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Asynchronous Readers and Writers
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Abstract. Reading and writing is modelled in CSP using actions containing the sym-
bols ? and !. These reading and writing actions are synchronous and there is a one-
to-one relationship between occurrences of pairs of these actions. It is cumbersome to
ease the restriction of synchronous execution of the read and write actions. For this
reason we introduce the half-asynchronous parallel operator that acts on actions con-
taining the symbols ¿ and ¡ and study the impact on a Vertex Removing Synchronised
Product.
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and write, vertex removing synchronised product

Introduction

Periodic hard real-time robotic applications can be modelled using formal methods like pro-
cess algebras. These models describe the behaviour that the application has to exhibit. This
is well-known, for example by using a graphical tool like TERRA [1].

To implement the models, a transformation can be made to graphs2. The graphs
are then, as a data-structure, the controlling mechanism in the processes that execute
on some hard real-time operating system. An architecture of such a system is given in
Boode and Broenink [2]. This architecture is implemented by de Boer [3] on an embedded
processor running the QNXr Neutrinor Real-Time Operating System (RTOS).

The performance of the architecture proposed in [2] has serious drawbacks due to the
large amount of synchronisation messages by which the Synchronisation Server controls the
synchronous execution of actions, as if these actions are executed atomically by the involved
processes. For this reason we have defined a Vertex Removing Synchronised Product [4,5],
denoted as n, that, while multiplying graphs, reduces the longest path in the set of graphs
representing the processes of the periodic hard real-time application. This longest path de-
termines the worst case execution time within a period of the application. Although this im-
proves the performance of the application, it does not help the designer in the modelling
process.

One of the problems that a designer may encounter, is the situation where a process
has to communicate a certain value with one or more processes. If this has to be executed
synchronously, formal languages like Communicating Sequential Processes (CSP) [6] supply
such a mechanism inherently. But if the actions of writing and reading are asynchronous,

1Corresponding Author: Ton Boode, Robotics and Mechatronics, CTIT Institute, Faculty EEMCS,
University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands. Tel.: +31 631 006 734; E-mail:
a.h.boode@utwente.nl.

2We only consider finite directed acyclic labelled multi-graphs.
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languages like CSP have no operator that support this. Therefore an arguably complex design
has to be made to enforce asynchronous writing and reading.

A mechanism by which the writer and the readers have an optional communication is
describer by Gruner et al. [7], called the optional parallel operator, denoted as ò. This mech-
anism is still synchronous in the sense that during the communication the writer and only
those readers that are able to recieve that data are engaging in the data transfer. All other
processes that could receive the data will not, because they are not in the appropriate state
yet. In this manner the characteristics of synchronous interaction are relaxed to a subset of
the reading processes.

Another approach is given by Marwedel [8] who describes an extended rendezvous, by
which the acknowledgement from the receiver to the sender is delayed, such that the receiver
can perform checks or calculations on the received data.

In this paper we propose a half-synchronous action which allows a process to write a
value x over a channel c, without the requirement that the reading processes must be in a
state where they can read the value x over a channel c 3. The writing action is denoted as
¡ (c ¡x : T ) and the reading action is denoted as ¿ (c ¿x : T ). This means that we adjust
the alphabetised parallel operator,

X
||
Y

, in a similar fashion as [7] and introduce the half-
synchronous alphabetised parallel operator

X
ó

Y
.

For simplicity we require that the reading processes execute their c ¿x : T syn-
chronously4. Of course this requirement can be relaxed to a definition of the half-synchronous
action, where the reading processes are divided into sets which are set-wise asynchronous,
but intra-set-wise synchronous, giving full flexibility to the asynchronous write and reads.
The advantages of the

X
ó

Y
operator is three-fold;

• it eases the complexity of the design eliminating arguably complex process specifica-
tions:

- it is not necessary to use a buffer process in the model to achieve asynchronous
writing and reading,

- the writes (¡) and reads (¿) are asynchronous, which makes it possible to have an
order of writes and reads that, if synchronous (!, ?), would lead to a deadlock,

• by reducing the number of actions involved in this asynchronous writing and reading
of the processes, improves the performance of the periodic hard real-time application,

• in a distributed computing system, for example a processor-coprocessor combination,
the waiting time of the processor or coprocessor can be reduced.

