the communication semantics of algorithmic
skeletons. Our work is built on the RISC-pb2l [1,2] block specifications, extending these
specifications by exploring the different communication patterns. The contribution of our
work is the extension of the RISC-pb2l building blocks to consider communication patterns,
typing, and parallel behaviour.

We present the rest of our paper as follows. In Section 1 we provide some background
and related work. In Section 2 we discuss our extensions to the RISC-pb2l specifications. In
Section 3 we provide a case study (building a concordance application) with these blocks in
a Groovy parallel library with relevant performance data. Finally in Section 4 we conclude
and discuss future extensions.

1Corresponding Author: Kevin Chalmers, School of Computing, Edinburgh Napier University, 10 Colinton
Road, Edinburgh. Tel.: +44 131 455 2484; E-mail: k.chalmers@napier.ac.uk.
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1. Background and Related Work

Algorithmic skeletons are a technique for non-parallel programmers (domain experts) to ex-
ploit parallelism. An example skeleton is a pipeline which provides a template into which
functions can be placed by the programmer. A number of such skeleton libraries exist – eS-
kel [3], Muesli [4], Skandium [5], and SkeTo [6]. González-Vélez [7] surveyed the skeletal
libraries in 2010.

More recently, development of description languages for skeleton programming has been
undertaken. A description language allows the programmer to detail the structure of their
application as a collection of components interacting with each other. This work builds on
Danelutto et. al’s [1] RISC-pb2l specifications.

1.1. RISC-pb2l Building Blocks

RISC-pb2l [1,2] approaches the problem of a design language by producing a limited set
of general purpose building blocks. These blocks are divided into three types – wrappers,
combinators, and functionals. Each type supports a different part of the parallel solution.

Wrappers describe how a function is to run (e.g. sequential, parallel).
Combinators describe communication between blocks – N-to-1, 1-to-N and feedback. N-to-

1 and 1-to-N include a communication policy to determine, such as unicast, gather,
etc. Feedback describes a feedback loop with a given condition.

Functionals run parallel computations. Included are parallel, Multiple Instruction, Single
Data, pipeline, spread, and reduce.

The individual components use a “pure dataflow semantics”. Each component has the
same arity on its input and output channels, and channels carry copies of data, not refer-
ences/aliases.

As a short example, taken from [1], a task farm can be described in RISC-pb2l as follows:

TaskFarm(F ) = /Unicast(Auto) • [|∆|]n • .Gather

Reading from left to right:

/Unicast(Auto) a 1-to-N communication using an auto selected unicast policy.
• separates pipeline stages.
[|∆|]n denotes n ∆ computations in parallel. ∆ is F in TaskFarm(F ).
• separates pipeline stages.
.Gather a N-to-1 communication using a gather policy.

Further examples are available in [1,2]. The aim of using RISC-pb2l is to reason about
the parallelism at a high level, therefore enabling analysis of possible optimisations.

1.2. Message Passing Based Skeletal Frameworks

Although message passing is considered a core concurrency construct, little work has been
undertaken investigating message passing in light of skeletons. Work has been undertaken
with Erlang [8], but with the rise of other message passing languages (Go, Rust, etc.) there
are rich avenues of investigation that can be undertaken. The aim of this paper is to explore
potential benefits of developing skeletons in a message passing style due to the data flow
nature skeletons generally promote.
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2. Extending RISC-pb2l

In this section we show how the RISC-pb2l building blocks can be expressed in a process
oriented language.

2.1. Wrappers

A wrapper is a function computing an input based on an output. In process oriented design
we can represent both as a black box with an in data type X and out data of type Y.

In a process oriented language, all communication between entities (processes) uses syn-
chronous, blocking communication on unidirectional channels. Therefore, any wrapper func-
tion takes in the reading end of a channel of type X (in<X>) and the writing end of a chan-
nel of type Y (out<Y>). Reading from a channel is denoted by ?, and writing by !. Figure 1
provides a pseudocode semantics of this block.

procedure WRAPPER(F, in<X>, out<Y>)
while true do

in ? value
out ! F(value)

Figure 1. Wrapper Block.

