
Communicating Process Architectures 2016
K. Chalmers, J.B. Pedersen et al. (Eds.)
Open Channel Publishing Ltd., 2016
© 2016 The authors and Open Channel Publishing Ltd. All rights reserved.

151

VHDL Generation From Python
Synchronous Message Exchange Networks

Truls ASHEIM a,1, Kenneth SKOVHEDE a and Brian VINTER a

a Niels Bohr Institute, University of Copenhagen, Denmark

Abstract. The Synchronous Message Exchange, SME, is a programming model that
both resembles communication in hardware, and can be implemented as a CSP net-
work. This paper extends on previous work for modeling hardware-like programs us-
ing SME in Python, with the addition of a source-to-source compiler that converts
an SME network implemented in Python to an equivalent implementation in VHDL.
We describe the challenges, constraints, and solutions involved in translating a highly
dynamic language like Python into the hardware-like VHDL language. We also show
how the approach can assist in further VHDL refinement by generating tedious test
bench code, such that VHDL designs can be simulated and verified with vendor sup-
plied simulation and synthesis tools.

Keywords. FPGA, VHDL, HLS, CSP, synchronous messaging, Haskell, Python,
transpiler

Introduction

Power consumption is a concern for many applications, ranging from tiny battery-operated
devices used in Internet-of-Things, to super computer installations with megawatt sized com-
putation units [1,2]. Both ends of the power-usage spectrum can benefit greatly by switch-
ing from using traditional CPUs to Application Specific Integrated Circuits (ASIC) or Field
Programmable Gate Array (FPGA) solutions [3].

Unfortunately, writing applications for FPGAs and ASICs is significantly more compli-
cated, due to the low-level nature of such hardware-like devices. MyHDL [4], CλaSH [5],
Xilinx Vivado HLS [6] and Altera OpenCL [7] are existing approaches which aid in the
building of high-level abstractions.

With Altera OpenCL, the programmer can use the OpenCL framework, which usually
targets GPGPUs, and treat an FPGA device as an accelerator, similar to a GPGPU. The
benefits of this model are the maturity and widespread use of OpenCL. The downside is that
the FPGA device needs to communicate with a host at runtime, and thus it is unable to work
stand alone, which would be needed for an Internet-of-Things device. Additionally, there is
also some latency involved in memory transfers, as well as a lack of control for how the
OpenCL code is implemented.

Xilinx Vivado HLS takes a more radical approach. Xilinx has defined a subset of the C
programming language, and attempts to parallelize the code by transforming it into a finite
state machine. Through extensive use of annotations, it is possible to tweak the program into
generating even more parallel FPGA designs than the compiler can automatically deduce.
One disadvantage of this approach is that C is not a high-productivity language. The use
of annotations is a double-edged sword, in that it both makes it easier to change how the

1Corresponding Author: Truls Asheim, Niels Bohr Institute, University of Copenhagen, Denmark; E-mail:
truls@asheim.dk

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



152 T. Asheim et al. / VHDL generation from SME

program is transformed, and makes it harder to guess and obtain the exact transformation
desired.

The CλaSH and MyHDL solutions differ from the aforementioned approaches, as they
are not languages themselves, but leverage existing programming languages, rather than
defining new ones. The CλaSH library is closer to a transpiler (source-to-source compiler),
in that it takes a subset of the Haskell language and transforms it into VHDL for synthesis2 on
hardware. MyHDL can also be described as a transpiler, in that it can transform a subset of
Python code into VHDL, but it also contains a set of tools that allows simulation and testing
entirely within the Python language.

Our work revolves around the use of Synchronous Message Exchange (SME) for de-
signing hardware [8,9]. The SME logic is

based on CSP, but only contains a single broadcasting channel type, similar to how sig-
nals propagate in hardware. With the SME library, we are able to model hardware designs
directly from within Python, using encapsulation and compositionality from CSP in the pro-
cess.

However, the model built with SME is just that: a model; it cannot be used on FPGA
devices or in ASIC designs. Instead, the SME model is designed to simulate hardware signals,
just like the VHDL programming language. This makes it possible to transform a SME model
into an equivalent VHDL design.

A common concern of High Level Synthesis (HLS) approaches, such as Vivado HLS
mentioned above, is how the efficiency of their generated HDL code compares to hand-
written implementations [10]. In our approach, this is less of an issue since we maintain a
close correlation between the Python source code and the generated VHDL code. This is
possible since a properly designed SME network is inherently parallel and has a structure
which trivially maps to VHDL constructs. This means, that we do not need to rely on auto-
matic parallelization of sequential code in order to infer the structure of the VHDL code we
generate. This makes it easy for a PySME model developer to predict how his model will be
translated to VHDL.

Contribution

In this work, we present a transpiler that works with the SME library to generate VHDL code
directly from the SME model. The language design of Python, as well as the constructs used
in SME, makes it attractive to write and test the model in SME, and then emit the verbose
VHDL code, which can then be edited and used with standard FPGA and ASIC test- and
synthesis tools.

A key advantage of using Python for writing SME models, is that the parts of the model
that is not intended for hardware implementation can take advantage of the entire Python
ecosystem. This includes modules and other preexisting code, such as a sequential reference
implementation of an algorithm implemented as an SME network.

The resulting tool uses the SME network structure to generate a functionally equivalent
VHDL project, where signal and process names are carried to the VHDL for easy identifi-
cation. The transpiler is capable of transforming a subset of valid Python code into VHDL,
such that the VHDL project utilizes VHDL constructs that perform the same operations as
the Python code. Finally, the resulting tool generates test benches in VHDL, by capturing
traces from executions with the SME model, such that the resulting designs can be verified
as equivalent in a VHDL simulator.

2Synthesis is the process of transforming a high-level hardware description into a gate-level on-chip imple-
mentation.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 153

We consider this approach to be more viable, as the VHDL output is human-readable and
can easily be used as a starting point for a fully manual implementation, should the generated
model be inefficient.

By modeling VHDL processes and signals, the generated network structure code that
encapsulates and connects different components is likely optimal, such that only the inner
VHDL code, which is transpiled from Python, needs to be considered. As the tool also outputs
test benches, it is trivial to compare a handwritten version of a component with the generated
version.

Although we are optimistic about the possibilities for using SME, we are well aware that
the current implementation is in the proof-of-concept phase, when compared to the other,
more mature, solutions mentioned previously.

1. Translating Python SME to VHDL

Numerous challenges arise when translating a highly dynamic language, like Python, to a
static language such as VHDL. Most of these center around how to infer the static elements
of a well-formed VHDL program from the Python source code which is destined for dynamic
interpretation.

The PySME code supported and the VHDL code generated follows three guiding prin-
ciples:

1. The generated VHDL code should be easily readable and recognizable in order to sup-
port subsequent manual modifications.