Our interest is of a graph theoretical nature and we will show an adaptation of the Vertex-
Removing Synchronised Product (VRSP) which supports the half-synchronous actions and
the

X
ó

Y
operator. The adjusted version of the VRSP is called the Dot Vertex-Removing

Synchronised Product (DVRSP) and denoted as
‚
n.

In Section 1 we give the semantics for the
X
ó

Y
operator. In Section 2 we adjust the

VRSP so that this adjusted version of VRSP can produce graphs that enforce the semantic
rules of the

X
ó

Y
operator. In Section 3 we give an example of a distributed application with a

processor-coprocessor combination. This example shows that, while the coprocessor is exe-
cuting, the processor can execute actions that would otherwise be delayed. A significant per-
formance gain is achieved by reducing the waiting time of processes running on the proces-
sor, while waiting for the coprocessor to finish. In Section 4 we discuss the advantages and

3In CSP this modelling is restricted to two processes interacting synchronously via an action containing the
! and the ?.

4Like all synchronous actions, this is handled by the Synchronisation Software as described in [2].
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disadvantages of the
X
ó

Y
operator and give the conclusions of our research. We finish with a

view on our future work with respect to the
X
ó

Y
operator and the DVRSP in Section 5.

1. Semantics of the Half-Synchronous Operator

In, for example, CSP [6] one has the possibility to let a process write a value via a variable that
will be read by another process using channels. Schneider [9] describes the communication
over a channel as ‘If c is a channel name of type T , and v is a particular value of type T , then
the CSP expression c !v Ñ P describes a process which is initially willing to output v along
channel c, and subsequently behave as P ’ and ‘If processes P pxq are defined for each x P T
then the CSP input expression c ?x : T Ñ P pxq describes a process which is initially ready
to accept any value x of type T along channel c’. But this is still synchronous.

According to Hoare [6] c !v Ñ P1 can be written as c.v Ñ P1 and c ?v Ñ P2 can
be written as c.v Ñ P2 where c.v is just an action over which the processes P1 and P2

will synchronise. Hoare [6, page 134] observes ‘the convention that channels are used for
communication in only one direction and between only two processes’.

For our purpose this communication restricted to two processes in a synchronous manner
is too restrictive. Often there is the need for one writer and n readers, for example, in the
situation where a process wants to multicast a message to several other processes. It is well
known that a designer using, for example, CSP or the Calculus of Communicating Systems
(CCS) has sufficient operators to describe any problem at hand [10]. But such a description
may become quite complicated, as an example if a designer wants to model the observer
design pattern [11]. To ease the design of concurrent systems an operator supporting such
patterns would be convenient from a pragmatic point of view.

Remark 1. The concept of reading and writing to a buffer is not a rendezvous. An unde-
fined time may elapse between the writing to and the reading from the buffer. Although in a
rendezvous there is communication, possibly passing of data between the participating pro-
cesses, in process algebra a rendezvous is just a synchronising action. If data is passed from
one process to another during a rendezvous this is atomic; there is no time elapse between
the writing and the reading of the processes.

Writing to and reading from a buffer lies in between synchronous and asynchronous
communication in the sense that the writer does not have to wait for the reader to do the write
action, but the readers will read synchronously.

Communication via a buffer can be modelled using a synchronising action, which sep-
arates the writing of x and the reading of x in time. By this abstraction, the buffer, which is
used on the implementation level, is not visible in the model.

As a simple CSP example in Listing 1, the processesA,B synchronise over a sync action
which separate the write.x and read.x in time. The alphabet of A is X and the alphabet of B
is Y .

A = write.x Ñ sync Ñ SKIP
B = sync Ñ read.x Ñ SKIP
AB = A

X
||
Y
B

Listing 1: Reading from and writing to a buffer.

The graphs G1, G2, G1 n G2 representing the processes A,B and AB are given in Fig-
ure 1.
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write.x sync

sy
nc

re
ad

.x

write.x

sync

read.x

G1 n G2

G2

G1

Figure 1. G1, G2 and G1 n G2

Note that Roscoe [12] gives a more eloquent description of a buffer, which we give in
Listing 2.

