Communicating Process Architectures 2016 99
K. Chalmers, J.B. Pedersen et al. (Eds.)

Open Channel Publishing Ltd., 2016

© 2016 The authors and Open Channel Publishing Ltd. All rights reserved.

Extensions to the Concurrent
Communications Library

Kenneth SKOVHEDE ! and Brian VINTER

Niels Bohr Institute, University of Copenhagen

Abstract. This paper presents updates and measurements for the Concurrent Com-
munications Library, CoCoL, which is a CSP inspired library targeting C# and other
languages running on the Common Language Runtime, also known as .Net. We de-
scribe the new library interface methods that simplify writing correct, encapsulated
and compositional networks. We also describe an extension to the library, which en-
ables communication over network connections and measure the performance.

Keywords. CSP, concurrent programming, process oriented programming, C#, .Net,
Common Intermediate Language, distributed systems, network communication

Introduction

The Concurrent Communications Library, CoCoL, was introduced in 2015 [1] and is a
CSP [2] inspired library targeting C# and other languages running on the Common Language
runtime, also known as CLR, .Net or CIL. The driving idea in CoCoL is to provide a simple
interface for constructing programs using CSP techniques, but without requiring knowledge
about the history and theory of CSP. Hopefully this approach makes it more accessible to
programmers, which are unfamiliar with CSP, as they only need to understand a channel as
an abstraction. The API in CoCoL is primarily a class that is aptly named Channel, which
has equally well-named methods called Read and Write. The methods ReadFromAny and
WriteToAny provide support for CSP-style alternation without explicitly exposing a CSP
Guard. Unlike other CSP libraries, there is no special Process class, instead, any code is
allowed to interact with a channel and can be interpreted as a kind of implicit process.

As noted with other library implementations, such as JCSP [3] and CPPCSP [4], repre-
senting a CSP process as a thread comes with a significant memory footprint, limiting the
number of processes to less than 100.000, even on modern hardware. In CPPCSP, this can
be optimized by setting the thread stack, and by manually setting processes to share a single
thread. The CoCoL solution to this issue is to utilize the await and async keywords in the
C# language to return Task objects representing a future result. The CLR implementation
of await allows multiple operations to wait on different future results, but does not tie up
the calling thread, thus transforming the program to something similar to a bag-of-tasks ex-
ecution model. In this model, a thread-pool will pick operations that can be completed and
execute them with available threads, potentially starting more threads if required. This com-
bination of a thread-pool, await, and Task results in a program that looks sequential, but
actually runs in parallel, while maintaining a high level of parallelism and a low overhead
for each channel communication. Like in ProcessJ [5], this decoupling from threads allows
millions of concurrent processes to run on modest hardware.

!Corresponding Author: Kenneth Skovhede, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen OE.
Tel.: +45 35325209; E-mail: skovhede@nbi . ku.dk.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

100 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

Motivated by the promising performance results from the initial implementation, we
have updated CoCoL with a number of features that aim at making CoCoL more feature
rich and productive, which are described in section 1. In section 2 we describe a channel
implementation that is a drop-in replacement for the normal channel, but sends requests over a
TCP connection, such that the actual channel can be serving requests from multiple machines.
The implementation of a network channel utilizes the two-phase-commit [6] strategy already
found in CoCoL, allowing network channels to participate in alternation constructs on the
same terms as local channels.

1. New Library Constructs

After we introduced CoCoL, we implemented various improvements and extensions to the
core library, to make it simple to work with, without sacrificing the predictability. The
changes are almost exclusively implemented as extra functions, leaving the core channel logic
and implementation unchanged from the initial description [1].

1.1. Mixed Read and Write Requests

In the initial version, CoCoL supported alternation requests by providing a list of channels
and an external choice strategy to either ReadFromAny or WriteToAny. These methods run
through the list of channels in the order given by the external choice strategy, and regis-
ters a request to either read or write, and guarantees that at most one read or write is per-
formed before an optional timeout occurs. To ensure that only a single read or write is per-
formed, each request is supplied with a shared instance of a SingleOffer class which pro-
vides a Two-Phase Commit entry. As the CoCoL. Channel uses the Two-Phase Commit en-
try to query a request when pairing reads and writes, this is handled with a single lock in-
side the SingleOffer instance, and thus does not require cooperation between participating
channels.

Using this same technique, we have added the ReadOrWriteAny method, which allows
mixing read and write requests. Unlike WriteFromAny, we have extended the method to al-
low writing different values to each of the channels. Consider the simple network in listing 1,
which provides the current and previous value to potential readers, and allows a writer to
set the current value. As shown in the example, each channel in the list must be marked,
such that it is possible to determine if the desired operation is a read or a write, and for the
write operation also what value to write, should the operation be performed. The implemen-
tation of this method is almost identical to the ReadFromAny and WriteToAny, except that
a MultisetRequest instance is passed in place of the channel, such that the appropriate
method can be invoked on the channel, and, for a write operation, send the specified value.

