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Broadcasting in CSP-Style
Programming
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Abstract. While CSP-only models process-to-process rendezvous-style message
passing, all newer CSP-type programming libraries offer more powerful mech-
anisms, such as buffered channels, and multiple receivers, and even multiple
senders, on a single channel. This work investigates the possible variations of a
one-to-all, broadcasting, channel. We discuss the different semantic meanings
of broadcasting and show three different possible solutions for adding broad-
casting to CSP-style programming.
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Introduction

The concept of broadcasting — emitting a message from one process and receiving in all
other processes in a group — has been debated in [1] and [2]. The work on Synchronous
Message Exchange, SME [3] stems from a lack of broadcasting in CSP. In this work the
authors will seek to establish the meaning of broadcasting and the possible benefit of
a broadcast mechanism in CSP-style programming.

Perhaps the easiest way to introduce the meaning of a broadcast mechanism is
to compare it with the well established one-to-any or any-to-any mechanism which all
modern CSP-style libraries offer [4,5,6,7]. With the any-to-any channel a message sent
by one process is delivered to any process that is ready to receive. Neither one-to-any
nor any-to-any channels are part of the CSP-theory, however they can be emulated using
multiple channels [8]. Contrarily a broadcast would be a one-to-all/any-to-all operation
where every receiving process on the channel would get a copy of the message. Figure 1a
and 1b seek to sketch the difference between a to-any and a to-all send operation.

P0

P2P1 P3

(a) With the one-to-any model a message
ends up at one process in the group

P0

P2P1 P3

(b) The one-to-all delivers the message to
all members of the group.

Figure 1. One-to-any and one-to-all communication.

Broadcasting is a common feature in message based parallel programming libraries,
such as MPI [9] and PVM [10]. The need for broadcasting stems from algorithms that
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need global synchronization. Broadcast may be used directly, that is for distributing a
new global bound value in a parallel branch-and-bound algorithm, or it may be used
in combination with a reduction, that is for determining the global change in a system
after an iteration in a converging algorithm.

In SME, broadcasts were needed for a set of processes to all know a given value for
the next simulated time-step, that is as a stand-alone broadcast. The use of reductions
followed by a broadcast is mostly known in performance oriented parallel programs,
though applications in the concurrency domain should not be entirely ignored. This
work however, only investigates the feasibility of a pure broadcasting mechanism in a
CSP-style library.

1. Broadcasting

Broadcasting as a concept appears deceptively simple however, several variations exists
that have a slightly different semantics. Fundamentally broadcasting is based on phys-
ical broadcasts, that is a sender transmits a message for anybody to receive, as shown
in Figure 2.

P0 P1

Figure 2. Physical broadcast mechanism.

We may define simple broadcast as the basic mechanism shown in Figure 2; one pro-
cess may broadcast, any other process may receive. Thus, the simple broadcast mecha-
nism has no delivery guarantee, a broadcast that is received by no process is still de-
fined as a correct broadcast. Such a broadcast mechanism is of little use in real-world
scenarios, and is thus often not provided. UDP/IP datagrams may be broadcast and if
so it is done as simple broadcast, that is any layer in the network stack may choose to
not propagate the broadcast. The only guarantee that the simple broadcast provides is
message integrity, that is the message is either delivered in full and as originally sent,
or not at all.

Simple broadcast may be improved to be a reliable broadcast. A reliable broadcast
mechanism has the added semantics that when a message is broadcasted, all processes
must receive a correct version of that message. Reliable broadcast does not guarantee
any ordering, that is two concurrent broadcasts by two different processes may be re-
ceived in different order by different processes in the system. While reliable broadcast-
ing may be physically intuitive, as sketched in Figure 3, the lack of total ordering is
still a limitation that makes programming harder in various cases.

Msg A Msg B
Msg A
Msg B

P0

Msg B
Msg A

P1

Figure 3. Two senders transmits messages A and B at the same time, because of physical proximity
process zero will receive the messages in the order A then B, while process one will receive them in
the order B then A. This is still a correct reliable broadcast.