2. The Python SME network implementations should retain their “Pythonic” feel and the
Python programmer should not be bound by more restrictions than necessary.

3. The Python programmer should be able to write his program as freely as possible, only
respecting the restrictions that we impose, and the resulting VHDL code should retain
the semantics and structure.

We refer to several VHDL language constructs in the remainder of this paper. For those
unfamiliar with the language, we give their definitions in Table 3, included as Appendix A.

1.1. Translatable Subset

As the hardware described by VHDL is inherently static, it is trivial to write a Python pro-
gram that uses dynamic features, say a list, which is not translatable to VHDL. Furthermore,
a portion of a Python program may contain code that is not intended for hardware implemen-
tation, such as a setup routine, a test bench, a verification suite, etc.

We leverage the distinction between Function and External processes introduced
in [9] to allow the designer of the SME model to indicate if a process should be translated
into VHDL or, conversely, if it is used purely for simulation.

Externals allow any Python code, while Functions are limited to a subset of Python
that can be translated into VHDL, i.e., the translatable subset. Currently, this subset only con-
tains variable assignments and conditionals. This is a very minimal subset, but as we addi-
tionally support most of the Python expression grammar, it is sufficient to allow implemen-
tation of most “hardware relevant” problems. However, lists are not currently included in the
subset, and these could be useful in certain cases.

1.2. Structural Mapping

VHDL is a highly hierarchical language consisting of a large number of different structural
constructs. The mappings between structural elements in SME and VHDL are listed in Ta-
ble 1.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



154 T. Asheim et al. / VHDL generation from SME

Table 1. Mapping between structural elements in PySME and VHDL.

PySME VHDL

Class implementing
a Function process

File containing a single entity definition and an architecture im-
plementing the entity with a process containing the translated body of
the SME process.

Class implementing
an External process

File with only a single entity containing only the structural code
needed to implement the functionality of the process

Bus definition Ports and signals in process and entity definitions.

Process instantia-
tion

Top-level Entity instantiation with port maps and generic maps

1.3. Variables

Python has only one kind of variable; a variable. VHDL on the other hand distinguishes
between variables, constants, ports and signals. Another important difference between
Python and VHDL is that Python allows definition of new variables anywhere while, VHDL,
on the other hand, requires explicit declaration of all variables, constants, ports and signals.
Listing 1 shows an example of how variable types are translated for a very simple SME
process.

Ports and signals are relatively easy to handle since they correspond directly to the chan-
nels of SME buses. Variables are likewise not a problem since they have similar semantics in
Python and VHDL. However, values of variables in VHDL are persistent across clock cycles
and are thus similar to a variable defined in the dictionary of a Python class (e.g. self.var
= 0) comprising a PySME process. For this reason, we currently enforce that all variables
used in the clock functions of PySME processes must be defined class-globally in the setup
function of the process.

Parameterized instantiation of processes is an essential method for reducing code du-
plication. In VHDL, this is achieved through generics which PySME process parameters
are mapped to. Different from Python, however, is that generics in VHDL are constants and
therefore we do not allow them to be modified.

Using correct variable constness in VHDL is more important than in CPU-targeted lan-
guages. Variables consume valuable FPGA space while constant values can simply be sub-
stituted upon synthesis. Therefore, we determine variable constness using a simple heuristic
which designates Python variables that are never assigned to as constants in the VHDL code.

1.4. Types

The concept of types is dissimilar in hardware and software. Software uses a large number of
simple and derived types to support a wide range of different values. In hardware, these are
not representable, and thus the only “type” that exists is a wire, carrying an electrical signal,
representing the value of a bit. By extension, integers can be thought of as a bundle of wires,
each carrying a bit of the number. Consequently, using integers of appropriate widths (i.e.
number of bits) is of crucial importance to the efficiency of the implemented hardware.

Handling the typing of PySME programs is a balancing act between complexity and
practicality. If we require too much annotation, the complexity of the Python code will in-
crease, reducing the productivity advantage it has over VHDL. If we, on the other hand, rely
entirely on inferred typing, its usefulness for creating actual hardware designs decreases.

In an attempt to maintain this balance, we provide optional type annotations which can
be used when one needs to manually define the types of variables. Thus, a hardware designer

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 155

1 class AddN(Function):
2 def setup(self, ins, outs, n):
3 self.map_ins(ins, "num")
4 self.map_outs(outs, "res")
5 self.n = n
6 self.c = 4
7 self.accum = 0
8
9 def run(self):

10 self.accum += self.n +\
11 self.c +\
12 self.num["val"]
13 self.res["val"] = self.accum

1 [..]
2 entity AddN is
3 generic (n: integer);
4 port (res_val: out i32_t;
5 num_val: in i32_t;
6 rst: in std_logic;
7 clk: in std_logic
8 );
9 end AddN;

10 architecture RTL of AddN is
11 begin
12 process (clk, rst)
13 constant c: i32_t := [..]
14 variable accum: i32_t := [..]
15 begin
16 if rst = ’1’ then
17 res_val <= [..]
18 accum := [..]
19 elsif rising_edge(clk) then
20 accum := [..]
21 res_val <= [..]
22 end if;
23 end process;
24 end architecture;

Listing 1: Side-by-side comparison of a how a very simple SME process which adds three numbers to-
gether is translated to VHDL. The numbers added originate from a bus, a constant and a parameter re-
spectively. This example shows how variables performing different roles in the python code are mapped to
VHDL.

Table 2. Default python to VHDL type mappings

bPython Value VHDL Type

Integer literal i32_t (alias of std_logic_vector(31 downto 0))

Bool literal std_logic

can write PySME prototypes without type-related considerations and subsequently, when the
model is ready for synthesis, annotate optimal number widths.

Unannotated variables are typed using a simple type inference scheme that is based
on the requirement that all variables of translatable processes are assigned a literal (e.g. an
integer value). This allows us to type variables using a set of predefined mappings listed in
Table 2.

Type annotations are enabled through a dedicated PySME library module supporting
type definitions. The module allows the definition of booleans and signed and unsigned inte-
gers of arbitrary widths. The type names follows a concise and intuitive format that is favored
by several languages such as Rust and Nim, that has recently gained traction. Integer type
names start with a single-letter prefix, u or i, meaning unsigned and signed respectively, fol-
lowed by a number denoting the width of the number, e.g., u13 is a 13-bit unsigned integer.
Boolean types are denoted by the single letter b. For familiarity, we use similar type names in
the generated VHDL code where they are defined as aliases of the std_logic_vector type.