A related operation on multiple channels would be to perform operations with dif-
ferent types for each operation. One simple fix would be to use the common object
type on the channel, but that would require all others to change the type of their chan-
nel as well, forfeiting all benefits of having a strongly typed channel, simply to use it
in a mixed-type operation. Instead, this is implemented using an instance implementing
the interface IMultisetRequestUntyped for each request. By having the ordinary, typed,
MultisetRequest instances implement this interface, the usage is the same from the user
perspective, as shown in listing 2 where the update channel handles strings. While the two
function calls look similar, the call to ReadOrWriteAnyAsync is passing a list of untyped
requests. To invoke the actual typed channel operations, the implementation uses reflection
to extract the target method from each channel, and invokes the corresponding method. This
adds a minor overhead to the function call, as each channel type needs to be resolved, but is
otherwise comparable to the same-type version in terms of performance.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 101

var cur = 0, prev = O0;

var updatechan = ChannelManager.GetChannel<int>("update");
var curchan = ChannelManager.GetChannel<int>("cur");

var prevchan = ChannelManager.GetChannel<int>("prev");

while (true) {

var res = await new [] {
MultisetRequest .Read (updatechan),
MultisetRequest.Write(cur, curchan),
MultisetRequest.Write (prev, prevchan),

}.ReadOrWriteAnyAsync ();

if (res.IsRead) {

prev = cur;
cur = res.Value;
b
}
Listing 1. Example for ReadOrWriteAny

var cur = 0, prev = O0;
var updatechan = ChannelManager.GetChannel<string>("update");
var curchan = ChannelManager.GetChannel<int>("cur");
var prevchan = ChannelManager.GetChannel<int>("prev");

while (true) {

var res = await new [] {
MultisetRequest .Read (updatechan),
MultisetRequest.Write (cur, curchan),
MultisetRequest.Write (prev, prevchan),

}.ReadOrWriteAnyAsync ();

if (res.IsRead) {
prev = cur;
cur = int.Parse((string)res.Value);

Listing 2. Example for ReadOrWriteAny with mixed types.

1.2. Overflow Strategies

In an unbalanced network, it is easy to create situations where readers are overwhelmed
with requests. If the writers are blocked when writing to the channel, then that will naturally
prevent this problem. However, it may be desirable for the writers to be able to continuously
write values to a channel without having to wait for the channel to be available. This situation
could be desirable if a process is reading a sensor and continuously writing the current value
to a channel. If an unbuffered channel is used this means that the sensor will not be read while
the process is writing to the channel. Adding a buffer to the channel gives some flexibility,
such that the reader and writer can work out-of-sync, but will not help if the writer is faster
than the reader, as that will just give a brief time to fill the buffer, and then revert to the
unbuffered scenario. Consider the example in listing 3 where the reader needs to alert a
shutdown mechanism if the value is too high, but otherwise report the current value to a

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

102 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

reader. If the report.Write () call is blocking because the reader is busy, the sensor is not
read, and hence the warn signal is not reported if the sensor value increases. One could argue
that the problem could be solved with an alternation, but in this particular example, the sensor
is a hardware unit and thus not a channel input that can be part of an alternation.

var warn = ChannelManager.GetChannel<int>("warn");
var report = ChannelManager.GetChannel<int>("report");

while (true) {

var current = ReadHardwareSensor ();
if (current > 10)

warn.Write (current);
report.Write (current);

}

Listing 3. Example with a sensor performing blocking writes.
var warn = ChannelManager.GetChannel<int>("warn");
var report = ChannelManager.GetChannel<int>("report",

maxPendingWriters: 1,
pendingWritersOverflowStrategy:
QueuelOverflowStrategy.FIFO
)5

while (true) {

var current = ReadHardwareSensor ();
if (current > 10)

warn.Write (current);
report.WriteNoWait (current);

}

Listing 4. Example with a sensor performing non-blocking writes.

In such a scenario it might also be sensible to design the reader process such that it
does not require all values, but simply uses the most recent value. In other words, old sensor
values can be discarded. To solve these issues, we added the option to set a maximum queue
length on a channel and also set a strategy that determines what will happen once the channel
is overflown. Note that this is different from a buffered channel, as a buffered channel is
semantically equivalent to a series of processes that forward a value. The queue in the channel
is a list of pending, or blocked, operations, whereas the buffer in a channel is a list of writes
that have been processed, but not yet collected by a reader.

The JCSP OverFlowingBuffer and OverWritingBuffer channels serve a similar pur-
pose, but implement this differently as they always signal success to the writer. In CoCoL,
an overflowing write action will be cancelled, which is signalled to the writer as a special
exception state, allowing the writer to detect lost messages. Write operations that are buffered
return success to the writer, and can only be lost in the case of posioning the channel, which
is equivalent to poisoning a buffer process.

The available strategies for handling overflow in a CoCoL channel are FIF0, LIF0, and
Reject. The FIFO strategy will expire items that have been the longest in the queue, the
LIFO strategy will expire items that have been the shortest time in the queue, and the Reject
strategy will reject new items from being inserted while the queue is filled. For the sensor

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 103

example we can simply add a maximum size of pending writers and the queue strategy to the
channel as shown in listing 4.

This change will allow the report.WriteNoWait() call to always proceed, expir-
ing old values if needed. The reader will then always receive the latest value, even if the
writer is faster than the reader. Note that without the limitations on the channel, the calls to
report.WriteNoWait () would cause the list of pending writes to grow until the machine
is out of memory, and would cause the reader to process a backlog of values instead of just
the most current. The performance overhead for discarding the extra entries, is limited to
removing items from the list.

For a slightly different scenario, where the sensor reader would like to know that the
reader is not able to handle a particular request, the strategy Re ject could be used, such that
the call to report.Write() gives an exception, or the Task value from the previous write
could be stored and examined.

1.3. Support for the Portable Class Libraries

As the world, particularly software developers, is focusing on mobile apps, the CLR, C#,
and the related eco-system is also targeting app development. Since the devices running such
apps are usually limited in terms of memory and processing power, Microsoft has defined a
reduced version of the BCL? known as the Portable Class Libraries, PCL, for use on such
devices.

We have added support for using CoCoL with the PCL, such that apps can benefit from
the CSP programming model as well. Most of the functionality used by CoCoL is directly
supported in the PCL, with the exception of some reflection functionality and a sorted list.