An example where reliable broadcast is not sufficient is described as follows: a
system consists of a set of fire detectors, fire alarms, and control boards. Imagine that
a detector, A, detects a false fire, that is a forgotten toaster, the person using the
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toaster immediately cancels the alarm using the control board A′, but then another fire
detector, B, detects a real alarm. If the broadcast message from B is received before
the cancelation from A′ then a non-counting alarm would falsely turn off, even though
a fire was indeed spreading.

Reliable broadcasting may be further improved upon to guarantee total ordering;
this type of broadcast is known as atomic broadcast. In the atomic broadcast all broad-
casts are received by all processes, and in the same order. This also implies that a pro-
cess that has failed, that is been unable to receive for some reason, cannot recover, but
must leave the system and, if possible, rejoin. If a system implements atomic broadcasts
the two processes in Figure 3 will agree on which order the messages A and B are
received. Whether they are received as A then B or as B then A is still not defined,
only that all processes will receive them in the same order.

A fourth broadcast mechanism which is well researched is the causal broadcast [11].
In this model a broadcast message B cannot be delivered to a receiver ahead of another
message, A, if message A was received by the broadcaster of message B prior to that
broadcast. Causal broadcasts however, has turned out to be very complex to implement
and harder to work with than atomic broadcasts, thus we will not investigate causal
broadcasts in this work.

Apart from delivery guarantees and message order broadcasts may be defined as
synchronous or not. A synchronous broadcast will only be delivered to a receiver once all
receivers are ready to receive, while an asynchronous delivery simply guarantees either
reliable or atomic broadcasts. In distributed systems synchronous broadcasts are not
available in any widespread libraries as the message cost becomes prohibitive, but in a
CSP-library context a synchronous broadcast could be more efficiently implemented.

Finally, conventional broadcast literature differentiates between broadcasts in open
and closed groups [12]. Open group broadcast means that a process, which is not on
the list of recipients may still broadcast a message to the group, while closed group
broadcasts require the sender to be a member of the recipient group.

2. Broadcasting in Message Passing Systems

2.1. Parallel Virtual Machines

The Parallel Virtual Machines library, PVM, supports group communication from ver-
sion 3. Since PVM has a rather low level approach to message passing messages must
first be packed into a message buffer and can then be broadcast to a group. The below
example in listing 1, adapted from the PVM man page, packs 10 integers from a variable
called array and then broadcasts the values, using the tag 42 to a group of processes,
called tasks in PVM, named worker.

info = pvm_initsend(PvmDataRaw );

info = pvm_pkint(array , 10, 1);

info = pvm_bcast("worker", 42);

Listing 1. PVM broadcast sender.

The receiver will then have to issue an ordinary receive and then unpack the data
as shown below in listing 2.

buf_id = pvm_recv (&tid , &tag)

info = pvm_upkint(array , 10, 1)

Listing 2. PVM broadcast receiver.
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In PVM the messages are received by the individual recipients as ordinary messages.
PVM broadcasts are open group and provides only reliable broadcasts. In addition to
the broadcast operation PVM also provides a multicast operation where a group is
dynamically created from a list of recipients.

2.2. Message Passing Interface

Message Passing Interface, MPI, manages broadcasts rather differently than PVM.
Groups are defined as subgroups of the overall set of processes, called MPI COMM WORLD.
Message contents is defined like ordinary point-to-point messages, and addressing is
simply to a subgroup. The major difference from PVM is that the broadcast is issued by
all participants in the group, and a parameter in the broadcast specifies which process
is the sending and all others are then receivers. This approach means that broadcasting
in MPI is in closed groups only. A ten integer dense array broadcast example, from
process zero to all other processes in the program, then looks as below in listing 3.

result = MPI_Bcast(data , 10, MPI_Int , 0, MPI_COMM_WORLD)

Listing 3. MPI broadcast.

3. Models for Broadcasting in CSP

From the existing systems that features a broadcast method, it is clear that such a
mechanism has a use and this would be interesting to provide in a CSP-style library
as well. Merging broadcast with CSP-semantics is not trivial, however, as we have
previously shown in the SME work [3]. In this section we sketch the various broadcast
styles one may imagine for CSP, and try to evaluate their feasibility for CSP.

