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High Performance Tape Streaming in Tapr

Klaus Birkelund JENSEN 1 and Brian VINTER

Niels Bohr Institute, University of Copenhagen, Denmark

Abstract. In this paper we describe the design and implementation of the Tapr high
performance tape streaming system. Tapr consists of a number of basic processes in-
teracting though message passing on CSP-style communications channels. The system
is highly concurrent, uses synchronous as well as asynchronous coordination with-
out the need for complex usage of traditional locks. The system scales to and beyond
contemporary enterprise so-called automated tape libraries by representing each and
every part of the tape library as a communicating process. This includes the robot
changer, each tape drive, all clients and even the loaded tape media.

We show how such an implementation can be done in the Go programming lan-
guage with relative ease by utilizing the concurrency primitives included in the base
language. We also describe how complex cancellation and timeout handling can be
handled directly in the language by using the concept of a surrounding context.

Finally, we present a number of benchmarks designed to show that the communicat-
ing process architecture does not impose any measurable overhead, but rather allows
the system to scale to a high number of clients and devices using a simple and intuitive
process-based design.

Keywords. communicating process architectures, data streaming, high-performance
systems

Introduction

The use of magnetic tape for long-term archiving of data has been used in decades, an ex-
ample being at CERN, where the CASTOR [1] system uses tape to archive data from experi-
ments. The core tape technology has not changed much, but the LTO consortium has pushed
out many iterations of the Linear Tape-Open (LTO) technology [2]. LTO is an open standard
developed in the late 90s and is backed by the largest magnetic tape providers including IBM,
HP and Quantum. The standard describes characteristics such as form-factor, capacity, wraps
per band, tracks per wrap etc. The newest standard, LTO-7, has 6 TB native data capacity [3]
and consists of almost 1000 meters of tape fabric.

While tapes, drives and necessary drivers are generally available, the software needed
to operate these devices are dominated by proprietary products and a few freely available
open source products; Bacula [4], its fork Bareos [5] and Amanda [6]. Bacula and Bareos
are focused on differential and incremental backup and does not include simple archival
functionality.

The proprietary products are in general a lot more advanced and geared towards the en-
terprise market. The most well known of these are IBM Spectrum Protect [7] (formerly IBM
Tivoli Storage Manager) and Veritas NetBackup [8]. The state of available software for pure
archival use prompted us to develop a new contender, Tapr, the design and implementation
of which we will describe in this paper as well as the current state of the software.
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1. Background

Because tape media are sequential in nature a number of challenges presents themselves. The
largest challenge is the sequential nature in itself. To locate data on the media, costly seeks
must be performed. Scanning through all data on the tape is complicated by the physical
characteristics of the medium. An LTO-6 tape consists of four bands of 846 meters, each with
34 “wraps.” The bands are contained on a single spool and written in a serpentine manner.
This means the tape must make 136 end-to-end passes to fill the tape. Each time the tape
reaches either the beginning or end of the tape it must slow down, stop, and then accelerate in
the opposite direction. At full speed, and LTO-6 tape can write up to 160 MB/s. LTO allows
the tape to run at various speeds to match the incoming data rate, limiting the wear-and-tear
caused by the so-called ”shoe-shine effect” that many older tape technologies suffer from.
Shoe-shining happens when data cannot be delivered to the drive fast enough. When the tape
runs out of input data at position A it must stop and reverse the tape to some position B < A.
When data is again ready it must accelerate from position B and then start writing when
reaching position A. While LTO handles this issue better, the drive and tape works best when
running at the highest speed.

Keeping the tape at the highest speed requires special handling of slow writers, either by
buffering (or staging) large amounts of data on disk or in memory before flushing it to tape.
Another more efficient approach is to multiplex multiple writers onto the same tape [9] if the
sum of data rates from all clients is larger than or equal to the maximum data rate of the drive.

1.1. The Automated Tape Library

Automated tape libraries are still used in many settings in enterprise as well as scientific
communities with CERN being the obvious large-scale example. An automated tape library
consists of one or more auto-changers or robots, which move media in the form of tapes
around between storage slots and tape drives. When perceived as a single unit, the bandwidth
of and concurrency provided by the automated tape library is directly related to the number
of drives in the unit — and to a lesser degree, the number of auto changers.

Interaction with the tape library is done through low-level SCSI-commands with each
drive being represented as a device file in UNIX-like operating systems. The auto changer
is typically represented as either /dev/changer or another generic SCSI device file name.
This device is used to query the library about the inventory and execute operations such as
transferring a volume from a storage slot to another slot. On Linux and UNIX this is typically
done through the use of the Media Changer Tools or MTX [10]. In Tapr, we use these tools
directly to operate the changer instead of using the error-prone and potentially dangerous
application of low-level SCSI commands.