The channel expiration mechanism is implemented with a sorted list, such that a single
timer keeps track of all pending channel timeouts, rather than instantiating a timer for each
call [1]. Since a sorted list is rarely used, it has been omitted from the PCL and we have
simply added our own implementation which keeps the list sorted in O(lg n).

The reflection functionality in PCL is reduced, both to save space, but also to ensure that
it can be used with runtimes that have limited capabilities. Fortunately, CoCoL uses only a
limited amount of reflection, to deal with mixed types as described in section 1.1, which we
have adapted to work correctly with both BCL and PCL.

1.4. Channel and Execution Scopes

One of the attractive features of a CSP-based programming model is the ability to encapsulate
components, which decreases complexity and increases reusability. It is possible to create
both named and unnamed channels in CoCoL, such that a channel reference can be acquired
either by name or by reference. The benefit from using named channels is that an embedded
string is enough to access the channel, as opposed to passing an object reference through
multiple layers of processes.

However, when creating reusable encapsulated components, using named channels is
difficult, as the names used in the component may collide with the names used by the calling
program. One common solution to this problem is to introduce namespaces, which can be
implemented, i.e. by requiring the user to prefix channel names with a unique string. But
the namespace approach fails when the user instantiates two instances of an encapsulated
component, say two fibonaci generators, as they will have the same prefix.

Rather than providing an elaborate system to provide extra prefixes to prefixes, CoCoL.
implements scopes, such that a channel always belongs to a scope. An encapsulating com-

2Base Class Libraries, the libraries used by all CLR programs, containing lists, hashtables, filesystem, sock-
ets, etc

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

104 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

ponent can then generate a new scope, to which all the channels it creates are associated. A
ChannelScope inherits the channels in its parent scope, but can override a named channel
with a local channel. For fully encapsulated components, an IsolatedScope is also pro-
vided, which stops the inheritance at the scope. Rather than explicitly passing the channel
scope as a reference, we utilize the ThreadLocalStorage feature in CLR to attach the chan-
nel scope to the caller. This approach ensures that a process can instantiate channels without
any knowledge of what scope it belongs to, thus enabling fully isolated components. The
scope usage is shown in listing 5, where two different channels are named out. The scope
isolates this, such that the two async tasks, can request a shared channel named out without
seeing the external channel with the same name. By using a reference to the channel from the
outer scope, the inner network can even communicate with the outside network, as illustrated
in listing 5.

A similar approach is used to implement an ExecutionScope, which defines how to
execute tasks once they are ready. An ExecutionScope can be used for fine grained control
over a subset of the network, for example to use a custom threadpool which limits the number
of active threads.

var external =
ChannelManager .GetChannel<int>("out");

using (new IsolatedScope())
await Task.WhenAll(

Task.Run(async () => { // Process 1
var intermal =
ChannelManager.GetChannel<int>("out");

while (true)
await internal.WriteAsync (42);

b,

Task.Run(async () => { // Process 2
var intermnal =
ChannelManager.GetChannel<int>("out");

while (true) {
await external.WriteAsync(
await internal.ReadAsync ()
)
3
1))

Listing 5. An example of an isolated component.

1.5. Automatic Channel Wiring

When constructing a CSP-style network, one must attach channel ends to the correct pro-
cesses, which is also known as wiring the processes. Consider the code example in Figure 6,
which is taken from the PyCSP paper [7]. In the example, the producer outputs tasks read
by a worker, which is then collected by a consumer through a barrier®. The equivalent

3The code example is taken verbatim from the paper, but can be written more concisely with the current
PyCSP library

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 105

code in CoCoL could be written as in listing 7, where the AsRead and AsWrite suffixes are
optional, but included for similarity with the PyCSP example.

feeder = One2AnyChannel ()
collector = Any20neChannel ()
done = Any20neChannel ()

Parallel(
Process (producer, protein, map, place, feeder.write),
Process (worker, feeder.read, collector.write, done.write),
Process (worker , feeder.read, collector.write, done.write),
Process (worker , feeder.read, collector.write, done.write),
Process (worker, feeder.read, collector.write, done.write),
Process (worker, feeder.read, collector.write, done.write),
Process (barrier, 5, done.read, collector.write),
Process (consumer, collector.read))

Listing 6. PyCSP example for a prototein network.

var feeder = ChannelManager.GetChannel<int>();
var collector = ChannelManager.GetChannel<int>();
var done = ChannelManager.GetChannel<bool>();

Task.WhenAll (

Producer (protein, map, place, feeder.AsWrite()),

Worker (feeder .AsRead (), collector.AsWrite(), done.AsWrite()),
Worker (feeder .AsRead (), collector.AsWrite(), done.AsWrite()),
Worker (feeder.AsRead (), collector.AsWrite(), done.AsWrite()),
Worker (feeder.AsRead (), collector.AsWrite(), done.AsWrite()),
Worker (feeder.AsRead (), collector.AsWrite(), done.AsWrite()),
Barrier (5, done.AsRead(), collector.AsWrite()),

Consumer (collector.AsRead ()));

Listing 7. CoCoL example for a prototein network.

public class Worker : ProcessHelper {
[ChannelName ("feeder")]
private IReadChannel<int> feeder;

[ChannelName ("collector")]
private IWriteChannel<int> collector;

[ChannelName ("done")]
private IWriteChannel<bool> done;

code omitted

}

Task.WhenAll (
new Producer (protein, map, place),
new Worker (), new Worker (), new Worker (),
new Worker (), new Worker (),
new Barrier (5), new Consumer ());

Listing 8. CoCoL example for a worker process.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

106 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

Instead of passing the channel references to the method, we can define the channels in-
side the method and thus avoid cluttering the program with channel references. This approach
is shown in listing 8, where a Worker method has fields that are annotated with the name of
the channels they reference, and inherits from the ProcessHelper class that performs the
wiring. Combined with the channel scopes explained in 1.4 this makes it simpler to define
encapsulated components, where each component defines what channels it uses, rather than
relying on an external process to perform the wiring. While not shown in the example, the
implementation also allows the user to specify the channel properties in the annotations, with
regards to overflow and buffering as explained in section 1.2.