Buff N
xy “ left?x : T Ñ Buff N

xxy
Buff N

ŝ xyy “ #s ă N ´ 1 & pSTOP
Ű

left?x : T Ñ Buff N
xxŷ ŝ xyyq

l right!y Ñ Buff N
s

Listing 2: Reading from and writing to a buffer [12].

The optional parallel operator ò, described by Gruner et al. [7], requires that “any one
or more of these processes may synchronise with their environment.” It is up to the process
whether it will engage in this synchronisation.

Using this operator the designer cannot model a system where the writer process does not
have to wait for a reading process which will synchronise with the writer process. At least one
reading process must synchronously communicate with the writing process. Because we want
to separate the writing action and the reading actions in time, we will not use this free choice
of synchronisation. Instead we introduce an operator that disconnects the synchronisation
of the writer process and the reader processes. We call this operator the half-synchronous
parallel alphabetised operator denoted by

X
ó

Y
.

As symbols for the half-synchronous actions we use for reading ¿ and for writing ¡. We
denote an action that contains the ¡ as ¡-action and an action that contains the ¿ as ¿-action.
The semantics of

X
ó

Y
is that

• the ¡-action is asynchronous and unique with respect to the ¡-actions of other processes
and

• the ¿-action is enabled if the related ¡-action (see Definition 1) has been executed.

Whenever there is more than one process containing related ¿-actions, these actions are syn-
chronous.

The rationale is that we want to be able to model one writer and n readers where the
waiting-time of the readers is, although timely in a real-time fashion, undefined. In this man-
ner the writer can continue its task without being delayed by the readers. The readers will
read atomically as if in one action. This is where VRSP shows its strength; the length5 of the

5A directed path in a graph G is a sequence of distinct vertices v1v2 . . . vk of V pGq such that vjvj`1 P ApGq
for j “ 1, . . . , k´1. The length of a path v1v2 . . . vk is defined as

k´1ř
i“1

tpvivi`1q. See Remark 2 for the definition

of tpvivi`1q.
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graph is reduced if the processes have the reading of a value on all of their longest paths. The
behaviour is closely related to the observer pattern [11]6.

Nakata and Uustala [13] describe four co-inductive operational semantics, where co-
inductivity is used for defining and proving properties of systems of concurrent interacting
objects using the

• small-step relational semantics,
• big-step relational semantics,
• small-step functional semantics and
• big-step functional semantics.

For our half-synchronous operator the big-step relational semantics is important. We
have to separate the writing and the reading in time. Therefore in any execution of the system
a trace τ that contains a read, must also contain a write before the read, therefore c ¡x :
T, c ¿x : T P τ ñ c ¡x : T ă c ¿x : T 7.

Following [13], the proposition ps, σq Ñ ps1, σ1q states that in state σ the statement
s one-step reduces to s’ with the next state being σ1. These are exactly the same as one
would use for an inductive semantics. The normalization relation is the terminal many-step
reduction relation, defined co-inductively to allow for the possibility of infinitely many steps.
The proposition ps, σq ù τ expresses that running s from σ results in the trace τ .

Here we deviate from [13]. Let aù denote a trace which contains a as an action. Let
αpù q denote the alphabet containing the actions in ù. Furthermore the CSP semantics
of an action apply. Then Figure 2 gives the relational semantics of the

X
ó

Y
operator.

P
c ¡x:TùP 1, Q1

c ¿x:TÑ Q11, ¨ ¨ ¨ , Qn
c ¿x:TÑ Q1n

P ó Q1ó¨ ¨ ¨ ó Qn
c ¡x:TùP 1óQ1 ó ¨ ¨ ¨ó Qn

c ¿x:TÑ P 1ó Q11ó ¨ ¨ ¨ó Q1n
, c ¿x : T R pX,Zq

Qi
c ¿x:TÑ Q1i, Qj

yÑQ1j
QióQj

yÑQióQ1j
, y ‰ c ¿x : T, c ¿x : T P pYi ¨ Yjq, y R pX, Yk“1,¨¨¨n,j‰k, Zq

P ù P 1, Qi
c ¿x:TÑ Q1i

P ù P 1
, pαpùq ¨ pY1, ¨ ¨ ¨ , Yn, Zqq “ H

Qi
c ¡x:TÑ Q1i, Qj

c ¡x:TÑ Q1j
SKIP

, i ‰ j

Figure 2. Relational semantics of the half-synchronous operator.