To annotate Python variables (Listing 2) and function parameters, we use the syntax
standardized by the Python Enhancement Proposal no. 484 [11]. Unfortunately, this syntax
does not extend to express the typing of individual SME bus channels. Therefore, they are
annotated using a syntax (Listing 3) reminiscent of object instantiations or function calls.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



156 T. Asheim et al. / VHDL generation from SME

1 from sme import Types
2 t = Types()
3 [...]
4 class Controller(Function):
5 def setup(self, ins, outs, rate, pixels):
6 self.map_outs(outs, "controlbus")
7 self.samplecnt = 0 # type: t.u8
8 self.readcnt = 0 # type: t.u8
9 self.readoutcnt = 0 # type: t.u8

10 [...]

1 architecture RTL of Controller is
2 begin
3 process (clk, rst)
4 variable samplecnt: u8_t := std_logic_vector(to_unsigned(0, u8_t’length));
5 variable readoutcnt: u8_t := std_logic_vector(to_unsigned(0, u8_t’length));
6 variable readcnt: u8_t := std_logic_vector(to_unsigned(0, u8_t’length));

Listing 2: PEP484-style type annotations of variables. All variables defined here are typed as 8-bit un-
signed integers. First listing is the Python code, while the second shows the resulting variable definitions
in the generated VHDL code. The code fragments are excerpts from the line-detector example discussed
in Section 3.2.

1 from sme import Types
2 t = Types()
3 [...]
4 class System(Network):
5 def wire(self, pixels, buffer, rate, simdata, result):
6 controlbus = Bus("Control", [t.b(’readout’),
7 t.u8(’selector’),
8 t.u8(’data’)])
9 [...]

1 entity Controller is
2 generic (rate: integer;
3 pixels: integer);
4 port (controlbus_readout: out bool_t;
5 controlbus_selector: out u8_t;
6 controlbus_data: out u8_t;
7 [..]);

Listing 3: Type annotations of bus definitions. The listing shows how type annotations of bus channels
in the Python code (top) decides the types of ports in the VHDL code (bottom). Here, we define the bus
“Control” with the channels “readout”, “selector” and “data”. The first channel is typed as a boolean, while
the last two are typed as 8-bit unsigned integers.

1.5. Object Naming

An important aspect of ensuring that the generated VHDL code remains recognizable and
understandable by the implementer of the SME model is transforming names in a predictable
and logical manner. The names of variables do not need to be changed since they have the
same scope in Python and VHDL. Buses are more interesting since they a) transcend process
boundaries and b) are considered discrete components in the SME model and thus have names
themselves, but are bound to local names in PySME processes.

The names of bus channels are transformed with reference to their nearest bounding
VHDL structure. For example, in the top level network description, the names of buses are
transformed using the name of the network and the actual name of the bus. In Listing 4 we

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 157

1 [...]
2 class AddNNet(Network):
3 def wire(self):
4 bus1 = Bus("ValueBus",
5 [t.u2("val")])
6 bus1["val"] = 0
7 self.tell(bus1)
8
9 bus2 = Bus("OutputBus",

10 [t.u10("val")])
11 bus2["val"] = 0
12 self.tell(bus2)
13 [...]
14 addn_param = 4
15 addn = AddN("AddN", [bus1],
16 [bus2],
17 addn_param)
18 self.tell(addn)
19 [...]

1 [...]
2 entity AddNNet is
3 port (AddNNet_ValueBus_val:
4 inout u2_t;
5 AddNNet_InputBus_val:
6 inout u10_t;
7 rst: in std_logic;
8 clk: in std_logic
9 );

10 end AddNNet;
11 [...]
12 AddN: entity work.AddN
13 generic map (n => 4)
14 port map (num_val =>
15 AddNNet_ValueBus_val,
16 res_val =>
17 AddNNet_OutputBus_val,
18 [...]

Listing 4: An example showing the transformation of bus names in top-level entities.

1 [...]
2 class AddN(Function):
3 def setup(self, ins, outs, n):
4 self.map_ins(ins, "num")
5 self.map_outs(outs, "res")
6 [...]

1 [...]
2 entity AddN is
3 generic (n: integer);
4 port (res_val: out u10_t;
5 num_val: in u2_t;
6 [...]

Listing 5: An example showing the names of buses bound to local names in processes are transformed.
The ins and outs parameters of the setup function are set in lines 15-16 of the Python code in Listing 4.

see how the bus named ValueBus defined in the network AddNNet with a single channel val
gets the VHDL port name AddNNet_ValueBus_val.

Listing 5 we look at this mapping from the perspective of the AddN process. We see how
ValueBus and OutputBus are mapped to the local names num and res respectively. The
right side of the listing shows how those same local names are used in the generated VHDL
code. This code should be understood in context of the code in Listing 4. Specifically, the
values of the ins and outs parameters of the setup function are set to [bus1] and [bus2]
respectively in lines 15–16 of the Python code in Listing 4.

1.6. Test Benches

Test Benches are used to verify the correctness of hardware implementations. By definition,
they stimulate the inputs of a device and verify that its output values are as expected. Common
hardware development workflows use VHDL for writing both the hardware specification and
the test bench [12]. However, as cumbersome as VHDL is for writing the actual hardware,
it is even less well suited for writing test code. We therefore consider automatic test bench
generation one of the most appealing features of the SME model, yet it is uncomplicated,
both in concept and in realization. The SME model facilitates this simplicity since the values
of SME buses cycle-accurately mirror the values of the corresponding signals in the VHDL
implementation.

We distinguish between verifying test benches and full test benches. A verifying test
bench merely verifies, cycle-by-cycle, that the actual outputs of the simulated model corre-
spond to the values in the trace file generated by executing the SME model. A full test bench,
on the other hand, is self-stimulating in the sense that it both provides stimulus to the model
being tested and verifies its output values.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



158 T. Asheim et al. / VHDL generation from SME

Hence, verifying test benches can only be used with networks where input data is pro-
vided externally or the data generation processes is internal, i.e. translatable to VHDL. Full
test benches, contrarily, can be used for the verification of any network since the test bench
takes the role of the (usually unsynthesizable) data generation process and stimulates the
network using values from the trace file.

Currently, we generate verifying test benches. However, a verifying test bench can be
rewritten to a full one through a few simple and predictable modifications.

The source code of test benches is rather tedious, as one would imagine, and therefore,
we will not show it here. We will, however, take a closer look at running VHDL model
simulations using the generated test benches in Section 3.