1.6. Leave and Join

Revisiting the code examples in listing 6 and 8, we can see that the injected Barrier process
is required to avoid a race condition that is likely to happen if the Worker processes are not
computing with the same speed. If the Barrier was not present, the first worker to finish
would poison the channel, causing the remaining worker results to be lost when they attempt
to write. While it is trivial to solve this problem with a barrier-like process, it is very likely
that novice programmers would hit this particular issue, yielding a faulty program. A solution
to this was first mentioned in PyCSP Revisited [8], where the authors suggest using the terms
leave and join to implement a counting technique to delay the shutdown on a channel until
either all readers or all writers have left the channel. This approach solves an issue similar
to the one described in JCSP-Poison: Safe Termination of CSP Process Networks [9], but
by using a counter to delay poisoning, rather than relying on the programmer to choose the
correct poison method.

The PyCSP idea was added to CoCoL, retaining the names Join and Leave for joining
and leaving a channel respectively. Unlike the PyCSP implementation, the channel is marked
as poisoned after all readers or all writers have called Leave*. The same mechanism that
is used to automatically wire up the channels in a class, will also automatically call Join
and Leave during startup and shutdown respectively, using the channel type to determine if
the channel is joined as either a reader or a writer. This implementation means that we can
remove the Barrier process, as well as the done channel in Figure 8, without introducing
any shutdown hazards.

The implementation of the Join and Leave process changes a small amount of code
in the core Channel class, by keeping two integer values per channel instance, one for the
readers, and one for the writers. Calling Join or Leave simply adjusts the read or write
counter and calls Retire once the counter reaches zero.

1.7. Isolating Processes

Functional programming is touted as a solution to many problems with programming [10],
and interestingly the arguments and solutions have many resemblances to CSP. We leave
the general comparison of CSP and functional programming to others [11,12], but focus on
the concept of functions in functional programs as being side effect free. Working with such
functions makes it easier to reason about the results, as they can be used in a compositional
manner. In a CSP context, an equivalent idea is that each process is encapsulated and also used
to build composite networks. As CoCoL is implemented in a non-functional programming
language, we cannot make the guarantee that a process is side effect free, but we can use
language features to set up an encapsulating scope that encourages use of local state only.

4PyCSP uses the name ChannelRetireException and distinguishes between poisoned and retired states,
where CoCoL only has a single poisoned state which is called retired and throws a RetiredException

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 107

This is not directly equivalent to having a side effect free function, but by using only local
variables we can encapsulate the state to be only in the process.

To achieve this encapsulation, we utilize three different language techniques: lambda
functions, variable scopes, and anonymous types. Using these three features in combination,
we can write the prototein network from Figure 8 in a simpler way, as illustrated in Figure 9.
In this example, the Worker process is not a class deriving from Process, but instead im-
plemented as a static method. This ensures that the process can only read and write local
variables, as well as variables passed to the method, and not access a this pointer. Inside the
method, a new anonymous type is created, which allows the user to give a local name to the
channel, as well as specify the type and intended usage for the channel. The instance is then
passed to the lambda function with the name self, and it can then be accessed in a fully type
safe manner. The RunTask method looks up all desired channels, calls the Join method, and
assigns them to the instance. The lambda method is executed within a try/catch block, and
automatically calls Leave on all channels once the process quits.

private static Task Worker () {
return AutomationExtensions.RunTask(

new {
feed = ChannelMarker.ForRead<int>("feeder"),
coll = ChannelMarker.ForWrite<int>("collector")
},

async self => {
while (true) A
var data = await self.feed.ReadAsync();
code omitted
await self.coll.WriteAsync(result);
3
X
);
}

Task.WhenAll (
Producer (protein, map, place),
Worker (), Worker (), Worker (), Worker (), Worker (),
Consumer ()) ;

Listing 9. CoCoL example with closures.

2. Network Support

One of the benefits of a channel based communication model is the ability to use different
communication mechanisms without changing the channel abstraction. This ability makes it
easy to utilize a network connection and build a distributed system. From the users perspec-
tive, the channels work the same, although they might become a bit slower.

This approach has been implemented in other CSP libraries, like JCSP [3], CPPCSP [4]
and PyCSP [7]. From a users perspective, a network channel is an explicit choice in JCSP and
CPPCSP, where the user needs to instantiate a special network channel instead of the normal
channel types. In PyCSP, the channels do not have a specific type, but instead upgrade their
type based on the type of communication they participate in.

As argued for PyCSP [13], it is desireable to have a single channel from a usability per-
spective, but often desireable to have different implementations from a performance perspec-
tive.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

108 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library
2.1. Connecting Channel Ends

In CoCoL we have implemented a network channel type as a distinct type, like it is imple-
mented in JCSP and CPPCSP. To avoid having the user instantiate a specific channel type,
we instead implement a channel scope, as described in section 1.4, that will choose a chan-
nel type based on the channel name. This restricts the use of network enabled channels to
named channels, but that is not a real limitation as it would not be possible for two different
processes to share a reference to a channel, as they do not share memory space. An example
implementation could choose to prefix network channel names with net , and then setup the
network channel scope to create all channels named net * as network channels.