In Figure 2 the alphabets of P,Q1, ¨ ¨ ¨ , Qn, R are denoted as X, Y1 ¨ ¨ ¨ , Yn, Z. Further-
more we define X

Ş
Yi “ pX ¨ Yiq and X

Ť
Yi “ pX, Yiq.

For ease of reading we omit in Figure 2 for the parallel operator the alphabets, therefore
Qi Yi

ó
Yj
Qj is denoted as Qi ó Qj .

6The observer pattern describes the behaviour of objects, where one object informs other objects of the occur-
rence of some event, for example a state change. The half-synchronous operator is a part of the description of
the behaviour of processes. Arguably one might say that within the design cycle the half-synchronous operator
acts on a more abstract level than the observer pattern.

7The order of two arcs v1v2, w1w2 is denoted by v1v2 ă w1w2 if there exist a path from v2 to w1.
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From a graph theoretical point of view this gives a restriction on the parallel actions,
because a ¿-action has to wait for the related ¡-action.

Definition 1. Two actions are related if and only if

- one action contains the ¡ precisely once and does not contain the ¿, and the other
action contains the ¿ precisely once and does not contain the ¡,

- the prefix of the labels of both actions with respect to the ¡ and ¿ is identical and

- the postfix of the labels of both actions with respect to the ¡ and ¿ is identical.

2. Impact on the Vertex Removing Synchronised Product

Of course the ó operator leads to an adjustment of the definition of the VRSP (n) and its
intermediate stage (b) into the Dot Vertex-Removing Synchronised Product (DVRSP) (

‚
n)

and its dot intermediate stage (
‚
b).

As an example in Figure 4 we show the graph representing the case where n values
are written by process P1 and all or none are read by process P2

8. The processes P1, P2 are
represented by graphs G1, G2 in Figure 3 and Figure 4. Because the DVRSP is defined in two
stages, we give the dot intermediate stage of G1, G2, G1

‚
bG2, in Figure 3 and the DVRSP of

G1, G2, G1

‚
nG2, in Figure 4. Note that G1

‚
bG2 consists of three components and G1

‚
nG2

consists of one component. Two components are removed in the second stage of DVRSP,
because the level of the sources of these components are zero, whereas the level of these
vertices in the Cartesian product of G1, G2, G1lG2 are greater than zero.

Remark 2. The definition of a label has to be augmented. Boode et al. [4] have given as a
definition for a label ‘For each arc a P A, λpaq P L consists of a pair plpaq, tpaqq, where lpaq
is a string representing an action and tpaq is a positive real number representing the worst-
case execution time of the action represented by lpaq’. lpaq is augmented by the restriction
that whenever ¿ and ¡ are in lpaq, the arc with label λpaq is either representing a reading or
writing action.

Remark 3. Let the processes P1, P2, represented by graphs G1, G2 respectively, half-
synchronise over some writing action c ¡xi : T of P1 and some reading action c ¿xi : T of
P2 on some channel c. Then an arc representing a reading action c ¿xi : T on some channel
c, only makes sense in the product G1

‚
bG2 if every path from the source of G1

‚
bG2 to the

arc representing the reading action c ¿xi : T contains an arc representing a related writing
action c ¡xi : T . Therefore, for an arc v2w2 P ApG2q with lpv2w2q “ c ¿x : T , in every

path from the source of G1

‚
bG2 to v2x2, x2 P V pG1q, v1x2 P ApG1

‚
bG2q, there must be an

arc labelled c ¡xi.Whenever this is not the case, the related reading process may encounter
a deadlock. The opposite, if a writing action c ¡xi : T is not followed by a related reading
action c ¿x : T is not prohibited. Although useless, we do not prohibit the writing of values
without reading.

For two graphs Gi, Gj, an arc viwi P Vi is related to an arc vjwj P Vj if in the processes
represented by Gi, Gj , the actions they represent are related.