1 clk: process
2 begin
3 reset <= ’1’;
4 wait for 5 ns;
5 reset <= ’0’;
6
7 while not stop_clock loop
8 clock <= ’1’;
9 wait for 5 ns;

10 clock <= ’0’;
11 wait for 5 ns;
12 end loop;
13 wait;
14 end process;

1 entity AddN is
2 port ([...]; rst: in std_logic;
3 clk: in std_logic);
4 end AddN;
5 architecture RTL of AddN is
6 begin
7 process (clk,rst)
8 begin
9 if rst = ’1’ then

10 -- Sets all output ports and
11 -- variables to 0
12 elsif rising_edge(clk) then
13 -- Body of AddN function
14 end if;
15 end process; end architecture;

Listing 6: The process used in our automatically generated test benches to generate a clock signal (left)
and the standard structure of a clocked process (right).

1.7. Clocking

One of the defining features of the SME model is its globally synchronous value propagation
which mimics the clocked signal propagation found in hardware. While this gives the SME
model an implicit clock, an explicit clock source needs to be present in hardware. In actual
hardware, circuits are usually driven by an external clock source. By analogy, a clock source
must also be connected to a VHDL hardware description before it can be simulated.

A typical VHDL clock source is a process, which use explicit timing to repeatedly raise
and lower a clock signal generating a discrete-time signal that alternates between 0 and 1.
VHDL processes must also follow a certain structure in order to be synchronously triggered.
The clock process that we use in our test benches and the structure of clocked VHDL pro-
cesses are listed in Listing 6. From the body of the process, shown on the right side of the
listing, notice how the states of the clk and rst signals are used to control the process.
Specifically, since the process would otherwise be triggered on every change of the clk sig-
nal, rising_edge(clk) is used to prevent the process body from being run multiple times
per clock cycle and ensure that it is only triggered when the signal rises, i.e., transits from 0
to 1.

It is important to note that VHDL clock sources merely simulates a clock signal and will
therefore not have any impact on the hardware implementation of a design.

2. Implementation Details

We have implemented a transpiler in Haskell, which performs the actual translation of
PySME code to VHDL that we have described in the previous sections. In this section we give

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 159

Parsing

Analysis

Python AST

Intermediate 
Code Generation

Code 
generation

Extended SMEIL

Complete SMEIL

PySME source code file

Output directory containing the
generated VHDL files

Figure 1. Compilation stages.

an overview of its design and implementation before describing the intermediate language,
SMEIL, used in the translation between Python and VHDL.

The complete source code for the transpiler and the examples that we present in Section 3
is available from the project GitHub repository [13].

2.1. Transpilation Stages

The translation is performed in four stages. A high-level overview of the input and output of
each stage is shown in Figure 1 with details provided below.

Parsing The Python code is parsed using the parser provided by the Haskell module
language-python [14] which emits a Python AST that is passed on to the next stage.

Analysis The analysis stage identifies structures defined in the Python code and outputs
what we refer to as Extended SMEIL (ESMEIL). ESMEIL is fragments of SMEIL syntax
extended with contextual information containing the interpretation state when an object was
instantiated. Such information includes, e.g., the bindings of the variables in scope.

Depending on which part of the Python code is being processed, different code process-
ing strategies are employed. Python code that defines the structure of the SME network, such
as bus instantiations, bus mappings and process instantiations, are processed using a partial
interpretation strategy. Here, we are predominantly interested in understanding the meaning
of the code, e.g., how processes are instantiated, which buses are defined and what is bound to
which variables. The bodies of translatable processes are processed using a direct translation
strategy which translates their Python code to semantically equivalent SMEIL code.

Intermediate code generation The ESMEIL is transformed into final SMEIL. In this pro-
cess, we also assign types to our SMEIL program, decide variable constness and perform
static consistency checks. Specifically, we check that no undefined variables are referenced

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



160 T. Asheim et al. / VHDL generation from SME

and that all referenced names are either buses, parameters or variables assigned to primitive
values.

VHDL generation Based on the complete SMEIL tree, we generate the VHDL code. The
code is spread across multiple files, one per VHDL entity, which are placed in a dedicated out-
put directory, respecting VHDL best practices stating that a file should only contain a single
entity. We format the code using a custom pretty printing library, which implements the subset
of VHDL that we use. It is based on the pretty printing combinators in the Text.Pretty [15]
Haskell module.

The separation between the analysis and SMEIL generation stages stems from our desire
to support the translation of natural Python code. In combining the stages, we would need to
impose additional restrictions on Python code in order to enable its translation. Specifically,
we would need to enforce strict ordering requiring all classes, functions and variables to be
defined before they are used.

2.2. SMEIL: The SME Intermediate Language

1 data Network =
2 Network { netName :: Ident
3 , functions ::
4 [Function]
5 , busses :: [Bus]
6 , instances ::
7 [Instance]
8 }
9

10 data Instance =
11 Instance { instName :: Ident
12 , instFun :: Ident
13 , inBusses :: [Ident]
14 , outBusses :: [Ident]
15 , instParams ::
16 [(Ident, PrimVal)]
17 }
18
19 data Bus =
20 Bus { busName :: Ident
21 , busPorts :: [(Ident, DType)]
22 }
23
24 data Function =
25 Function { funName :: Ident
26 , funInports ::

27 [(Ident, Ident)]
28 , funOutports ::
29 [(Ident, Ident)]
30 , funParams :: [Decl]
31 , locals :: [Decl]
32 , funBody :: Stmts
33 , funType :: FunType
34 }
35
36 data Stmt =
37 Assign Variable Expr
38 | Cond [(Expr, Stmts)] Stmts
39 | NopStmt
40
41 data Expr =
42 BinOp { op :: BinOps
43 , left :: Expr
44 , right :: Expr
45 }
46 | UnOp { unOp :: UnOps
47 , unOpVal :: Expr
48 }
49 | Prim PrimVal
50 | Var Variable
51 | Paren Expr
52 | NopExpr

Listing 7: Excerpt of the SMEIL AST definition showing the supported statements and expression gram-
mars.

As part of the implementation, we have defined a Domain Specific Language (DSL) for
describing SME networks. In our transpiler, it serves as the previously mentioned intermedi-
ate language between Python and VHDL. The language is basic, and only supports the con-
structs defined by the SME model. It operates at approximately the same level of abstraction
as both Python and VHDL.

We have not defined a human-usable syntax for the language, as this would be of no
benefit for the way we currently use it. However, the language is sufficiently expressive that
it could easily serve as an independent DSL for implementing SME designs.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 161

The entire SMEIL language is translatable to VHDL. Thus, any valid SMEIL program
has an equivalent representation in VHDL. This is different from VHDL, where only a subset
of the language is synthesizable to hardware and the remainder only usable for simulation.

The central elements of the abstract SMEIL syntax are listed in Listing 7 as Haskell
datatype definitions. The ordering of the listing reflects the hierarchical nature of the lan-
guage, where Network serves as the root element. For anyone familiar with the SME model,
its building blocks should be easily recognizable in the SMEIL syntax.