The implementation relies on a single channel server, which hosts a normal CoCoL
channel, and provides an interface to the channel via TCP, much like the solution described
for PyCSP [13]. CoCoL does not yet support multiple channel servers, nor the name server
found in JCSP, as we want to use the current implementation as an evaluation platform before
we decide on the future implementation. It does not support mobile channel ends, nor moving
channel ends or channgel servers in the current implementation. The network implementation
is shown in Figure 1.

The channel server uses a very simple protocol, implemented over TCP, where it listens
to incoming requests and forwards channel responses to the TCP connection. The protocol
comprises a header and an optional payload. The header contains a unique request ID for each
requests, such that the response can later be paired, as well as the message type and a few
additional bookeeping items. A typical message is just over 200 bytes without any payload
data. The header and the payload are both serialized as a length prefixed JSON entry, and
only data that can be serialized with JSON is currently supported, similar to the limitation
imposed by JCSP. The network implementation is shown in Figure 1. The network client,
network client handler, and network server handler in Figure 1 are implemented as processes
using local CoCoL channels to forwards messages in the correct order. The network client
utilizes await statements, such that it can scale to a large number of concurrent requests.

Request Request
table table
i Network link i
— Request | i R e - >
q Network Network Network Network [
channel client client server Channel
<-{Responseq{ handler P S P S handler |«—"1
Client process Server process

Figure 1. Overview of the components involved in handling a network request.

2.2. Reads and Writes

The two core operations in CoCoL are read and write, so naturally there are mes-
sages for these operations, namely ReadRequest, ReadResponse, WriteRequest, and
WriteResponse. On the client side, the channel is simply implemented such that it gener-
ates a unique request ID for a read or write and then sends a package to the channel server
and awaits a response. When the channel server receives a message, it locates the requested
channel and issues the corresponding operation on the channel.

When the operation succeeds, the channel server will then respond the message back
to the initiator. This simple setup ensures that all operations are performed within a single
process, the channel server, and the client merely acts as a proxy when transmitting the

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 109

messages. Similar messages are supported for other channel operations, like JoinRequest,
LeaveRequest and RetireRequest, as well as negative results like RetiredResponse, ErrorRe-
sponse, and TimeoutResponse. All message types are listed in Table 1.

2.3. Timeouts

Even though the channel is now distributed, it can still be used like any other channel. How-
ever, since properties are evaluated on the channel server, there is a delay between operations,
meaning that poisoning a channel will not be immediately visible as with a local channel, but
will otherwise work the same.

The channels still guarantee that messages are handled in the order they arrive, but due
to network characteristics, there can now be varying latencies, meaning that the order of
arriving messages can change. Timeouts are also handled on the channel server, so they can
happen slightly later than what the user requests. A timeout is stored as an absolute time once
recorded, such that any delay in transmission is not added to the supplied maximum wait
time. If the requests arrives after the specified timeout, it is treated as a probing call, similar
to a skip guard.

2.4. Alternation

As external choice in CoCoL is implemented with two-phase commit, we have implemented a
proxy for the ITwoPhaseCommit that simply forwards the 0Of ferRequest and waits for either
a CommitResponse or WithdrawResponse, as described in Table 1. This allows a client
full freedom in mixing and matching channels, datatypes, reads, and writes in an alternation
statement. The channel server simply sends the messages to the client, which can then host an
unmodified ITwoPhaseCommit instance. For requests that do not utilize ITwoPhaseCommit,
1.e. requests that are not part of an alternation statement, a flag is sent to the channel server,
such that it avoids sending these extra messages.

The implementation of the proxy for network based ITwoPhaseCommit lead to a minor
change in channels. Previously, all calls to ITwoPhaseCommit were expected to return im-
mediately, which was reasonable, given that they only needed to query a single variable. With
the network support, it can suddenly take several milliseconds or more before a response is
received. In the previous design, this would cause the channel to block all threads calling the
channel, until a response had been processed.

To work around this, we changed the implementation of ITwoPhaseCommit to use async
logic for all calls. Via a lock-like construct, dubbed an AsyncLock, we can retain the code
used previously, without blocking threads. If the AsyncLock is not taken when calling, the
thread making the request is forwarded, thus reducing the overhead of the lock to checking a
variable on entry for non-competing calls on a channel. Should the AsyncLock be held, the
call is queued in dispatch queue, similar to the queues used inside the channel to keep track
of pending readers and writers. This queue mechanism ensures that the channel retains the
order, as they are passed into the channel queues.

With the ITwoPhaseCommit abstraction, we can support all types of alternation, such
that the decision for choosing a channel is kept in the process that performs the request, thus
removing the need for communication between the channels involved in an operation. The
simple request-response scheme for two-phase commit is implemented in the same way as
normal requests, so we re-use the setup illustrated in Figure 1 to pass all messages listed in
Table 1.

2.5. Overhead and Latency

With intra-process communication it is possible to merely pass a pointer or reference, As
two different processes do not share a common memory space, communication between two

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

110

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

Table 1. Network message types.

Name Description Sent from
ReadRequest Intent to read Client
WriteRequest Intent to write Client
RetireRequest Intent to retire Client
JoinRequest Intent to join Client
LeaveRequest Intent to leave Client
ReadResponse Completed read Server
WriteResponse Completed write Server
TimeoutResponse Timeout on read or write Server
CancelResponse Cancel on read or write Server
RetiredResponse Channel was retired on read or write Server
FailResponse Read or write failed Server
CreateChannelRequest Initialize channel, includes channel options Client
OfferRequest The offer phase of two-phase commit Server
OfferAcceptResponse The two-phase offer was accepted Client
OfferDeclineResponse ~ The two-phase offer was rejected Client
OfferWithdrawRequest ~ The two-phase transaction is rolled back Server
OfferCommitRequest The two-phase transaction is committed Server

processes adds processing overhead. If the communication method involves travelling over a
network link, there will be a latency overhead as well.