1.2. Storage

Interaction with tape drives is also done through the SCSI interface On Linux and UNIX
specifically through the st(4) SCSI tape driver and controlled through the ioctl(2) system
call. The drive is represented as a character device (different from hard drives that are block
devices) and can be opened, written to or read from and closed as any other file. Traditionally
there is no file system, but the tape supports file marks. These are special marks on the tape
that allow tools like mt(1) to seek to the beginning of the next or previous file or record. This
lack of standardisation have caused the different tape systems to be incompatible with each
other and they all implement their own storage strategy on the tape. tar(1), the tape archiver,
first appearing in Version 7 AT&T UNIX in 1979 [11], was not standardized until 1988 and
even then, different operating system could have subtle differences in the tar archive format.
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Because of that, we have chosen to use LTFS, the Linear Tape File System [12]. Pri-
marily developed by IBM and introduced with the LTO-5 tapes and drives, LTFS consists
of a user-space application that allows a tape to be mounted as a regular POSIX file system
through FUSE [13], complete with directories and files. The file system is standardised and
all the major LTO vendors provides a version of LTFS that is optimized for their hardware.
Because the tape is formatted with a file system it becomes self-describing such that all stored
files can easily be recovered if the tape can be mounted on a system that support LTFS. While
the use of FUSE introduces a bit of overhead, we have not had any problems with reaching
the maximum data rate on tapes. LTFS makes it vastly simpler to work with magnetic tapes
because it supports the use of regular POSIX tools such as cp(1), mv(1) and rm(1). The ref-
erence implementation of LTFS is open source and available from IBM. In our case, we use
a version modified by Oracle [14] because our experimental setup uses Oracle hardware. In
addition to this open source version, the major vendors also have proprietary Library Edi-
tions [15] that allows an entire automated library to be viewed as one big file system, with
the volumes automatically being loaded and unloaded as users traverse the file system.

1.2.1. Partitions

An LTFS formatted volume is partitioned in two. The first index partition is located at the
beginning of the tape and holds the index of where files and folders are located on the tape.
This means that a volume can be mounted and the contents quickly listed without scanning
through the entire volume. This is an advantage because moving through an entire LTO-7
tape takes around 100-110 seconds [16].

The second partition holds the data and is append-only. Thus, file deletions or modifi-
cations always writes to the end of the tape and the index is simply updated. This implicitly
makes LTFS a versioned file system and the tape can be restored to any point in time by
loading an older index. The index partition is also append-only, so it essentially functions
as a copy-on-write data structure. For efficiency reasons and to limit tape wear-and-tear due
to excessive seeking, the index is generally held in memory and written subject to a policy.
The current reference implementation includes three policies: a time-based policy, where the
index is written every n minutes, a policy where the index is written every time a file is closed
and finally a policy where the index is only written when the file system is unmounted. In
Tapr, we use the unmount policy for efficiency reasons. Note, that if power should fail while
the tape is mounted, a utility tool ltfscheck can scan the volume and update the index.

2. System Description

For a large-scale tape library to be effectively used for long-term archiving of data streams,
there are some requirements.

• A minimum of two drives dedicated for writing. This requirement stems from the
relatively large mount/unmount duration of tapes. In an automated library, the robot
must first unmount the tape from a drive and return it to its storage slot. Before this
can be done, the tape must also rewind and be ejected from the drive. Then, a new
so-called “scratch” volume must be located and moved from its storage slot to the
drive. The tape is then made ready for writing by the drive. This whole process may
take minutes, but this latency can easily be hidden by having a another drive with a
scratch volume ready to take over the stream. This requires that Tapr be able to handle
multiple drives, and an automated library in general.

• Enough data to keep the drive at high speed. LTO drives have the ability to control
the speed of the mounted tape, but to keep it at maximum bandwidth, the system
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must be able to deliver enough data to the drive. The easiest way to achieve this, is to
interleave writes from multiple streams.

• Disaster recovery management. As a long-term archiving system, Tapr should in-
clude some form of disaster recovery. Databases may be lost or media may be shuffled
and repositioned in the library. These inconsistencies must be handled and managed
properly.

• An extensible client API. Because Tapr is intended to be used as a storage solution
for many different types of I/O systems, the interface to the system should be easily
extendible and adaptable for whatever setting it is used in. Currently, we have only
implemented an HTTP/2 API, but the component is completely disjoint from the rest
of the server code, so other interfaced can be added easily. Another valuable interface
is a FUSE layer similar to what is provided by the proprietary solutions discussed in
Section 1.2 that allows easy navigation of the files in the entire library.