Whether f is implemented in a parallel or sequential fashion is of no importance to the
behaviour of the wrapper.

2.2. Combinators - 1-to-N

The /Policy operator denotes a 1-to-N data spreader. Depending on the Policy it behaves
differently. There are three distinct polices: Unicast(p), Broadcast, and Scatter, where p
is either RR (Round Robin) or AUTO, which directs the input to the output where a request
token has been received.

2.2.1. /Broadcast

/Broadcast can be described semantically as follows:

x→ /Broadcast → 〈x, . . . , x〉

where x is a single value. Let us assume that in<X> is a channel carrying values of type
X, and out<X>[n] is an array of channels (0 through to n-1) also carrying values of type X.
The API for a broadcast node can therefore be expressed as shown in Figure 2.

procedure BROADCAST(in<X>, out<X>[n])
while true do

in ? value
par for i in 0..n-1 do

out[i] ! value

Figure 2. Broadcast Block.

The par for is simply a regular for-loop done in parallel. Naturally, the par for could
be a regular sequential for, in which case the broadcast would progress sequentially.
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2.2.2. /Scatter

The semantic description of /Scatter is as follows:

V → /scatter → 〈v1, . . . , vn〉
where V is a vector of size n with elements v1, . . . , vn. We can represent that as the

Broadcast policy, with the difference in the types carried by the in channel, which has type
X[n]. The corresponding behaviour can be seen in Figure 3.

procedure SCATTER(in<X[n]>, out<X>[n])
while true do

in ? value
par for i in 0..n-1 do

out[i] ! value[i]

Figure 3. Scatter Array Block.

2.2.3. /Unicast(RR)

The semantics for /Unicast(RR) is:

x→ /Unicast(RR)〈φ, . . . , φ, x, φ, . . . , φ〉
A unicast using round robin simply alternates between the output channel ends in in-

creasing order with wrap-around. The behaviour can be seen in Figure 4.

procedure UNICAST RR(in<X>, out<X>[n])
while true do

for i in 0..n-1 do
in ? value
out[i] ! value

Figure 4. Unicast Round Robin Block.

Unlike /Scatter, which can send multiple inputs to multiple outputs in parallel, /Unicast(RR)

is not able to perform broadcast in parallel due to a single input value stream.

2.2.4. /Unicast(AUTO)

The AUTO option for a unicast is a little different. The receiver of the data must have sent a
request first. Possible behaviours are illustrated in Figure 5.

unicast auto requires a block to send a request (its index) to the unicast block to re-
ceive a message. We call this an explicit auto unicast. An implicit auto unicast is also pos-
sible if the language allows for output guards. An output guard is where the communication
is selected based on output availability. The requester does not send a request, but simply
reads from the channel connected to the unicast block. The unicast block uses output guards
to choose a ready receiver using a select statement, that chooses a ready output, blocking
until then.

2.3. Combinators N-to-1

The .Poliy operator denotes an N-to-1 collector. It gathers data fromN channels and produces
it, or a derivative, on the output channel. There are two policies Gather and GatherAll.
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procedure UNICAST AUTO(in<X>, req<N>, out<X>[n])
while true do

in ? value
req ? idx
out[idx] ! value

procedure UNICAST AUTO GUARDED(in<X>, out<X>[n])
while true do

in ? value
select chan from out

chan ! value

Figure 5. Unicast Auto Block.

2.3.1. .Gather

A gather function multiplexes n input channels onto an output channel:

〈x1, . . . , xn〉 → .Gather → (x1 � x2 � . . . � xn)

Figure 6 provides the general behaviour of the gather block.

procedure GATHER(in<X>[n], out<X>)
while true do

for i in 0..n-1 do
in[i] ? value
out ! value

Figure 6. Gather Block.

It is not entirely clear from [1] if the semantics require one value from each sender (in
order) or if the function should be a completely general multiplexer (implemented using a
select). Either way is possible and both could be made available to the programmer. Note
the lack of parallel in the for as it is not necessary to perform a gather.

2.3.2. .Gatherall

The Gatherall policy requires the values be collected in a vector before the vector is written
to the output:

〈x1, . . . , xn〉 → .Gatherall → [x1, . . . , xn]

Figure 7 defines the behaviour of this block. Note that the reads can be performed in
parallel.