8The waitForNextPeriod action in Figure 4 is defined as a method in the class RealtimeThread in the Real-
Time Specification for Java [14,15].
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c¡x1 : T c¡xn : T waitForNextPeriod

c¡x1 : T

c¡x1 : T

c¡x1 : T

c¡x1 : T

c¡x1 : T c¡xn : T

c¡xn : T

c¡xn : T

waitForNextPeriod

w
aitF

orN
ex
tP
eriod

w
aitF

orN
ex
tP
eriod

w
aitF

orN
extP

eriod

waitForNextPeriodw
a
it
F
or
N
ex
tP
er
io
d

w
a
it
F
or
N
ex
tP
er
io
d

c¿
x
1
:
T

c¿
x
1
:
T

c¿
x
1
:
T

c¿
x
1
:
T

c¿
x
1
:
T

c¿
x
1
:
T

c¡xn : T

c¡xn : T

c¿
x
n
:
T

c¿
x
n
:
T

c¿
x
n
:
T

c¿
x
n
:
T

c¿
x
n
:
T

c¿
x
n
:
T

. . .

. . .

. . .

. . .

. . .

. . .

¨̈
¨

¨̈
¨

¨̈
¨

¨̈
¨

¨̈
¨

¨̈
¨

G1

G2

G1

‚
bG2

Figure 3. The intermediate stage of DVRSP for G1, G2, G1

‚
bG2.

The DVRSP of Gi and Gj , Gi

‚
nGj is constructed in two stages.

Firstly, the dot intermediate stage, denoted as Gi

‚
bGj of Gi and Gj , is defined as the

graph on vertex set Vi,j “ Vi ˆ Vj with three types of arcs:

- Arcs of type 0 are between pairs pvi, vjq P Vi,j and pwi, wjq P Vi,j with viwi P Ai,
vj “ wj , λpviwiq R Lj , and either ¡ P lpviwiq or ¿ P lpviwiq (with vjwj P Aj ,

vi “ wi, λpvjwjq R Li, and either ¡ P lpvjwjq or ¿ P lpvjwjq). These arcs of Gi

‚
bGj

are called half-synchronous arcs, and the set of these arcs is denoted as Ah
i,j . Thus,

Ah
i,j “ tpvi, vjqpwi, wjq|vi, wi P Vi, vj, wj P Vj , viwi P Ai, vj “ wj , λpviwiq R Lj

and either ¡ P lpviwiq or ¿ P lpviwiq, or vjwj P Aj, vi “ wi, λpvjwjq R Li and either
¡ P lpvjwjq or ¿ P lpvjwjqu

- Arcs of type 1 are between pairs pvi, vjq P Vi,j and pwi, wjq P Vi,j with viwi P Ai, vj “
wj , λpviwiq R Lj , ¡ R lpviwiq and ¿ R lpviwiq (with vi “ wi and vjwj P Aj , λpvjwjq R
Li, ¡ R lpvjwjq and ¿ R lpvjwjq). These arcs of Gi

‚
bGj are called asynchronous arcs,

and the set of these arcs is denoted as Aa
i,j . Thus, Aa

i,j “ tpvi, vjqpwi, wjq|vi, wi P
Vi, vj, wj P Vj with viwi P Ai, vj “ wj and λpviwiq R Lj, or vjwj P Aj, vi “ wi and
λpvjwjq R Liu

- Arcs of type 2 are between pairs pvi, vjq P Vi,j and pwi, wjq P Vi,j with viwi P
Ai, vjwj P Aj , λpviwiq “ λpvjwjq and ¡ R lpviwiq. These arcs of Gi

‚
bGj are

called synchronous arcs, and the set of these arcs is denoted as As
i,j . Thus, As

i,j “
tpvi, vjqpwi, wjq|vi, wi P Vi, vj, wj P Vj with viwi P Ai, vjwj P Aj , λpviwiq “ λpvjwjq
and ¡ R lpviwiqu and Ai,j “ Ah

i,j

Ť
Aa

i,j

Ť
As

i,j .
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c¡x1 : T c¡xn : T waitForNextPeriod

c¡x1 : T c¡xn : T
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eriodw
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T
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x
1
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T

c¡xn : T

c¡xn : T

c¿
x
n
:
T

c¿
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n
:
T

. . .
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¨̈
¨

¨ ¨ ¨
¨̈
¨

¨̈
¨

G1

G2

G1

‚
nG2

Figure 4. Half-synchronous writing and reading of G1

‚
nG2 and its factors G1, G2.