• Scalable. Tapr must be designed as highly scalable and concurrent. It relies on rep-
resenting all objects in the tape system as communicating processes. This includes
the media changer, the drives and even the volumes themselves. There is not a sin-
gle mutex exposed in the code, though the underlying runtime naturally makes use of
them.

These requirements make Tapr suitable for use in many settings and by requiring a scal-
able base, it allows the system to manage today’s libraries consisting of hundreds tape drives
and tens-of-thousands of storage slots. Figure 1 shows the overall design that we propose.

storage slots

drive A

drive Bchanger

Automated library

Tapr

server/maintenance
processes

inventory process

drive, writer,
changer processes

SCSI

SCSI
SCSI

API

create
process

I/O clients

relational
database

Figure 1. Overview of the Tapr design. The system and maintenance processes communicate with the other
processes in the system and acts as coordinators when needed.

In this section we will keep the discussion on a theoretical level of abstraction. While Go
is often discussed in the context of CSP [17], it has more in common with the π-calculus [18]
and this discussion uses the concept of named channels in addition to communicating pro-
cesses.

The different processes in Tapr communicate using channels. The channels are used in
two different ways. Firstly the channels are used for communication in the form of requests
with replies if necessary. Secondly they are used as a means to achieve streaming mechanics
without explicit replies. The channels are unbuffered and communicating on one requires a
ready sender and receiver for the processes to proceed.
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2.1. The Primary Communicating Processes

The design includes three main types of communicating processes. Their purpose and basic
behaviour is described below.

Clients Each client is represented as a process. It is responsible for reading from the network,
assembling data into chunks of a certain size and sending this chunk to a drive to be
written to a tape. The process also handles timeouts and cancellations, which will be
described in detail in the implementation section of this paper.

Drives A process of this type contains the state of a single drive. Clients communicate di-
rectly with it, by shipping assembled data chunks to it. The drive process handles media
error, unloading and loading of media, movement of clients from one drive to another
as well as keeping statistics such as current data rate, number of attached clients etc. It
is by far the most complex process in the system and the mechanics it uses to handle
media failure and drive allocation requests from clients are described in detail in the
implementation section.

Writers The writer process is the simplest process in the system. It performs only basic
communication and primarily receives data chunks on two data channels and writes
them to the media it is currently responsible for. The process transparently interleaves
multiple write streams onto a single tape as data chunks from multiple clients arrive on
the channel in FIFO order. It has two incoming data channels because one is a channel
dedicated to single-drive writes and the other to parallel transfers where multiple writ-
ers are grabbing chunks to be written from this single aggregated one-to-many channel
shared among all writers.

Additionally, multiple short-lived processes are routinely created to perform asyn-
chronous operations such as statistics updates and doing process communication. These are
part of the “system and maintenance” supporting processes shown in Figure 1.

2.2. Communication Overview

When a client connects to the server the Stream data structure is created. The stream contains
a channel dedicated for error reporting and a reference to a data channel. The data channel
is pointed towards the data channel of the drive that the stream is currently attached to or
a special aggregated channel if parallel or group writes are being performed. Whenever the
client assembles a full chunk it is sent on the data channel and a reply is expected on the error
channel. The chunk goes directly to the writer process without involving the drive process.
In the absence of an error at the writer process the writer simply replies directly to the client
with a non-error value indication success. On the other hand, if an error is encountered in the
writer process while writing, the error is sent to the drive process instead (without replying
to the client) and the writer process terminates immediately. The drive can then choose how
to deal with the error. Depending on the error, this may include retrying the write, marking
the media as faulty or offloading the stream to another drive while mounting a new volume.
At some point, the chunk that was to be written when the error was encountered will be
successfully stored and another writer process will reply to the error channel of the client,
indicating success, at which point the client will continue to assemble chunks and send them
to the new writer. If for some reason the chunk cannot be written, the drive process may send
an error back to the client process which can then send the error as an response with an error
code and terminate with failure.

This design has the benefit of providing a fast track whenever the execution is successful.
It is also worth noting, that because the main data channel is allocated in the drive process
and not the writer, the client will always send chunks on a legal channel. There may not be
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a receiver, but the channel is never closed or otherwise unavailable. Figure 2 shows the basic
relations of processes and how they communicate in the system.

Client

Drive

Writer

Streamrequests

data

data

errors

ack

creates

Figure 2. Channel communication overview. Boxed entities are processes, Stream is a structure of the Client.