Since the language is derived from the SME model, it inherits its central properties. In
particular, the shared-nothing property of processes makes it easy to statically verify the con-
sistency of the SMEIL code before generating the resulting VHDL code. Additionally, it con-
tributes to modularizing the implementation by providing a clean, constant interface between
the ends performing the Python interpretation and the VHDL generation. It also potentially
enables retargeting to different source or destination languages. For instance, adding support
for Verilog, another widespread Hardware Description Language, would be appreciated by
many.

3. Examples

We revisit a couple of the examples from [9] and show how our transpiler handles them.
The examples show that, even at this early stage, our transpiler is capable of realizing simple
hardware design concepts.

The source code of the PySME networks and (especially) the generated VHDL code are
too long to show here. For a more tangible idea of what the generated code looks like, we
refer to Appendix B where we have included an additional example, with source code.

3.1. Exponentially Weighted Moving Averages

This example is taken from the design of a chip for performing High Frequency Trading
(HFT) [16]. The Exponentially Weighted Moving Average (EWMA), is one of the metrics
used to decide whether to buy or sell, a stock. In HFT, the decision window is only millisec-
onds long. Therefore, implementing the decision making entity as application-specific hard-
ware directly connected to a data source (e.g. a network interface), eliminates the latency that
a software implementation would otherwise induce.

The PySME implementation consists of three processes: The Source process reads in-
put data and sends it on the bus, the Calc process performs the actual EWMA calculation
and finally the Logger process receives and saves the results. Two instances of the EWMA
calculator process are used. One is configured with a long decay time and the other with a
short decay time. The structure of the network is depicted in Figure 2a When the Python
implementation is executed, the results of the calculation are presented as a graph, similar to
Figure 2b.

The test data used is generated by a Brownian bridge which is a stochastic process com-
monly used to simulate the development of the value of a financial asset over time [17].

The generated design can be imported into a synthesis tool, yielding schematics (Fig-
ure 3) similar to the original SME model; we have used Xilinx Vivado. Simulating the gen-
erated test bench verifies that the values produced by the VHDL implementation are consis-
tent with the values produced by the SME model. The test bench will report any inconsis-
tencies that are discovered (Figure 5), and the VHDL simulator will additionally generate a
waveform (Figure 4) giving a trace of the values generated during simulation.

This described workflow demonstrates the main strength of our model. It shows how a
SME network can be developed, simulated and verified in Python using familiar tools and
libraries. After the design is converted to VHDL, the trace of values generated by simulating

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



162 T. Asheim et al. / VHDL generation from SME

Source Logger

Calc
EWMA Long

decay = 3

Calc
EWMA Short

decay = 2

(a) Network layout

0.0 0.1 0.2 0.3 0.4 0.5
Time

1000

800

600

400

200

0

200

400

600

800

V
a
lu

e

Source
Short
Long

(b) Simulation result

Figure 2. Layout of the EWMA SME network and the result of simulating it. Boxes with rounded and square
corners denotes External and Function processes respectively. The “Source” signal seen in the graph corre-
sponds to the output of the Source process. It is not an actual output of the SME network, but is added to the
graph by the non-translatable parts of the Python code to visualize the results of the EWMA calculations.

EWMA_longb_val[31:0]_OBUF_inst

OBUF

OI

EWMA_longb_val[31:0]

EWMA_longb_valid[31:0]_OBUF_inst

OBUF

OI

EWMA_longb_valid[31:0]

EWMA_short_val[31:0]_OBUF_inst

OBUF

OI EWMA_short_val[31:0]

inbus_val[31:0]

Calc

EWMA_short_valid[31:0]_OBUF_inst

OBUF

OI
EWMA_short_valid[31:0]

EWMA_bus1_val[31:0]_OBUF_inst

OBUF

OI
EWMA_bus1_val[31:0]

EWMA_bus1_valid[31:0]_OBUF_inst

OBUF

OI
EWMA_bus1_valid[31:0]

inbus_valid[31:0]
outbus_val[31:0]
outbus_valid[31:0]

inbus_val[31:0]
inbus_valid[31:0]

outbus_val[31:0]
outbus_valid[31:0]

clk

rst

clk

rst

Calc__parameterized0

Calc

Calc

out_val[31:0]
out_valid[31:0]

clk
rst

Source

Source clk
longd_val[31:0]
longd_valid[31:0]
rst
shortd_val[31:0]
shortd_valid[31:0]

Logger

Logger

clk

rst

Figure 3. The EWMA calculation network elaborated from the generated VHDL code by Xilinx Vivado. The
texts in the schematic have been enlarged for better legibility.

Figure 4. Trace of signal values as presented by Xilinx Vivado during simulation. Each vertical line denotes
the end of one clock cycle and the start of the next. From the top, the signals shown are input data, input bus
validity, EWMA long decay, EWMA long decay validity, EWMA short decay, EWMA short decay validity,
clock and reset. The shaded areas highlights cycles where its obvius that, as expected, the EWMA with long
decay times reacts slower to input signal changes.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 163

System_tb.vhdl:113:3:@11590ns:(assertion error): Unexpected value of
System_Control_selector in cycle 1158. Actual value was: 104 but expected 103

Figure 5. Example of errors reported by the automatically generated VHDL test bench when expected and
actual values are inconsistent.

Source

Output

Pixel
Pixel 0

id = 0

Controller
Pixel

Pixel 1

id = 1

Pixel
Pixel n

id = n

Figure 6. SME network of the line detector. Processes with rounded and square corners are Externals and
Functions respectively.

0 200 400 600 800 1000
0

20
40
60
80

100
120
140

Figure 7. Image produced by simulating the line scanner in Python.

the PySME model are then used to verify functional equivalence, through the automatically
generated test benches, directly in the FPGA vendor’s tooling.

3.2. Line-detector

Our second example is a scaled down version of an X-ray camera [18]. The camera consists
of a 1 by n array of detector pixels that captures an image. In order for the image to be
transferred, the value of the pixels must be read out, one by one, and serially transmitted
on the output bus. The structure of the SME implementation is depicted in Figure 6 and the
output of running the simulation in Python is shown in Figure 7. The image used for the
simulation is an actual X-ray scan of a wooden plank.

The network has two modes of execution: the Pixel processes either receive a pixel value
from the Source process or they write a pixel value to the Output process. Since the Pixel
processes are connected to the Source and Output processes through shared buses, only a
single Pixel process can send or receive a value during a clock cycle. The Controller controls
this process and signals which Pixel process gets to read or write and when the Source process
should write a value.