2.4. Feedback Combinator
←
∆

The last of the combinators is feedback:
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procedure GATHERALL(in<X>[n], out<X[n]>)
X value[n]
while true do

par for i in 0..n-1 do
in[i] ? value[i]

out ! value

Figure 7. Gatherall Block.

x→
←
∆→

{
∆(x)→ feedback if cond(∆(x))
∆(x)→ out

The feedback combinator reads from either an input or feedback channel (which has
priority), passes the value to a block, (∆), and depending on the outcome of a predicate func-
tion cond to the value ∆(x) writes the value to an output channel or back to the feedback

channel.
We require a new helper block, merge, that controls the value passed to the surrounded

block. merge and the block (∆) are then run in parallel. Figure 8 presents the two blocks,
with block used to denote an instantiation of ∆.

procedure MERGE(in<X>, to block<X>, from block<X>, out<X>, cond)
while true do

in ? value
to block ! value
from block ? value
while cond(value) do

to block ! value
from block ? value

out ! value
procedure FEEDBACK(BLOCK, cond, in<X>, out<X>)

to block<X>
from block<X>
par

BLOCK(to block, from block)
MERGE(in, to block, from block, out, cond)

Figure 8. Feedback Block.

In [1] the value passed to cond is x and in [2] the value passed to cond is ∆(x). We have
implemented the latter as it makes more sense, and from a process oriented design point-of-
view, is a lot easier to implement. It should also be noted, that the ∆ block must read and
write values of the same type.

2.5. Functionals

2.5.1. [|∆|]n
[|∆|]n computes the function specified by ∆ on n different input values in parallel. The input
arity of [|∆|]n is n and so is the output arity. The arity of ∆ (both in and out) is 1. The

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



K. Chalmers et. al. / Communicating Connected Components 179

semantic specification is:

〈x1, . . . , xn〉 → [|∆|]n → 〈∆(x1), . . . ,∆(xn)〉
Figure 9 presents the block algorithm.

procedure PAR(BLOCK, in<X>[n], out<Y>[n])
par for i in 0..n-1 do

BLOCK(in[i], out[i])

Figure 9. Par Block.

2.5.2. [|∆1, . . . ,∆n|]
This functional is no different than the [|∆|]n from a process oriented point-of-view; just
pass parallel-n from the previous section a different set of channel ends – there are no
restrictions on the type of computation as long as it reads an input and writes an output. For
completeness, the semantic specification is:

〈x1, . . . , xn〉 → [|∆1, . . . ,∆n|]n → 〈∆1(x1), . . . ,∆n(xn)〉
The only other requirement is of course that instead of executing n copies of ∆ we

execute n different computations denoted by ∆1, . . . ,∆n.

2.5.3. ∆1 • . . . •∆n

This is a pipeline computation. It combines output from one block to the input on the next:

x→ ∆1 • . . . •∆n → ∆n(. . . (∆1(x)) . . .)

Figure 10 provides the behaviour. Note that the typing of the blocks has to be correct to
ensure they can be connected together.

procedure PIPELINE(block[n], in<X>, out<Y>)
internal[n - 1]
par

block[0](in, internal[0])
par for i in 1..n-2 do

block[i](internal[i - 1], internal[i])
block[n-1](internal[n - 2], out)

Figure 10. Pipeline Block.
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2.5.4. (f/)

Spread distributes the result of a function, f , on k-ary tree of blocks. There are n leaf blocks,
requiring n/k applications of f . This requires a recursive block definition, provided in Fig-
ure 11. Note the recursion is parallel.

procedure SPREADER(F, param, k, out<X>[n])
value← F(param) . value has arity k
if k = n then

par for i in 0..n-1 do
out[i] ! value[i]

else
par for i in 0..n-1 do

SPREADER(F, value[i], k, out[n/k * i]. . . out[n/k * (i + 1)])

procedure SPREAD(F, k, in<X>, out<X<[n])
while true do

in ? value
SPREADER(F, value, k, out)

Figure 11. Spread Block.