Note that, depending on the durability guarantees of the client, it can choose to not re-
quire an acknowledgement from the writer on each write. In that case, the client will just
continue to assemble chunks and send it to the writer process. It will only require an ac-
knowledgement, when writing the last chunk in the stream. In Section 4 we shall see why
this strategy can be beneficial in some cases.

3. Implementation

Tapr is implemented in the Go programming language [19]. While one cannot say that Go
is built for developing certain kinds of systems, Go includes language primitives that makes
it easy to implement highly concurrent systems. Go also includes good support for writing
servers that speak and understand HTTP/1.1 [20] as well as HTTP/2 [21]. We have chosen
HTTP as the initial interface to Tapr because it can be used from standard tools, is easy to
implement and use in Go and provides the necessary streaming mechanics that Tapr requires.

The primary concurrency feature in Go is the goroutine, a light-weight serial process of
which a Go program can, in principle, have an almost endless amount of. The processes do
not have a traditional stack. The stack of a goroutine is allocated on the heap and grows and
shrinks as needed, making it very memory efficient.

Any function can be started as a goroutine by simply prepending the go keyword to the
function invocation. The function will then run concurrently and control is immediately re-
turned to the calling function. Channels are created with the builtin function make. Channels
are typed and garbage collected as everything else in the language. Calling make(chan int)

creates a channel that can be used for sending and receiving integers. When doing channel
communication in Go, the go keyword is often used to do the communication asynchronously,
for instance by calling go func() { ch <- "message" }(). When doing this, the problem be-
comes how to cancel that operation. If at some point there is no receiver on the other side of
the ch channel, that goroutine will stay in memory forever until the program is terminated.

3.1. Timeouts and Cancellations

There are several places in the Tapr source code, where processes must invoke an I/O request.
An example is the acquisition of a drive for use by a client. If there is no preferred choice on
which drive to acquire, we can send an acquisition request to each drive.

In Go, this is done by invoking separate goroutines (sharing a reply-channel) for each
drive process. The main (or surrounding process) reads once from the reply-channel which
will complete as soon as a drive process has acknowledged the acquisition upon which the
separate goroutine will send information about the drive on the reply-channel. A problem
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with this approach is that if a read is not done for each of the separate goroutines, they will
leak and remain in memory. A naı̈ve solution is to start len(drives)-1 goroutines to read
the remaining messages on the channel, but what we really want is the means to signal the
remaining goroutines and have them shut down by themselves. A common way of signalling
on a channel is to close it by using the builtin function close(). This works because a receive
on a closed channel will always yield the channel type’s zero value. However, it is not allowed
to perform a send on (or closing) a closed channel and this will cause a panic, that will crash
the program unless explicitly handled. While the panic can be recovered from, it should not
be in this case. Sending on a closed channel is almost always due to a deficiency in the design
and the Go developers explicitly choose this behaviour to promote good program design [22].
Because of this behaviour, it is not possible to simply close the reply-channel after the first
message have been received as this will result in a panic across the sending goroutines.

Instead, a second channel is introduced, dedicated to signaling that the operation is done
or cancelled by being closed and then immediately willing to communicate the zero-value
of the channel’s type. A channel used for signalling by closing it can preferably be of type
<-chan struct{}, which denotes a receive-only channel of type empty struct. The empty struc-
ture is used because it has zero memory allocation overhead. There is only a single empty
structure allocated in the entire Go program no matter how much it is used.

This pattern is so often used in well-designed Go programs that the Go developers has
developed the Context package included in Go version 1.72. The technique requires the pro-
cess to perform external choice on multiple channels. In Go, the select statement is used
for this purpose. The statement chooses between a set of send and receive operations that
can be performed. If multiple operations are ready to be performed, it chooses one of them
pseudo-randomly.

3.2. The Context Package

A context is a special type that carries deadlines, timeouts and cancellation signals across
function calls and between processes. It also supports adding request-scoped values. Weigh-
ing in at 256 lines of code the context package enables complex deep cancellation and time-
out handling by exploiting the relatively simple channel semantics discussed in the previous
section. Context values can be derived from other context values to form a tree in which
the cancellation of a context causes all derived contexts to also be cancelled. To correctly
use a context it must be propagated across the function call chain. In the case of Tapr this
chain begins with the HTTP server receiving an HTTP request. The root context is then cre-
ated by the context.Background() function. This special context is not cancellable and does
not carry a deadline or timeout. If the client specifies that it requires exclusive access to a
tape drive it may specify a timeout to not wait forever if all drives are currently busy ser-
vicing other client requests. A new context is thus derived from the root context by calling
context.WithTimeout(rootctx, timeout). The function returns the derived context (now car-
rying a timeout) and a cancel function to be used if the context should be explicitly cancelled.
Figure 3 shows the tree structure that derived contexts create.