In the original PySME implementation of this example, described in [9], the Pixel pro-
cesses directly accessed a NumPy array holding the input data. This design accurately re-
flects the system that the example is derived from, but since we are currently unable to au-
tomatically translate processes that use NumPy arrays (and Pixel processes contribute the
bulk of the implementation), it would not do much to exhibit the capabilities of our transpiler.
Therefore, the design has been modified so that the data is transmitted to the Pixel processes
from a dedicated source process. This change makes the example somewhat contrived, but it
does a better job at demonstrating the level of translation that we are able to do.

The generated VHDL code is transformed into the schematic depicted in Figure 8.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



164 T. Asheim et al. / VHDL generation from SME

OBUF

OI

System_InDataBus_data[7:0]

OBUF

OI

OBUF

OI

OBUF

OI

OBUF

OI

OBUF

OI

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

indatabus_data[7:0]
indatabus_valid

rst

databus_data[7:0]

Pixel

Pixel

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

rst

Source

Source

controlbus_data[7:0]

controlbus_selector[7:0]
controlbus_readout

clk
rst

Controller

Controller

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

indatabus_data[7:0]
indatabus_valid

rst

databus_data[7:0]

Pixel01

Pixel__parameterized01

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

indatabus_data[7:0]
indatabus_valid

rst

databus_data[7:0]

Pixel02

Pixel__parameterized02

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

indatabus_data[7:0]
indatabus_valid

rst

databus_data[7:0]

Pixel03

Pixel__parameterized03

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

indatabus_data[7:0]
indatabus_valid

rst

databus_data[7:0]

Pixel04

Pixel__parameterized04

indatabus_data[7:0]
indatabus_valid

controlbus_data[7:0]

controlbus_selector[7:0]

clk

controlbus_readout

databus_data[7:0]

rst

Reader

Reader

System_InDataBus_data[7:0]_OBUF_inst

System_InDataBus_valid_OBUF_inst

System_InDataBus_valid

System_DataBus_data[7:0]_OBUF_inst

System_DataBus_data[7:0]

System_Control_selector[7:0]_OBUF_inst

System_Control_selector[7:0]

clk

rst

System_Control_readout_OBUF_inst

System_Control_readout

System_Control_data[7:0]_OBUF_inst

System_Control_data[7:0]

Figure 8. Schematics of the line-detector network generated by Xilinx Vivado. The drawing has been cropped
to show only 5 of the 150 pixel processes and its texts has been enlarged to improve legibility.

Finally we note that in order for this example to be synthesizable, manual modification
of the generated code is required. The design of the line detector requires that the output ports
of pixel processes are connected to the input port of the output process through a common,
shared wire. In hardware, this is problematic since multiple contradicting electrical signals
driving the same wire will produce a non-deterministic output. Therefore, before a hardware
implementation of the design is viable, we need to ensure that only a single connected output
port can affect the value of a shared wire during a clock cycle. In VHDL, this is prevented by
letting unused ports (i.e. ports that should not be assigned a value during a cycle) assume a
high-impedance state (denoted by the special value “Z” in the std_logic type of VHDL).

The specific code modification required for this example is shown in Listing 8. The value
of the controlbus_selector signal determines which pixel process gets to write on the
output bus. Since the id value of every pixel process in the network is unique, only a single
pixel process is active and writes a value on the output bus during a clock cycle. Thus, by
adding the else-clause shown in the second part of the listing, we prevent any signal from
leaving the output ports of the inactive processes.

In spite of being relatively simple, requiring such manual modifications of the generated
VHDL code in a common case is undesirable. Therefore, we propose two different methods
which could lessen or remove this requirement. The first, which is trivial to implement, is
adding the VHDL special values to PySME allowing them to be set directly from the Python
code (Listing 9). While this method remove the need for manually editing the generated
VHDL code in this case, it violates the principles outlined in Section 1 by moving low-level
hardware-related details into the Python code. Alternatively, it may be possible to implement
an automatic method that use control flow analysis to identify code paths which leaves bus

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 165

1 if signed(controlbus_selector) = to_unsigned(id, 8) then
2 databus_data <= std_logic_vector(unsigned(data));
3 end if;

becomes:

1 if signed(controlbus_selector) = to_unsigned(id, 8) then
2 databus_data <= std_logic_vector(unsigned(data));
3 else
4 databus_data <= "ZZZZZZZZ";
5 end if;

Listing 8: Manual addition to the VHDL code generated from the Pixel SME process setting a high-
impedance default output value (lines 3 and 4 inserted).

1 if self.controlbus[’selector’] == self.id:
2 self.databus[’data’] = self.data

becomes:

1 from sme import Special
2 [...]
3 if self.controlbus[’selector’] == self.id:
4 self.databus[’data’] = self.data
5 else:
6 self.databus[’data’] = Special.Z

Listing 9: Example of how the need for modifying the generated VHDL code as shown in Listing 8 could
be eliminated by adding support for hardware-specific special values to the PySME library.

channels unassigned. Modifications similar to those made in Listing 9 can then be performed
as needed, on the intermediate code level, to ensure that any possible code path leaves all bus
channels assigned.

4. Conclusions

We have described a translation system that utilizes the SME model, and the unique prop-
erties of SME networks, to automatically build synthesizable VHDL designs from a Python
program. This enables hardware designers, and software developers as well, to quickly pro-
totype ideas entirely within the Python programming environment. Once the model works
as desired, the model can be automatically translated to VHDL. This translation process
places additional constraints on the program, such as only using statically sized elements, and
supports optional annotations to augment the type inference otherwise used. The generated
VHDL design can then be used with standard vendor tools, such as simulators and synthesis
tools. The design retains much of the structure and names from the original design, which
enables further low-level or device specific optimizations with the VHDL code. Furthermore,
this makes it easy to identify how the Python source code should be modified in order to fix
errors discovered in the generated VHDL code. The generated test bench is produced as part
of the translation, and can be used to verify that the generated code is working as expected in
the translated version, and can further be used to verify that hand-modified VHDL still work
as expected.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



166 T. Asheim et al. / VHDL generation from SME

5. Future Work

The most immediate focus for additional development efforts is on widening the supported
subset of the Python language. We believe that there are still low-hanging fruits (features that
we can easily support) that will improve the usefulness of the transpiler, enabling translation
of simpler and more Python-like implementations.

Scaling our programming model to larger implementation projects requires PySME
models to be split across multiple modules (i.e. files). We can leverage the Python module
system for this, and thus only minimal modifications of the PySME library are required. We
do, however, need to support translating this into VHDL. Additionally, supporting modules
will allow us to provide an SME standard component library, of re-usable components, per-
forming common tasks. These should be easily integrateable into PySME projects.

Another interesting subject of exploration is using static analysis to bound the range of
numeric variables of SMEIL intermediate code [19]. Implementing this will diminish the cur-
rent requirement to annotate the appropriate size of integers, as this could rather be inferred.
Furthermore, since also the number of list indices is bound by this process, it would enable
translation of a subset of unannotated Python lists to VHDL arrays.