3.1. Broadcast Messages

The simplest approach would be to introduce a broadcast message command,
channel.bcast(msg), similar to the semantics in PVM. With this approach, the li-
brary has to know about all processes that holds a reading end of the channel and then
relay the message to each such process as they issue read commands from the channel.
This approach raises a set of difficulties however; CSP dictates that the broadcast op-
eration does not return until after the operation has finished, that is when all processes
has received the message that was broadcast. However, it is not intuitive what should
happen to the channel while the broadcast completes, if we require the channel to be
blocked until the message is received everywhere then deadlocks may arise as other
processes may have agreed to exchange a point-to-point message on the channel. If,
on the other hand, we do not freeze the channel while the broadcast completes, other
patterns that are non-intuitive may occur. If one process, that holds a receiving end
of a channel, never issues a read on that channel then the channel will require infi-
nite buffer-capacity to remain functional. A broadcast may be received by all but one
process, and other messages have been passed as point-to-point afterwards, but if the
last process then terminates, the broadcast has never truly been completed and the
meaning of a broadcast becomes weaker.

An emulation of a broadcast message could be implemented as in Figure 4. This
näıve network, and the theory behind, will be discussed in the next sections.
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Figure 4. A näıve network for emulating synchronous broadcasting in CSP.

3.2. Mailboxes

A slightly more complex approach would be to introduce a mailbox system, similar
to mailboxes as they are found in Erlang, but with a subscription service so that a
set of processes can read the same message. A mailbox model is very intuitive for a
programmer to comprehend; a message is sent to a central position and all processes
may read it. However, this model does not include any synchronization as a CSP-
style programmer would expect. If the model is extended to synchronize — either by
announcing to the sender when all processes have read the message, or by introducing
a fully synchronous model — then the mailbox model is identical to the broadcast
message as described above.

A network using mailboxes for broadcast is shown in section 3.4.

3.3. Broadcast channels

A third approach to CSP-style broadcasting is to introduce dedicated broadcast chan-
nels. Such a broadcast channel has semantics that are identical to the synchronous
broadcast message in the first scenario. The difference is that with a broadcasting
channel there are no point-to-point messages that may be interleaved with broadcasts.
This way the deadlock scenario from the broadcast message cannot occur, the channel
provides synchronized communication as a point-to-point channel and may be used in
guarded expressions just as an ordinary channel.

The downside of this approach is that programmers must use another type of
channel. In JCSP this inconvenience is small as there is by design a large number of
channel types, in PyCSP the change is more radical as the single channel type must be
abandoned.
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3.4. Broadcast in CSP-theory

In the following section, primed processes (i.e. S ′) will be used to show that the process
can live on afterwards.

Emulating broadcast channel in CSP-theory can be done with n processes. Here S
can broadcast a message to all of P0..n:

S = m!x → S ′

Pi = m?x → P ′
i

S ‖
(

n

‖
i=0

Pi

)

However, this is possible only, if we disregard the fact, that only two processes are
allowed to communicate with each other at a given time according to Hoare CSP [13].

If we instead want to broadcast, but adhere to the original theory, we have to do
something else. We will create a network of processes, where S will act as sender, Bc

will act as a broadcast controller and P0..n will be receivers. They will pass messages
using a two-phase commit protocol.

S = m!x → mack → S ′

Bc = m?x →
( n

|||
i=0

ci!x → ci,ack → X
)

; mack → B′
c

Pi = ci?x → ci,ack → P ′
i

S ‖ Bc ‖
(

n

‖
i=0

Pi

)

Looking at the system with FDR [14] in Listing 4 we see that it is deadlock free.
A trace were verified where the message was received out-of-order.

N = 3

PNAMES = {0..N-1}

MSG = {"MSG"}

channel mack

channel m:MSG

channel cack:PNAMES

channel c:PNAMES.MSG

S(x) = m!x -> mack -> S(x)

B = m?x -> (||| i:PNAMES @ c.i!x -> cack.i -> SKIP) ; mack -> B

P(i) = c.i?x -> cack.i -> P(i)

SYSTEM(x) = S(x) [|{|m, mack |}|]

(B [|{|c, cack |}|] || i:PNAMES @[{|cack , c.i|}] P(i))

assert SYSTEM("MSG") :[ deadlock free [F]]
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assert SYSTEM("MSG") \ {|m, mack , cack|}

:[has trace [T]]: <c.0."MSG", c.1."MSG", c.2."MSG">

Listing 4. FDR3 verified Broadcasting CSP-system.