Regardless of whether a timeout is specified a context is now propagated as the first
parameter to all functions that deal with this request. In this case, the first function to be called
by the HTTP server is the server.Store() method in Tapr. The example thus far discussed
(acquisition of a drive) is from this function. Because Store() takes a context as the first
parameter, it has a surrounding context. To use the context correctly, whenever a function has
a context parameter it should honor it by returning early if the context is cancelled or times
out. Monitoring for cancellation is done by selecting on the context’s Done-channel. Listing 1
shows how the context package is used.

2Release August 15th 2016.
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ctx := context.Background()

ctx, cancel := WithTimeout(...) ctx, cancel := WithCancel(...)

ctx := WithValue(...)

Figure 3. The tree formed by deriving contexts. Cancelling a context will cause the Done channel to be closed
for the context and all derived (child) contexts.

func (s *Server) Store(ctx Context , ...) {

derived , cancel := context.WithCancel(ctx)

ch := make(chan drive)

for _, drv := range drives {

go func(drv *drive) {

if err := drv.Use(derived ); err != nil {

return

}

select {

case <-derived.Done ():

drv.Release () // we didn ’t need the drive anyway

case ch <- drv:

}

}(drv)

}

select {

case <-ctx.Done ():

// timeout

case drv := <-ch:

cancel ()

}

}

Listing 1: Example use of the context type

Note that the drv.Use() function also takes a context parameter. Instead of simply return-
ing without a value, the function returns an error if cancelled or if the drive is unavailable.
Using the derived context, this can happen either if the context is cancelled implicitly by the
parent context’s timeout or explicitly by the call to cancel() by the Store() function. Note
that cancelling an already cancelled context has no effect.

The code used in Tapr for acquiring a drive is a bit more complex than the code outlined
here. This is due to the fact that drive selection is not as straight-forward as simply selecting
the first responding drive. For efficiency reasons we want to select a drive such that bandwidth
is fully utilized, but we do not want to send more streams than can be handled by the device
if another less used device is also available. Tapr also supports write groups that provides
parallel writing by splitting the stream across multiple drives as well as exclusive access to
drives if the client requires the data to be written in a contiguous manner.

3.3. Stream Interleaving and Parallel Writes

An essential technique for efficient use of magnetic tapes is to keep them operating at their
highest data rate. In many cases a single stream is insufficient to achieve this. The two most
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prominent methods to achieve a high sustained data rate is staging and stream interleav-
ing. Stream interleaving is used heavily in Veritas NetBackup [8]. The point is to multiplex
streams onto the same medium. If a large enough data rate is available, the drive can be kept
at maximum data rate while still guarding against slow writers. A disadvantage is that the
data streams are being mixed together, complicating retrieval. For most long-term archival
scenarios this is rarely a problem though as we shall see in Section 3.3.1.

With the staging approach as used by IBM Spectrum Protect [7], incoming streams are
initially written to a random access disk array and only flushed to tape when enough data is
available to sustain the drive for an extended period of time. This approach has the benefit
of allowing the software to reorder and co-locate data on the tape for better retrieval per-
formance, but comes at the cost of an expensive high-performance disk array to handle the
incoming data rate.

Because Tapr is designed to handle high-volume streams of data to be archived long-
term we use a direct-to-tape technique with aggressive stream interleaving. The semantics
of the data channel automatically queues data chunks in FIFO order towards the tape. The
writer process will not make any attempt to reorder chunks.

3.3.1. Stream Demultiplexing

When an archive needs to be retrieved from tape demultiplexing must be done. Here, the
correct archive chunks must be cherry-picked from the tape and reassembled into a data
stream. Because Tapr will always write stream chunks in sequential order, the tape will never
need to perform random access, but the amount of forward seeks that must be performed is
directly related to the number of write streams that were active at the time of writing.

read

stop

seek

stop

read

(a) Selective read strategy.

read discard read

(b) Contiguous read strategy.

Figure 4. Two possible read strategies.

There are two methods to achieve this (see Figure 4). A naı̈ve approach is to simply seek
to the beginning location of a chunk, read the chunk and then seek to the next chunk. Because
tape drives cannot be instructed to prefetch, the drive will slow down, seek, then speed up
while reading the chunk. This read/seek cycle will severely impact the data rate at which an
archive can be retrieved but the impact varies with the chosen chunk size. If the chunks are
several gigabytes the impact will be less severe.