Secondly,

1. all arcs vxwx P Ai,j for which there exists a related arc vywy P Ai,j , with operator ¿ P
λpvxwxq for which there does not exist a related arc vywy with operator ¡ P λpvywyq
with vywy ă vxwx are removed,

2. all vertices at level 0 in the intermediate stage that are at level ą 0 in GilGj are
removed, together with all the arcs that have one of these vertices as a tail. This is
then repeated in the newly obtained graph, and so on, until there are no more vertices
at level 0 in the current graph that are at level ą 0 in GilGj .

The resulting graph is called the Dot Vertex-Removing Synchronised Product (DVRSP) of Gi

and Gj , denoted as Gi

‚
nGj . For k ě 3, the DVRSP G1

‚
nG2

‚
n . . .

‚
nGk is defined recursively

as ppG1

‚
nG2q

‚
n . . .q ‚nGk.

Remark 4. DVRSP does not allow two processes to write a value on the same channel.

Without consistency9 of the graphs, deadlocks with respect to the ó operator are possible
in the processes represented by these graphs. Only a read from x - read from y combination
is prone to deadlocks, because a read from x (or a read from y) is a synchronous action. So if
two processes, both reading from x and reading y in series, have their reads from x and reads
from y interchanged, both processes will be deadlocked.10

9A definition of consistency of graphs is given in [5].
10The writing and reading shows a close resemblance with databases, where there are transactions writing

and reading data concurrently. As an example, Bernstein et al. [16] show that the order in which data is written
and read matters with respect to the consistency (in the sense of interference) of the data. They distinguish
three types of execution of transactions; Recoverable executions, Avoiding Cascading Aborts executions and
Strict executions. Of course the updates of the data in database systems have to be committed (the updates are
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Remark 5. This is not the case for the optional parallel operator. The effect will be that one
of the two processes will not participate in the reading from either x or y.

A deadlock will not occur in the write-read or write-write combination. For example, if
in one process first writes to x and then reads from y, where the other process first writes to
y and then reads from x, no deadlock occurs.

When the graphs are consistent, an interchanged order of reads between two processes
can not occur. Therefore, consistent graphs will have no deadlock.

Remark 6. The order in which a process reads is not relevant with respect to a process that
only writes. For example, if the first process writes x and then y and the second process reads
y and then x this will not give a deadlock. The result will be that the second process cannot
start reading x before the y is written.

From a performance point of view, the graph representing the example given in Listing 1
has a length of `pG1 n G2q “ 3 11, whereas for the process representing G1 n G2 the same
behaviour is achieved by the process A1B1 given in Listing 3. The length of the graph rep-
resenting the process A1B1 is 2. Although this reduces the number of context switches, the
synchronisation software has to deal with the order of execution of the c ¡x : T action and
the related c ¿x : T action. Therefore the performance gain depends on the time the synchro-
nisation software needs to control the order of the actions. The alphabet of A1 is X 1 and the
alphabet of B1 is Y 1.

A1 = c ¡x : T Ñ SKIP
B1 = c ¿x : T Ñ SKIP
A1B1 = A1

X1óY 1 B
1

Listing 3: Reading from and writing to a buffer.

3. Application

To show that the new operators are useful, we consider a system that runs at 1 KHz, so with
a period of 1 msec. A part of the system consists of an application process and a controller
process. The controller process communicates, for example, via memory mapped I/O with a
coprocessor performing a Fast-Fourier Transform (FFT) on the received data.

Assume that the application process has to calculate eight values via the coprocessor. Let
the controller process have priority over the application process. Furthermore the actions of
the application process and the actions of the controller process take 10 µsec to execute. This
includes context switches, state changes in the processes and the like. The coprocessor takes
70 µsec to calculate the FFT on each data item. Although the related12 !-actions and ?-actions
communicate as a rendezvous, so in a sense atomically, their interaction takes 20 µsec. This
leads to a simple CSP specification given in Listing 4 using !-actions and the ?-actions, where
the alphabet of Application is A and the alphabet of Controller is C.

considered valid) or aborted (they are considered as if the updates never happened), which is an aspect of data
we do not take into account.