Numerous scientific problems can only be implemented using floating point numbers
and our current inability to support them is therefore somewhat limiting. Representing and
manipulating these numbers in FPGAs, however, is currently problematic.The floating point
arithmetic algorithms are complicated and take up a lot of space when implemented as hard-
ware. In spite of this, we should provide a standard VHDL implementation of floating point
numbers, enabling their use by programs that require them. On a related note, the dire situ-
ation of floating point support in FPGAs may improve in the future as more manufacturers
add native support. Altera, an FPGA manufacturer, currently have one FPGA with integrated
support for floating point calculations [20].

In some ways, the objectives of this project and the PyPy Python JIT compiler are en-
abled by the same method, namely, extracting a subset of Python code that is suitable for
static analysis. The PyPy JIT compiler performs full abstract interpretation of Python code,
generating a control flow graph which can be statically typed and used as the basis for JIT
compilation [21]. We should investigate if employing a similar approach will enable us to
support a wider subset of python.

References

[1] Martin C Herbordt, Tom VanCourt, Yongfeng Gu, Bharat Sukhwani, Al Conti, Josh Model, and Doug
DiSabello. Achieving high performance with fpga-based computing. Computer, 40(3):50, 2007.

[2] Harold Martin, Enrique San Millán, Pedro Peris-Lopez, and Juan E Tapiador. Efficient asic implementation
and analysis of two epc-c1g2 rfid authentication protocols. Sensors Journal, IEEE, 13(10):3537–3547,
2013.

[3] Peter Bishop. A tradeoff between microcontroller, dsp, fpga and asic technologies. EE Times design,
2009.

[4] Jan Decaluwe. Myhdl: a python-based hardware description language. Linux journal, 2004(127):5, 2004.
[5] Rinse Wester. A transformation-based approach to hardware design using higher-order functions. PhD

thesis, University of Twente, 2015.
[6] Xilinx Inc. Vivado hls overview. http://www.xilinx.com/products/design-tools/vivado/

integration/esl-design.html. [Online; accessed June 2016].
[7] Altera corporation. Altera sdk for opencl. https://www.altera.com/products/design-software/

embedded-software-developers/opencl/overview.highResolutionDisplay.html. [Online;
accessed June 2016].

[8] Brian Vinter and Kenneth Skovhede. Synchronous message exchange for hardware designs. Proceedings
of Communicating Process Architectures 2014, 2014.

[9] Brian Vinter and Kenneth Skovhede. Bus centric synchronous message exchange for hardware designs.
Proceedings of Communicating Process Architectures 2015, 2015.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 167

[10] Ekawat Homsirikamol and Kris Gaj. Can high-level synthesis compete against a hand-written code in the
cryptographic domain? a case study. In 2014 International Conference on ReConFigurable Computing
and FPGAs (ReConFig14). IEEE, 2014.

[11] Guido van Rossum, Jukka Lehtosalo, and ÅĄukasz Langa. Pep 484 – type hints. https://www.python.
org/dev/peps/pep-0484/, 09 2014. [Online; accessed June 2016].

[12] Douglas L Perry. VHDL: programming by example, volume 4. McGraw-Hill, 2002.
[13] Truls Asheim. Almique source code. https://github.com/truls/almique. [Online; accessed June

2016].
[14] Bernard James Pope. language-python: Parsing and pretty printing of Python code. http://hackage.

haskell.org/package/language-python-0.5.3, Jun 2015.
[15] John Hughes. The design of a pretty-printing library. In International School on Advanced Functional

Programming, pages 53–96. Springer, 1995.
[16] Abdalla Kablan and Joseph Falzon. The use of dynamically optimised high frequency moving average

strategies for intraday trading. Word Academy of Science, Engineering and Technology, 2012.
[17] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer Science & Business

Media, 2003.
[18] T Lohse, P Krüger, H Heuer, M Oppermann, H Torlee, and N Meyendorf. Counting x-ray line detec-

tor with monolithically integrated readout circuits. In SPIE Microtechnologies, pages 87632Q–87632Q.
International Society for Optics and Photonics, 2013.

[19] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of programs. In Dunod,
1976.

[20] Altera corporation. The industryâĂŹs first floating-point fpga. https://www.altera.com/en_US/
pdfs/literature/po/bg-floating-point-fpga.pdf. [Online; accessed June 2016].

[21] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine construction. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and applications,
pages 944–953. ACM, 2006.

[22] DOULOS. The VHDL Golden Reference Guide. DOULOS, 1995.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



168 T. Asheim et al. / VHDL generation from SME

Appendix A: Definition of VHDL Terms

This Appendix defines the meanings of VHDL terms that may be alien to readers who are
not familiar with VHDL in Table 3 [22].

Table 3. Definitions of VHDL concepts referred to in the paper.

VHDL term Definition

entity Entities define an interface to a component of a design. They are the top-
level VHDL hierarchical element.

architecture An architecture implements the functionality of an entity. Several architec-
tures may be defined for single entity, all adhering to the common interface
defined by the entity.

process Processes are defined as sequential collections of statements running con-
currently. This definition makes VHDL processes analogous to processes
in SME or CSP.

signal A signal represents a bus between two or more components. In usage, sig-
nals are similar to variables, except that values written to signals have a
propagation time and are thus only visible in the subsequent clock cycle.

port Entities can define ports which represents points where entities can be con-
nected to each other forming a network.

std_logic Is defined as a part of the IEEE standard libraries for hardware design. The
std_logic type represents a wire in hardware carrying a bit. In addition to
the values 0 and 1 it can, among others, take the values Z, X or -, meaning
high-impedance, undecidable or don’t care respectively

std_logic_vector As the name suggests, it is a vector of std_logics or a bundle of wires.
It is used for representing values spanning over more than a single bit in
VHDL.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 169

Appendix B: SomeOps Example with Source Code

This Appendix presents the SomeOps network, a very simple network (Figure 9) consisting of
three processes: the Producer generates two numbers which are passed on to two processes,
Add and Mul. These respectively perform arithmetic addition or multiplication of the values
that they receive. The final process is Printer, which prints the results of the calculations.

Producer Printer

Add

Mul

Figure 9. Structure of the SomeOps network.

The network is a simplified version of the AllOps network described in [9], which only
includes some of the operations of the original. Hence the name SomeOps.

By showing this example, we intend to give a more complete demonstration of the qual-
ity of the generated VHDL code. SomeOps is well suited for this purpose as it is quite simple,
and thus it is easy to view comprehensively.

The (almost) complete Python code of the SomeOps network is listed in Listing 10.
The top level entity, listed in Listing 11, is generated from the wire function of the Python
code. Here, the structure of the network is defined and connections between the processes are
established.