The other approach keeps the tape at full data rate by reading all chunks sequentially
and simply discarding the chunks that do not belong to the archive being retrieved. With this
approach the choice of chunk size is less of a factor as the drive does not care about chunk
borders. On the other hand, in this approach the number of write streams active at the point
of writing directly impacts the perceived bandwidth.

3.4. Stream Teeing and Splitting

Single-drive stream interleaving makes it relatively easy to retrieve the data, but if the incom-
ing data rate exceeds the maximum rate of a single drive the client can request to write to a
write group instead (see Figure 5). Currently, write groups are statically defined in the Tapr
configuration file. A drive can belong to any number of write groups and the purpose is to
provide different levels of parallelism. If a client knows the data rate at which it will write,
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it can request exclusive access to a parallel write group and have the incoming data stream
transparently split over multiple drives, effectively multiplying the perceived bandwidth. This
complicates retrieval because multiple drives must now participate to extract the chunks in
correct order if non-disk operation is desired. If a staging disk is available, chunks can be
extracted to disk from each tape in sequence and then assembled back into a data stream. The
strategy should be chosen according to the environment in which Tapr is deployed and the
expected use. If retrieval is a rare occurrence it may be beneficial to use parallel writing by
default for the larger bandwidth.

Stream

Drive Drive

Writer Writer
sh

ar
ed

Figure 5. When writing to a parallel write group, the stream is writing directly to a shared channel that writes
receive on. When writing to a single drive, the stream is associated with a channel allocated in the drive, but
does not go through the drive (pictured with dotted line).

Because Tapr is designed as an archiving system for raw data from scientific experi-
ments, it includes a novel feature that we call stream teeing, named after the UNIX utility
tee(1) that copies standard input to standard output while making a copy in zero or more
files. The tool itself is most likely named after the letter “T” that graphically represents a
stream forking or splitting into two. Stream teeing is used to direct a data stream towards an
alternative data sink such as an analysis engine for immediate consumption. The idea is to do
analysis while data is flowing and, if at all possible, never touch a hard drive. The result of
the analysis can be directed back into Tapr for long-term storage.

3.5. Stream Hand-off

Tapr allows drives to hand off a stream to another drive if the stream cannot be written to
the currently assigned drive. This most commonly happens when the mounted media fills up,
but can also happen as a result of another transient or permanent error such as a faulty media
or drive. Hand off may also be initiated by directly requesting the drive to do it. This can be
done by the server process if it wishes to release a drive for some reason.

In most cases stream hand-off is transparent to the client if there is another drive ready.
If not, then the client will see a drop in perceived bandwidth. Hand-off is initiated when a
writer process informs the drive of an error. If the error is related to lack of space, a new
cancellable context is created (no timeout). The code to acquire another drive is then ex-
ecuted in a separate goroutine. The goroutine sends the drive on a channel once acquired.
Concurrently, a goroutine is started that unmounts the LTFS [12], unloads the media from
the drive and returns it to a storage slot, loads a fresh scratch volume into the drive, format
the volume with LTFS and finally mounts it. When done, it signals completion by sending
a new writer process on a channel. After starting the two goroutines, the drive process en-
ters a select statement and awaits completion of either one. If another drive is acquired the
stream is immediately handed off, by sending a Takeover request to the acquired drive. The
drive taking over the stream then proceeds to write the chunk that failed to be written on
the filled media and continues writing chunks from the stream transparently to the client. If
another drive was not available, the unmount/unload/load/format/mount process will eventu-
ally complete. At that point the stream continues to write on the new media and the context
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that was previously created is cancelled to cause the goroutine currently requesting a drive to
terminate. The process is shown in Figure 6.

This process shows, that the code in the drive process does not care if it is being requested
by a client or another drive. When requested by a client the context may carry a timeout
which will be acted upon if needed. When requested by another drive it is only explicitly
cancelled if not already terminated. The process also shows the generality of using contexts
for cancellation.

Stream

Writer

Writer

(a) terminate
Drive

(a) report error

(b) request other drives

(b) create (c) drive response

(d) update stream

Figure 6. Handing off a stream. If a Writer encounters an error it will (a) send the error to the drive along with
the chunk that failed to be written and the Writer will terminate immediately. Then (b), the writer simultaneously
start the process of starting a new writer and requesting hand off on another drive. Whatever of (b) or (c) that
finished first determines how the stream is updated (d).