One could attempt to use buffered channels, in an attempt to hide the latency overhead,
but this will not have the desired effect. Firstly, the buffering only affects the writing side,
as the logic for a buffered channel simply accepts write requests even when there are no
matching readers. Secondly, the buffering is conceptually the same as writing to a channel,
thus the write call needs to be transported to the channel server and back, inducing delays,
but it will likely not wait in the queue on the channel server.

There is no real solution to this problem, if we want to retain all the properties of chan-
nels, as we cannot determine if the channel will reject or accept a request ahead of time. If we
accept that a few messages can be in-flight when the channel is poisoned, we can implement
a windowing approach, where we accept write calls, and forward them, but do not delay the
writer. Internally, all in-flight requests can be stored in a queue, and they will work the same
as normal channel interactions, and thus work correctly with respect to timeouts and alter-
nation. When the channel is poisoned, the writer is notified of this change, after the channel
has been shut down, meaning that some writes are seen as successful by the writer, but they
actually failed.

The reader on a network channel experiences the exact same delay, but we cannot use
in-flight requests in the same manner as writes, because the value being read from the channel
is not known in advance. Instead we can ensure that we issue a number of preemptive read
requests on a channel, and keep these in a queue. When the calling program attempts to read,
we emit a new pending read, add it to the queue, and return the oldest pending read. This
provides the same kind of windowing behavior as the write method, but since we emit the read
request ahead of time, we cannot register the correct two-phase offer when the read is emitted.
For this reason, it is not possible to use alternation with these windowed requests. Likewise,
the timeout value is not known in advance of the actual call, and is not supported either.
Similar to the approach for write messages, there can be read requests in-flight when the
channel is poisoned. However, if the reader keeps reading until discovering that the channel
is poisoned, no messages will be lost, as the oldest reads are processed first.

Even though the implementation for the write requests is different from a traditional

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 111

buffer, this is semantically equivalent to sequence of processes that forward a value. In such
a construction, a write in one end of the chain will report as successful, but poisoning the
output of the sequence, will cause all messages inside the chain to be lost. Similarly, the read
requests can also be modeled as a sequence of processes, which will carry a poison signal
from the input to the output, and will cause lost messages if the reader stops reading before
the poison is detected.

The trade-off in speed versus correctness requires that the programmer is well informed
of the consequences, but can work well for typical worker pool setups. The authors are not
aware of other CSP implementations that implements optimistic read ahead.

3. Experiments

All of the enhancements described in section 1 are all added on top of the implementation, and
only serve to make it simpler to write correct programs. We have leveraged that functionality
in the example programs, but have yet to evaluate the impact on users.

For the network based channels, we are interested in determining the amount of addi-
tional overhead and latency involved with passing messages over a network channel. As the
implementation contains performance enhancements for channels that are not part of an alter-
nation, we would like to test both types. To reduce the amount of jitter and latency noise we
would expect from a network, we have set up some tests to communicate over the loopback
adapter. This ensures that we measure the overhead from serialization and deserialization, as
well as any TCP induced overhead, but we do not have any additional latency, as the data
never leaves the machine. To measure a more realistic scenario, we are also measuring the
performance, using a channel server hosted on Amazon EC2.

The experiments are performed on a MacBook Pro with a 2.8 Ghz Intel 17, running OSX
10.11.5 and a 64bit Mono version 4.2.1.102. The Amazon EC2 server is running Ubuntu
14.04.3 LTS on an Amazon t2.micro instance located in the eu-west-1 region, and has Mono
4.2.3 installed. During the experiments, the round-trip time to the Amazon server was mea-
sured continuously and remained around 45 milliseconds, with minor spikes measuring up to
2000 milliseconds.

The measurements presented here only compare one setup of CoCoL with another, and
this shows significant performance differences. We have not performed compareable mea-
surements with existing libraries, such as JCSP and PyCSP, as the current CoCoL network
implementation is too rudimentary to be compared to the more feature complete libraries.

3.1. CommsTime

For the first experiment, we use the classical CSP benchmark CommsTime. In CommsTime,
a single data item, is passed around in a ring with a delta process both forwarding the data,
and simultaneously emitting a value that can be measured in an external process and thus time
the network. To further measure the overhead in the network, and compare it to the overhead
with local channels, we measure a baseline setup where no channels are network-based. On
the test machine, we measure this communication time to be 33 microseconds per channel
communication.

3.1.1. Commstime With a Single Network Channel

To measure the overhead introduced by the network channel implementation, we use a setup,
where one channel in the delta process, the one emitting to the counter, is network based. We
first run this setup using a locally hosted channel server, communication over the loopback
adapter, and obtain the results in Figure 2. For this run, we can conclude that the computation
overhead is rather large, 444 microseconds, which is approximately 15 times larger than the

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

112 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

non-network based channel. As the buffers do not influence the communcation time, we can
conclude that the overhead is not caused by the communication latency, but is caused by
computation.