2.5.5. (.f)

Reduction performs the opposite process to spread, and therefore requires a recursive defi-
nition. This is provided in Figure 12.

3. Case Study - Concordance

To test our Groovy Library based our RISC-pb2l extensions (available at https://

bitbucket.org/jkerridge/org_jcsp_gpp_01) we describe a particular case study - con-
cordance.

3.1. The Problem

Given a text extract the location of equal word strings for strings of words of lengths 1..N
in terms of the starting location of the word string in the text, provided the word string is
repeated a minimum number of times.

3.2. The Solution

The solution comprises five stages as follows:

1. Processing word strings and in particular comparing them is complex and time con-
suming so we shall extract all the words from the text, removing unnecessary punc-
tuation, and then calculate a corresponding integer value for each word based upon
summing the letter codes for the word. We shall store these words and the list of word
values.

2. Creates the sums of sequence of values for strings of length 1 to N, which generate N
value lists.

3. Creates N maps each of which comprises a key based on a value from a valueList and
an entry that contains all the locations where that value occurs. These maps are called
indices map.
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procedure REDUCER(f, k, params[n])
if k = n then

return f(params)
X values[n/k]
par for i in 0..(n/k) - 1 do

values[i]← reducer(f, k, params[n/k * i]..params[n/k * (i + 1)])
return f(values)

procedure REDUCE(f, k, in<X>[n], out<X>)
X values[n]
par for i in 0..n-1 do

in[i] ? values[i]
out ! reducer(f, k, values)

Figure 12. Reduce Block.

4. Disambiguates indices map because a key value may refer to different word se-
quences. Thus for each key in an indices map we extract the word sequence to which
it corresponds, recall that the entry contains the location of the value in the text and
we have stored the words. Thus we can build up a map comprising a key of a word
string together with an entry comprising the locations of that specific word string. We
shall call the N maps the words map.

5. The final stage is to output the words map in a human readable form ensuring that
only strings that are repeated at least the minimum number of times are output. This
is essentially a collect.

We provide two solutions - one that uses a group of pipelines (GoP) and another that
uses a pipeline of groups (PoG). In RISC-pb2l these are defined as:

GoP = ((emit)) • /Unicast(Auto) • [|2 • 3 • 4 • 5|]n

PoG = ((emit)) • /Unicast(Auto) • [|2|]n • [|3|]n • [|4|]n • [|5|]n

3.3. Results

Our concordance solution is executed on the Bible, searching for strings of length N = 6
where the repeated string occurs at least twice. All the experiments were run on an Intel
Core2 Quad Q8400 processor running at 2.67GHz with 8 GB memory. This provides a po-
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tential speedup of two times if the CPU is fully utilised. Our baseline sequential version of
concordance executes in 28688 ms. Our results are presented in Table 1 and Table 2.

Groups Time (ms) Speedup
1 24281.5 1.181
2 23765.5 1.207
3 22211 1.292
4 21695.5 1.322

Table 1. Group of Pipelines Results.

Groups Time (ms) Speedup
1 24430 1.174
2 22984 1.248
3 21883 1.311
4 21734.5 1.320

Table 2. Pipeline of Groups Results.

As can be seen, there is little difference in performance between the GoP approach and
the PoG approach. However, it should be noted that the concordance benchmark is highly
dependant on I/O, and speedup reaches only 1.32×. This is due to the availability of process-
ing blocks within the defined application. Our extended experiments do not provide a greater
speedup than these figures.

4. Conclusions and Future Work

We have demonstrated that taking a process orientated view to skeleton block definition and
composition provides a simple understanding of input and output typing, and the potential
parallel behaviour within a block. We have also provided results of a concordance application
using these blocks within a message passing Groovy library. Our results show promise for
a message passing approach to skeleton composition, and other possible extensions can be
made to further improve performance (for example via channel buffering).

We aim to take these definitions and implement them in other message passing languages
and libraries. In particular, due to some of the typing requirements for recursive definitions,
we aim to utilise C++ variadic templates to provide simple skeleton composition to the ap-
plication programmer. We also aim to develop similar skeleton libraries in languages such as
Go and Rust.
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