4. Experimental Results

We have performed a number of experiments to measure the impact of building Tapr with a
highly concurrent design. Due to the lack of an experimental setup with enough LTO drives
we have designed our experiments such that writing to tape is simulated. Specifically, the
tape is assumed to write at full speed (160 MB/s), which at a chunk size of 64 MB would
require it to write for 400 milliseconds. For accuracy this is not scaled down, so the writer
process will sleep for 400 milliseconds (or a different duration depending on the chunk size)
for each chunk received. Importantly though, data is still read from the network and sent on
channels to writers.

In all experiments it is assumed that enough data to keep the drives at full speed is
available and that the drives were already running at full speed. This is done because we
want to measure if the communicating process architecture (and the Go runtime) is capable
of handling incoming data on a 10 Gigabit link. We have thus also limited our experiments
to 8 virtual drives which equals an aggregated bandwidth of 1280 MB/s (or 10 Gb/s).

Our experiments are performed on a Dell PowerEdge R620 server with two quad-core
Intel Xeon E5-2603 v2 CPUs running at 1.8 GHz and 64 GB of system memory. The system
is running CentOS 6.7 on a 2.6.32 Linux kernel. Tapr is compiled with the Go compiler,
version 1.6.

We perform each experiment five times, and average the results.

4.1. Write Throughput

Our first two experiments measure the write throughput of Tapr. The experiment has been
run with 1, 2, 4, 16, 32 and 64 concurrent write streams. First, we measure the throughput
when clients requests their data to be placed on a single drive and not split over multiple
drives. This is done with and without chunk acknowledgement as discussed in Section 2.2.
Clients are simulated using the tool curl(1) [23] with multiple instances started in parallel.
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The bandwidth is calculated from the time it takes for the server to process the entire request
(from request is received at the HTTP server to the response has been sent to the client).

Table 1 shows the raw results from the experiment. As expected we achieve the high-
est throughput when the client does not require an acknowledgement for each chunk. The
difference in throughput is very clear for a concurrency level of 1, 2, 4 and 8 with the ac-
knowledged writes reducing the throughput to around 85% of the non-acknowledged write.
However, as the number of concurrent streams gets higher than the number of drives in the
system the results are inconclusive.

Currently, the implementation does not continue to assemble chunks while waiting for
an acknowledgement, and in the absence of acknowledgements can only assemble a single
one while waiting to send it to a drive. This has the benefit of limiting memory consumption,
but leads to lower bandwidth utilization as seen in Table 1.

Table 1. Write throughput with and without chunk acknowledgement. A stream only writes to one drive of the
eight drives. Streams are allocated fairly to all eight drives. Chunk size is 64 MB.

Number of streams Chunk acknowledgement Close acknowledgement
1 133.936 155.818
2 263.633 311.664
4 523.933 619.181
8 1027.019 1210.366

16 1233.000 1225.364
32 1232.339 1235.077
64 1230.134 1242.576

In Table 2, the results for the second experiment are listed. Here, the stream is allowed
to be written in parallel to all drives in the system. Again, there is a large difference in
achieved bandwidth until the concurrency level goes above the number of drives. As the
drives are oversubscribed the cost of acknowledging each chunk write is amortized away
and the aggregated bandwidth reaches 1270 MB/s, very close to the theoretical limit of 1280
MB/s.

Table 2. Write throughput with and without chunk acknowledgement. Streams are written in parallel to all
drives. Chunk size is 64 MB.

Number of streams Chunk acknowledgement Close acknowledgement
1 134.650 518.513
2 263.249 969.893
4 519.310 1168.921
8 1016.759 1217.439

16 1247.587 1241.749
32 1262.326 1260.930
64 1270.142 1270.864

The parallel version is faster because drives that have written a chunk do not have to wait
for the client to assemble another full chunk. If any client has a chunk ready, the drive can
grab it and write it to its media. And, as the concurrency level rises, the competition on I/O
becomes higher for the clients.

The results from the two experiments are summarised in Figure 7. The results shows,
that in general Tapr handles oversubscribing of the tape drives well. It should (and can with-
out disadvantages) allow the clients to choose if they want parallel writes and whether they
require chunk acknowledgements because the aggregated bandwidth remains stable and close
to the theoretical limit. If a client expects the stream to be retrieved in the near future, it might
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not be worth the extra throughput of a parallel transfer for the potentially slower retrieval it
would lead to.
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Figure 7. Write throughput

4.2. Chunk Size

Our final experiment measures the impact of different chunk sizes. Again, the experiment is
performed for 1 to 64 streams. The chunk size is varied between 4, 32, 64 and 128 MB. The
experiment is based on the “best” results from the first two experiments and therefore use
parallel writes and unacknowledged chunks. The results are listed in Table 3 and Figure 8.
Interestingly a chunk size of 32 MB yields a higher aggregated bandwidth at 64 concurrent
write streams of almost 1274 MB/s. In general, the smaller chunk sizes benefit the lower
concurrency levels.