We then repeat the same setup, but with a channel server hosted on Amazon EC2. As
shown in Figure 3, and as expected, the overhead for this is much larger, 33100 microseconds,
as we now need to add the network latency as well. However, since the latency is essentially
idle time, we can utilize the wait time better by keeping in-flight requests as explained in
section 2.5. At the measured 45 milliseconds round-trip time, we obtain a linear speedup by
increasing the buffer size until we have around 100 in-flight requests. At this point we are
down to a communication overhead of 225 microseconds, or approximately 13 times slower
than the non-network based channel. Interestingly, this is even faster than the setup where we
host the channel server locally. This can be explained by the fact that parts of the overhead
is in serializing and deserializing the packages, which is now performed on two different
machines. During the tests we also observed the CPU utilization on both the local and the
remote machine and observed an increasing CPU usage on both as we increase the buffer
size. With the measurements for buffer sizes 100 and 200, we observed that the remote server
was utilizing 100% of the CPU resources, indicating that we could possibly obtain better
results if we upgrade the channel server.

Tick channel using loopback network Tick channel using remote channel server
600 - 35000

c i<l

-,% 500 5 30000

Q '€ 25000

S 400 3

£ E 20000

% 300 3 15000

< 200 floooo

n el

E 100 § 5000

g o 2 0

g 0 1 2 3 4 5 50 _g 01 2 3 4 5 6 7 8 9 10 20 30 40 50100200

s Channel buffer size = Channel buffer size
Figure 2. Communication time for a single net- Figure 3. Communication time for a single net-
work-based channel with a channel server on the work-based channel with a channel server on an-
same machine. other machine.

3.1.2. CommsTime With Multiple Network Channels

To further explore the overhead in the network implementation, we ran the CommsTime
benchmark with all channels being network channels. For the first setup, shown in Figure 4,
we used a channel server that was hosted locally. For the second setup, shown in Figure 5, we
used the channel server hosted at Amazon. We observe that we obtain a significantly higher
communication time, 1632 microseconds and 104100 microseconds for local and remote
respectively, corresponding to approximately 50 and 3000 times slower than the non-network
channel. As we expect from the results with only a single network channel, we cannot obtain
speedup with buffering in the case where the channel server is hosted locally. Interestingly,
we can see that it is not possible to obtain speedups in the case where the channel server is
placed on a remote server either. This happens because there it is not possible to progress,
as each process in the ring depends on the previous. When it is only the tick channel that is
network based, the ring can continue to communicate and it will write messages to the tick
channel without waiting for completion, but when all processes are pending, we cannot send
write messages faster, as the ring is blocked.

3.1.3. CommsTime With Alternation

To evaluate the effect of the two-phase commit overhead, we repeat the CommsTime exper-
iment where the measurement channel is network based, but add an artificial two-phase in-

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 113

All channels using loopback network All channels using remote channel server

- 1800 - 160000

S -2 140000

g 1750 g 120000

2 1700 2 100000

g g 80000

© 1650 t 60000

o 2 40000

-51600 g 20000

1550 b4 0

g 0 1 2 3 4 5 50 g 0 10 20 30 40 50

s Channel buffer size s Channel buffer size
Figure 4. Communication time for all net- Figure 5. Communication time for all net-
work-based channels with a channel server on the work-based channels with a channel server on an-
same machine. other machine.

Table 2. Communication time for an 8x4 fair alternation.

Setup Microseconds pr read Overhead factor
Non-networked 75 1
Local channelserver 15258 203
Remote channelserver 120193 1603

stance when reading from the channel. Again we vary the buffer size to evaluate how much
of the latency overhead can be hidden. By comparing Figure 2 with Figure 6 we can observe
that the alternation doubles the delay, which is to be expected as the two-phase commit pro-
cess sends a separate request/response pair. In Figure 7 we can observe that this extra com-
munication also prevents the write buffer from achieving the same speedup as we observed

in Figure 3.
Alternation using loopback network Alternation using remote channel server
c 200 < 50000
5 780 '3 40000
S 760]
£ 30000
g 740 £
8 720 ? 20000
2 700 =
8 € 10000
< 680 5
3 S
2 660 2 0
8 8
‘g 0 1 2 3 4 5 10 20 S 0 1 2 3 4 5 10 20
2 Channel buffer size = Channel buffer size
Figure 6. Communication time for alternation Figure 7. Communication time for alternation
with a channel server on the same machine. with a channel server on another machine.

3.2. StressedAlt

Another classic CSP benchmark is StressedAlt, where a single reader is bombarded with write
requests from a set of writers. To further complicate matters, the reader uses fair alternation
meaning that it will choose which of the potential channels to read in a round-robin fashion.
This means that all reads use a shared two-phase commit to ensure that the reads are per-
formed in a fair manner. We ran the example with the shared channel as a non-networked
version, as well as with a local channel server and a remote. With fair alternation, we are
not able to use buffers, because we do not know which channel is the next fair choice, un-
til after we have read. The results for running a small example with 8 channels and 4 writ-
ers are shown in Table 2, and indicates that there is a large amount of overhead involved in
performing priority alternation over a network channel.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

114 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

3.3. Mandelbrot

For the Mandelbrot benchmark we use a simple approach, where a process is spawned for
each pixel in the resulting image. This has the benefit that each process will attempt to write
the shared result channel, and thus create the same situation as would be provided by the
buffer approach described in section 2.5, without explicitly designing for it. The reading end,
on the other hand, is equipped with a buffer that reads ahead of time, to hide the latency.
Consistent with the other results, we can observe in Figure 8 that it is not possible to hide
the processing overhead with buffers when we are using a local server. As we observed in
Figure 3, it is possible to hide some latency when the channel is on a remote server, and we
can observe the same tendency in Figure 9. If we run the same setup with non-networked
channels, we obtain that each pixel takes 55 microseconds to compute, and we can compare
to the best result for a local channel, 2007 microseconds, and the best result for a remote
channel, 1019 microseconds. Again, the remote server handles half of the overhead related
to serialization and deserialization, and thus the remote setup is faster when we hide the
communication latency with buffers.