In Listing 12, the translated source code of the Mul process can be seen. Notice how the
port mapping between the top-level entity and the Mul process takes place. The Add process
is similar to the Mul process and it is therefore not included here.

The final VHDL source code example that we show is the translated source code of the
Producer process (Listing 13). It is a slightly more complicated process which sends values
between 1 and 100 on its two output ports.

1 from sme import Network, Function,
2 External, Bus, SME, Types
3 t = Types()
4
5 class Producer(Function):
6 def setup(self, ins, outs):
7 self.map_outs(outs, "out")
8 self.v1 = 0 # type: t.u7
9 self.v2 = 0 # type: t.u7

10
11 def run(self):
12 self.out["val1"] = self.v1
13 self.out["val2"] = self.v2
14 self.v1 += 1
15 self.v2 += 1
16 if self.v1 > 100:
17 self.v1 = 0
18 self.v2 = 0
19
20 class Mul(Function):
21 def setup(self, ins, outs):
22 self.map_ins(ins, "valbus")
23 self.map_outs(outs, "mulbus")
24

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



170 T. Asheim et al. / VHDL generation from SME

25 def run(self):
26 self.mulbus["res"] = self.valbus["val1"] * self.valbus["val2"]
27
28 # The definition of the Add class is similar
29
30 class Printer(External):
31 def setup(self, ins, outs):
32 self.map_ins(ins, "addbus", "mulbus")
33 def run(self):
34 print(self.addbus["res"], self.mulbus["res"])
35
36 class SomsOps(Network):
37 def wire(self):
38 valbus = Bus("ValueBus", [t.u7("val1"), t.u7("val2")])
39 valbus["val1"] = 0
40 valbus["val2"] = 0
41 self.tell(valbus)
42
43 addbus = Bus("AddBus", [t.u8("res")])
44 addbus["res"] = 0
45 self.tell(addbus)
46
47 mulbus = Bus("MulBus", [t.u14("res")])
48 mulbus["res"] = 0
49 self.tell(mulbus)
50
51 prod = Producer("Producer", [], [valbus])
52 self.tell(prod)
53
54 add = Add("Add", [valbus], [addbus])
55 self.tell(add)
56
57 mul = Mul("Mul", [valbus], [mulbus])
58 self.tell(mul)
59
60 printer = Printer("Printer", [addbus, mulbus], [])
61 self.tell(printer)
62
63 def main():
64 sme = SME()
65 sme.network = SomeOps("SomeOps")
66 sme.network.clock(200)
67
68 if __name__ == "__main__":
69 main()

Listing 10: Python source code defining the SomeOps model.

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 use ieee.numeric_std.all;
5
6 library sme_types;
7 use work.sme_types.all;
8
9

10 entity SomeOps is
11 port (SomeOps_AddBus_res: inout u8_t;

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



T. Asheim et al. / VHDL generation from SME 171

12 SomeOps_MulBus_res: inout u14_t;
13 SomeOps_ValueBus_val1: inout u7_t;
14 SomeOps_ValueBus_val2: inout u7_t;
15 rst: in std_logic;
16 clk: in std_logic
17 );
18 end SomeOps;
19 architecture RTL of SomeOps is
20 -- signals
21 begin
22 Add: entity work.Add
23 port map (valbus_val1 => SomeOps_ValueBus_val1,
24 valbus_val2 => SomeOps_ValueBus_val2,
25 addbus_res => SomeOps_AddBus_res,
26 rst => rst,
27 clk => clk);
28 Mul: entity work.Mul
29 port map (valbus_val1 => SomeOps_ValueBus_val1,
30 valbus_val2 => SomeOps_ValueBus_val2,
31 mulbus_res => SomeOps_MulBus_res,
32 rst => rst,
33 clk => clk);
34 Printer: entity work.Printer
35 port map (addbus_res => SomeOps_AddBus_res,
36 mulbus_res => SomeOps_MulBus_res,
37 rst => rst,
38 clk => clk);
39 Producer: entity work.Producer
40 port map (out_val1 => SomeOps_ValueBus_val1,
41 out_val2 => SomeOps_ValueBus_val2,
42 rst => rst,
43 clk => clk);
44 end architecture;

Listing 11: The contents of the generated SomeOps.vhdl holding the top-level entity of the VHDL design.

1 -- Common library imports snipped
2 entity Mul is
3 port (mulbus_res: out u14_t;
4 valbus_val1: in u7_t;
5 valbus_val2: in u7_t;
6 rst: in std_logic;
7 clk: in std_logic
8 );
9 end Mul;

10 architecture RTL of Mul is
11 begin
12 process (clk, rst)
13 begin
14 if rst = ’1’ then
15 mulbus_res <= std_logic_vector(to_unsigned(0, u14_t’length));
16 elsif rising_edge(clk) then
17 mulbus_res <= std_logic_vector(resize(unsigned(valbus_val1) *
18 unsigned(valbus_val2), 14));
19 end if;
20 end process;
21 end architecture;

Listing 12: The contents of the Mul.vhdl as generated from the Mul PySME process.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



172 T. Asheim et al. / VHDL generation from SME

1 -- Common library imports snipped
2 entity Producer is
3 port (out_val1: out u7_t;
4 out_val2: out u7_t;
5 rst: in std_logic;
6 clk: in std_logic
7 );
8 end Producer;
9 architecture RTL of Producer is

10 begin
11 process (clk, rst)
12 variable v2: u7_t := std_logic_vector(to_unsigned(0, u7_t’length));
13 variable v1: u7_t := std_logic_vector(to_unsigned(0, u7_t’length));
14 begin
15 if rst = ’1’ then
16 out_val1 <= std_logic_vector(to_unsigned(0, u7_t’length));
17 out_val2 <= std_logic_vector(to_unsigned(0, u7_t’length));
18 v2 := std_logic_vector(to_unsigned(0, u7_t’length));
19 v1 := std_logic_vector(to_unsigned(0, u7_t’length));
20 elsif rising_edge(clk) then
21 out_val1 <= std_logic_vector(unsigned(v1));
22 out_val2 <= std_logic_vector(unsigned(v2));
23 v1 := std_logic_vector(unsigned(v1) + to_unsigned(1, u7_t’length));
24 v2 := std_logic_vector(unsigned(v2) + to_unsigned(1, u7_t’length));
25 if unsigned(v1) > to_unsigned(100, u7_t’length) then
26 v1 := std_logic_vector(to_unsigned(0, u7_t’length));
27 v2 := std_logic_vector(to_unsigned(0, u7_t’length));
28 end if;
29 end if;
30 end process;
31 end architecture;

Listing 13: Contents of the Producer.vhdl file generated from the PySME definition of the Producer
function.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.