Table 3. Write throughput with various chunk sizes. Streams are written without chunk acknowledgement and
in parallel to all drives.

Number of streams 4 MB 32 MB 64 MB 128 MB
1 777.090 590.973 518.513 415.088
2 1213.508 1085.203 969.893 809.663
4 1243.269 1196.506 1168.921 1106.889
8 1256.086 1235.506 1217.439 1168.370

16 1263.616 1259.102 1241.749 1207.612
32 1267.660 1268.058 1260.930 1241.533
64 1268.802 1273.849 1270.864 1261.567

While the results initially point towards using a smaller chunk size than 64 MB there
are a number of trade offs. This is related to retrieval. While a 4 MB chunk size lowers
the latency induced by the assembling of chunks from a stream, it complicates retrieval if a
high number of concurrent streams were written to the tape. As discussed in Section 3.3.1
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this would perform very bad for a selective read approach. It would not impact a contiguous
approach though.

There is nothing that requires Tapr to use a fixed chunk size however. Thus, this result
suggests that it could be very beneficial to vary the chunk size with the concurrency currently
imposed on the drives if combined with a contiguous read strategy.
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Figure 8. Write throughput

5. Conclusions and Future Work

In this paper we have described the design and implementation of Tapr, a highly concurrent
network server for long-term archival of data streams. The basic functionality is already
in place, but Tapr remains a prototype, though we expect it to go into production at the
University of Copenhagen for specialized use in long-term archival of research data. Because
of this prototype status, there remains a lot of challenges as well as opportunities for future
work.

The high bandwidth provided by modern tape systems and the possibility of splitting
streams to write to multiple tape devices in parallel can effectively provide endless amounts
of bandwidth, limited only by the availability of drives in the library. This horizontal scaling
allows a system to be provisioned that can handle most bandwidth requirements of industrial
imaging applications without ever using disk as an intermediate staging area.

Our results in this paper show that while the effect of employing chunk acknowledge-
ments are amortized away when many streams are interleaved onto the drives, it could be
beneficial to allow the client to continue to assemble chunks from the network and queue
them up for writing. While it is possible to implement a standard CSP-like buffer process in
Go, the language has direct support for this; the data channel must be changed to a buffered
version with a certain size3. But as the results show, this is currently not critical as long as

3A buffered channel has different semantics, i.e. it does not require a ready receiver for a value to be sent.
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Tapr has enough work to do. We note that these results are done in a simulated environment,
so while the bandwidth of real tape drives will probably fluctuate slightly, the results still
show that the Tapr design is capable of handling a data stream of 10 Gigabits. In a real-world
setting, the use of buffered channels could be beneficial, and the design still allows for this to
be introduced.

While writing of data coming from other durable storage systems can easily be retried in
the presence of failures, this is not possible when data is streaming from scientific equipment.
To better support this, a sliding window as used in TCP [24] could be used to limit the number
of chunk acknowledgements and limiting the need for staging of important data. The data
could either be retained (or buffered) at the equipment or directly at the archive system on fast
durable storage (solid state disks or a high-performance disk array) until the data is known to
be written to durable (tape) storage.

The results suggesting that Tapr use varying chunk sizes also presents a challenge. Be-
cause Tapr uses LTFS as the file system on the tapes and because LTFS is a regular POSIX
file system a 6 TB LTO-7 tape would end up with over 1.5 million files in a single directory
in the current implementation of Tapr when using 4 MB chunks. For a chunk size of 64 MB,
this number would still be around 100,000 so in any case it might be prudent to explore ways
to nest directories appropriately. While this suggests that Tapr should use its own native for-
mat on the tape, the advantage of an open and well-supported standard, as well as the com-
pletely self-describing media is very important to the goals of Tapr. Currently the naming
scheme used for chunks written to the tape does not easily support a nested structure, but this
is something that we are confident can be solved.

It should be noted that we have not regretted the choice of Go for this high performance
application. We have made relatively few optimizations to achieve maximum throughput,
the only optimization being a tight network socket read-loop and the use of a chunk pool to
limit pressure on the garbage collector. Instead, we have extensively used the concurrency
features available in Go to rapidly build the communicating process architecture. While the
CPU usage is still relatively low, it is good to know that Go will automatically utilize all
available cores as the concurrency level of the application increases when more devices are
added to the system.
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