Mandelbrot using loopback network Mandelbrot using remote channel server
3000 90000
- - 80000
£ 2500 £ 70000
52000 S 60000
8 8 50000
15 1500 "25x25 20000 "25x25
% 1000 50%50 g 30000 50x50
& S 20000
S 500 100x100 S 10000 I I I 100x100
0 0 W e = =
0 1 2 3 4 5 10 50 100 200 0 1 2 3 4 5 10 50 100 200
Buffer size Buffer size
Figure 8. Communication time for Mandelbrot Figure 9. Communication time for Mandelbrot
rendering with a channel server on the same ma- rendering with a channel server on another ma-
chine. chine.

4. Future Work

From the results presented in section 3, we know that some setups can execute efficiently
over a network, but requires the use of buffers. We would like to add additional features,
that enable the programmer to achieve such results in more setups. Beyond that, the network
channel implementation is lacking many desirable features.

4.1. Error Handling

In the current implementation there is no handling of network errors; we expect the channel
server to be available and responding, and assume that the clients do not crash or drop the
connection. Supporting such scenarios is not an infeasible task, but since we cannot distin-
guish between a crash or a network outage, we need a clear definition of what the correct
response to a failed communication event would be. A similar mechanism could be used to
provide timeout handling in cases where the client or server is not responding.

4.2. Name Server

In more realistic scenarios than the ones we experimented with here, it is very likely that the
channel server will be a bottleneck, impeding overall performance of a distributed system.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library 115

To solve this, we intend to add a name server, similar to the one found in JCSP. The name
server will be responsible for choosing which channel server will host a given channel. Each
channel server can report usage hints back to the name server, such that channels can be
re-assigned to other channel servers if that appears to be beneficial.

This multi-tier setup makes it easier to scale to very large installations, as the name server
only serves an advisory role after the network has been established, and the channel server
instances can be scaled to fit the load. For very large instances, the name server can also be
distributed, provided that the name server instances can guarantee that the same channel is
not assigned to multiple hosts.

4.3. Transaction Logs

To provide resilience in the face of errors, we would like to investigate use of transaction
logs to allow repeats of failed operations. The general idea is to write to a persistent medium
prior to sending a message onto the network, and then write again after the message has been
sent. Should the instance crash during the operation, it is possible to read the transaction
log, and see which messages should be retransmitted. The recipient then needs to handle
receiving the same message twice, and the system would be resilient to crashes, provided that
the transaction logs are stored on durable media.

With transaction logs, it should be possible to start a process, inject messages, shut down
the process, and at some later time start the process and resume participation in the network.

5. Conclusion

In this paper we have described the most recent additions to CoCoL, comprising a number
of features for writing more concise, correct and encapsulated programs, as well as the ad-
dition of a basic network-enabled channel. The experiments we present show that the two-
phase commit approach to alternation is a viable approach, but requires some work to achieve
optimal performance.

All source code, including the benchmarks, can be found on the project website [14].

Acknowledgements

The authors would like to thank the anonymous reviewers, as well as the editors, for their
helpful comments

References

[1] Kenneth Skovhede and Brian Vinter. CoCoL: Concurrent communications library. In Communicating
Process Architectures, 2015.

[2] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-53271-
5.

[3] Peter H Welch, Neil CC Brown, James Moores, Kevin Chalmers, and Bernhard HC Sputh. Integrating and
extending jesp. Communicating Process Architectures, 65:349-370, 2007.

[4] Neil C. C. Brown. C++CSP2: A Many-to-Many Threading Model for Multicore Architectures. In Alis-
tair A. McEwan, Wilson Ifill, and Peter H. Welch, editors, Communicating Process Architectures, pages
183-205, jul 2007.

[5] Jan B. Pedersen and Andreas Stefik. Towards millions of processes on the JVM. In Communicating
Process Architectures, 2014.

[6] Butler Lampson and Howard Sturgis. Crash recovery in a distributed data storage system. Xerox Palo
Alto Research Center Palo Alto, California, 1979.

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

116 K. Skovhede and B. Vinter / Extensions to the Concurrent Communications Library

[7] John Markus Bjgrndalen, Brian Vinter, and Otto J Anshus. PyCSP-communicating sequential processes
for python. In Communicating Process Architectures, pages 229-248, 2007.
[8] Brian Vinter, John Markus Bjgrndalen, and Rune Mgllegaard Friborg. PyCSP revisited. In Communicating
Process Architectures, pages 263-276, 2009.
[9] Bernhard HC Sputh and Alastair R Allen. JCSP-Poison: Safe termination of CSP process networks. In
Communicating Process Architectures, volume 63, pages 71-107, 2005.
[10] John Hughes. Why functional programming matters. The computer journal, 32(2):98-107, 1989.
[11] Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. Facile: A symmetric integration of concurrent
and functional programming. International Journal of Parallel Programming, 18(2):121-160, 1989.
[12] Charles Antony Richard Hoare and He Jifeng. Unifying theories of programming, volume 14. Prentice
Hall Englewood Cliffs, 1998.
[13] Rune Mgllegaard Friborg and Brian Vinter. Verification of a dynamic channel model using the SPIN
model checker. In Communicating Process Architectures, pages 35-54, 2011.
[14] K. Skovhede. Cocol source code. https://github.com/kenkendk/cocol. [Online; accessed June
2016].

CPA 2016 preprint — the proceedings version may have other page numbers and may have minor differences.