This of course means that the broadcast controller must know how many receivers
there are present in the system and be able to pass messages to all of them on their
respective channels.

If we want to allow all processes to be the writer at a given time, we can model
this as alternation on the communication:

Pi =
(
ci!x → ci,ack → P ′

i

)
�
(
ci?x → ci,ack → P ′′

i (x)
)

Bc =
n

�
i=0

(
ci?x →

(
n

‖
j=0
j 6=i

cj!x → cj,ack → X
)

; ci,ack → B′
c

)

Bc ‖
(

n

‖
i=0

Pi

)

Here all the processes either write on their channel or read from their shared channel
with Bc.

The equivalent mailboxing scenario can be made with a mailbox process for each
receiving process. Here the writer will be able to continue, once all mailboxes have
ack’ed back that they have received the message:

S = b!x → back → S

B = b?x →
( n

|||
i=0

mi!x → mi,ack → X
)

; back → B

Mi(x : xs) =
(
mi?y → mi,ack → Mi(x : xs : y)

)
�
(
ci!x → ci,ack → Mi(xs)

)

Pi = ci?x → ci,ack → Pi

S ‖ B ‖
(

n

‖
i=0

Mi(∅) ‖ Pi

)

where : means cons and x : xs is the head and tail of the message list. If one does
not need the guarantee on each mailbox having received the message, the ack steps
can be omitted. This has been tested with FDR and found to be deadlock free. A trace
was also found with each process having received the message.

The mailboxing works for arbitrarily big buffers; in Listing 5 it is shown with a
buffer size of 5.

N = 3

MAXBUFFER = 5

PNAMES = {0..N-1}

MSG = {"MSG"}
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channel back

channel b:MSG

channel cack , mack:PNAMES

channel c, m:PNAMES.MSG

S(x) = b!x -> back -> S(x)

B = b?x -> (||| i:PNAMES @ m.i!x -> mack.i -> SKIP) ; back -> B

M(i, <>) = m.i?y -> mack.i -> M(i, <y>)

M(i, xss) = if #xss > MAXBUFFER then Ml(i, xss) else Ms(i, xss)

Ml(i, <x>^xs) = c.i!x -> cack.i -> M(i, xs)

Ms(i, xss) = Ml(i, xss) [] (m.i?y -> mack.i -> M(i, xss^<y>))

P(i) = c.i?x -> cack.i -> P(i)

MAILBOX = ||| i:PNAMES @ M(i, <>)

RECV = ||| i:PNAMES @ P(i)

COMM(x) = S(x) [|{|b, back |}|] B

SYSTEM(x) = (COMM(x) [|{|m, mack |}|] MAILBOX) [|{|c, cack |}|] RECV

assert SYSTEM("MSG") :[ deadlock free [F]]

assert SYSTEM("MSG") \ {|b, back , m, mack , cack|}

:[has trace [T]]: <c.1."MSG", c.0."MSG", c.2."MSG">

Listing 5. FDR3 verified Mailboxing CSP-system.

4. Related work

Both JCSP [1] (Java Communicating Sequential Processes) and CHP [2] (Communi-
cating Haskell Processes) offers a form of broadcast channel. In the former, a “one-to-
many” channel is implemented. This must know the number of readers when initialized,
and works by having two barriers, one before read and one after, so that all readers are
done reading, before the writer is released. The latter is implemented in a similar way,
where each reader enrolls to receive the same value from a single writer.

5. Conclusion

Broadcasting in CSP-style has been frequently discussed, and in the SME work replaced
by a bus-style channel [15]. While adding broadcasting to CSP-style programming ap-
pears appealing and straight forward it has yet not been added to any CSP-style library.
In this work we have outlined three approaches to adding broadcasting to CSP, and
concluded that while they are all possible, only the explicit broadcasting channel is able
to provide what the authors consider a CSP-style behavior and the common expected
functionality of a broadcast operation. The need for broadcasting in CSP-style libraries
is still an issue that must be investigated further, it is not obvious that broadcasting
has a general use in application where CSP is commonly used, but might be reserved
for fore traditional HPC style applications.
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