11In this example the execution time related to an arc a, tpaq, is one by default.
12Related in a similar fashion as defined for the ¡-actions and ¿-actions in Definition 1.
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Application = c1 !x1 : T Ñ c2 ? y1 : T Ñ
¨ ¨ ¨
c1 !x8 : T Ñ c2 ? y8 : T Ñ
display_fpy1, ¨ ¨ ¨ , y8q ÑSKIP

Controller = c1 ?x1 : T Ñ writeCoProc.x1 Ñ readCoProc.y1 Ñ c2 ! y1 : T Ñ
¨ ¨ ¨
c1 ?x8 : T Ñ writeCoProc.x8 Ñ readCoProc.y8 Ñ c2 ! y8 : T Ñ SKIP

System1 = Application
A
||
C
Controller

Listing 4: Reading from and writing to a buffer.

In Figure 5 we show the time line for System1 with the application process (AP), the
control process (CP) and the coprocessor (CoP). Obviously there is a deadline miss, because
System1 needs more than one msec to execute.

AP

CP

CoP

0 100 200 300 400 500 600 700 800 900 1000 1100

Figure 5. Time line of the application process, the control process and the coprocessor, using ! operator and ?
operator.

Using the new ó operator and the ¡-actions and the ¿-actions, this leads to an equally
simple CSP specification given in Listing 5.

Application = c1 ¡x1 : T Ñ ¨ ¨ ¨ Ñ c1 ¡x8 : T Ñ
c2 ¿ y1 : T Ñ ¨ ¨ ¨ Ñ c2 ¿ y8 : T Ñ
display_fpy1, ¨ ¨ ¨ , y8q ÑSKIP

Controller = c1 ¿x1 : T Ñ writeCoProc.x1 Ñ readCoProc.y1 Ñ c2 ¡ y1 : T Ñ
¨ ¨ ¨
c1 ¿x8 : T Ñ writeCoProc.x8 Ñ readCoProc.y8 Ñ c2 ¡ y8 : T Ñ SKIP

System2 = Application
A
ó

C
Controller

Listing 5: Reading from and writing to a buffer.

In Figure 6 we show the time line for System2 with the application process (AP), the
control process (CP) and the coprocessor (CoP). Now during the time that the coprocessor is
executing, the application process is writing the x2, ¨ ¨ ¨ , x8 values via channel c. Furthermore
the reading of the y1, ¨ ¨ ¨ , y7 is as well executed during the execution of the coprocessor.
System2 is an improvement of System1 by 140 µsec as the time line in Figure 6 shows.
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AP

CP

CoP

0 100 200 300 400 500 600 700 800 900 1000

Figure 6. Time line of the application process, the control process and the coprocessor, using ¡ operator and ¿
operator.

4. Discussion and Conclusions

In this paper we have discussed a new
X
ó

Y
operator and the new ¡-action and ¿-action, that

delay the reading of a process from a buffer. The
X
ó

Y
operator together with the ¡-action

and ¿-action are an abstraction of a buffer, therefore the designer does not have to model
the buffer as well. In this manner the writing process does not have to wait for the reading
process to synchronise. There are three advantages of the

X
ó

Y
operator in combination with

the DVRSP

• it eases the design by taking away the burden of separating the writing and reading in
time,

• the length of the longest path is reduced, if the operators are part of all the longest
paths of the participating graphs,

• in a distributed computing system, for example a processor-coprocessor combination,
the waiting time of the processor or coprocessor can be reduced.

The first advantage will make the design less error prone and therefore the design phase needs
less time. Furthermore the overall design cycle will gain because the improved description
on design level will lead to less effort for the implementation and less effort for testing.
The second and third advantage will lead to an application which needs less execution time,
thereby reducing the possibility of a deadline miss.

5. FutureWork

The
X
ó

Y
operator is synchronous as far as the reading processes are concerned. This can be

extended to an asynchronous-set of ¿-actions, where the reading processes are divided into
sets which are set-wise asynchronous, but intra-set-wise synchronous, giving full flexibility
to the asynchronous write and reads.

Of course the algebraic properties of the monoid p ‚n, K1q have to be formulated and

proved. After that the implementation by [3] has to be extended with the
‚
n. A case study has

to show whether significant improvement on both design and implementation level will be
obtained with the half-synchronous operator.
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