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Abstract. Two current trends in modern robotics and other cyber-physical systems
seem to conflict: the desire for better interaction with the environment of the robot in-
creases the needed computational power to extract useful data from advanced sensors.
This conflicts with the need for energy efficiency and mobility of the setups. A solu-
tion for this conflict is to use a distribution over two parallel systems: offloading a part
of the complex and computationally expensive task to a base station, while timing-
sensitive parts remain close to the robotic setup on an embedded processor. In this
paper, a way to connect two of such systems is presented: a bridge is made between
the Robotic Operating System (ROS), a widely used open source environment with
many algorithms, and the CSP-execution engine LUNA. The bridge uses a (wireless)
network connection, and provides a generic and reconfigurable way of connecting
these two environments. The design, implementation in both environments, and tests
characterizing the bridge are described in this paper.
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Introduction

Modern robotics rely more and more on data from complex sensors and algorithms to per-
ceive their environment as clear as possible: algorithms like environment mapping, path plan-
ning and visual servoing rely on computational-expensive functions to retrieve the desired
information from the data of the sensors. These algorithms are generically non hard real-
time [1]: for example, when they are used as reference or as setpoint in a control loop. The
complexity increases the requirements the computing system needs to have: more memory,
more processing power and more energy are needed.

This conflicts with another trend in robotics: the need for more mobile and more energy-
efficient setups. These mobile setups, like Unmanned Aerial Vehicles (UAV), have less re-
sources at their disposal, in favour of being light-weight and energy-efficient. These devices
are generically powered by batteries and are controlled using embedded processors.

One solution to perform the complex tasks inside a modern robot, is to add dedicated
and tailored hardware to perform these complex tasks. This is expensive however, and may
not be available. Also, during development of a robotic setup, the developer needs to be able
to change the configuration easily, while replacing or modifying custom hardware is time
consuming.

1Corresponding Author: W.M. van der Werff , Robotics and Mechatronics, University of Twente, P.O. Box
217, 7500 AE Enschede, The Netherlands; E-mail: w.m.vanderwerff@student.utwente.nl
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Another solution is to split the system into two parts, and use two separate systems to run
the tasks. The computationally expensive tasks are offloaded to a base station, while the hard
real-time parts, like loop controllers, remain close to the setup on an embedded processor
(refer to figure 1). The Robotic Operating System (ROS) [2] is an open source environment.

Figure 1. System overview showing separation of tasks over two systems.

ROS is network based, allowing the already available algorithms and implementations of new
algorithms and functions to easily connect. It is therefore most suitable to be used in such a
base station. The LUNA Universal Network Architecture (LUNA) [3] is a real-time capable
framework, developed at the Robotics and Mechatronics group of the University of Twente.
This framework is capable to run real-time tasks on (embedded) processors, and is therefore
suitable to implement the hard real-time tasks.

The main issue in combining these two systems is how both environments are used in
development: ROS gives the user the ability to easily change its configuration, but needs
to run configuration files and has to be recompiled when changes occur. This is especially
needed when changes occur to messagedefinitions: the reconfiguration and recompilation
allows the nodes to communicate using the changed messagedefinition. With LUNA, the
user builds an application which uses functionality from the pre-built LUNA library: it is
therefore not possible to include definitions generated by ROS, as the definitions should then
also be included in the LUNA library. Since these differ from system to system, and even
over time on the same system, it would mean a recompilation of the whole LUNA library
every time the configuration in ROS changes. This makes the reusability and development of
LUNA applications harder. A solution is needed to combine both environments using a more
dynamic approach: a method of binding the two systems during runtime is needed.

The design of a bridge between ROS and LUNA is explained in the work-in-progress
paper by Bezemer et al. [4], describing an initial design and a basic test showing proper
functioning.

In this paper, the design of the bridge is further improved and tested. First, some back-
ground information is given about LUNA, ROS, the previous version of the ROS-LUNA
bridge, and other related work. Then, in section 2, the design and design choices of the im-
proved ROS-LUNA bridge are illustrated. In section 3, tests are described and their results
analysed, which prove the proper functioning, show the performance, and demonstrate a typ-
ical use of the bridge. Finally, conclusions are drawn about the bridge in section 4.

1. Background

To place the design of the bridge into perspective, background information is given on LUNA,
ROS, and the current version of the ROS-LUNA bridge. Also, some related work and alter-
native environments are presented.
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1.1. LUNA

LUNA (LUNA Universal Networking Architecture) [3] is a hard real-time framework, pro-
viding support for quite some kinds of embedded applications. It is component based, allow-
ing parts that are not used to be turned off, resulting in an as low as possible footprint.

LUNA provides a CSP-execution engine, making it able to execute processes accord-
ing to the Communicating Sequential Process (CSP) algebra [5]. The CSP algebra provides
mathematical constructs for scheduling and uses rendezvous channel communication be-
tween these constructs. The resulting schedules can be formally verified (using tooling as
FDR3 [6]), making it possible to check correctness and rule out unwanted behaviour like
deadlocks and livelocks. These checks can be used to guarantee execution of the processes
before their deadlines, making it possible to run hard real-time tasks.

Developing LUNA-based applications is generally done using Model Driven Techniques
(MDD), provided by the TERRA (Twente Embedded Real-time Robotic Application) tool
suite. TERRA allows easy use of the CSP-execution engine of LUNA, allowing the structure
to be drawn instead of programmed by hand. In Figure 2, the architecture of a simple Produc-
er/Consumer example is drawn, with the implementation of each submodel depicted below
the component in the architecture.

Figure 2. Producer/Consumer architecture and submodels, drawn in TERRA.

Using CSP allows an easy decomposition of the structure of a program into a set of
sequential and parallel tasks. Support for more advanced structures (e.g. timed channels,
(guarded) alternatives, prioritized parallel) is present, allowing also complex structures to be
decomposed. Adding blocks with custom C++ code allows the user to add the functionality of
the program to the structure defined with the CSP constructs. Furthermore, embedding con-
verted 20-sim1 models is supported, allowing for easy implementation of digital controllers.

1.2. Robotic Operating System

The Robotic Operating System (ROS) is a software environment that provides a set of tools
to connect multiple parts of a robotic setup. ROS supports a wide range of sensors and al-
gorithms. Adding new software by the user is also simple, since Python and C++ (amongst
others) are supported as programming languages.

The different parts of the setup (called Nodes) interact through a network structure. Com-
munication is based on the publish/subscribe pattern: a node can publish data on a specific
topic, or listen to a topic. The exchange of data is done through so-called messages, which
are defined by the user in an additional text file, describing the layout of the data.

When ROS is compiled, these messages are transformed into header files, where the
user-defined fields are placed in structs. For serialization and deserialization, functions are

1http://www.20sim.com/
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Publisher Topic Subscriber
Publication Subscription

Figure 3. Publish/Subscribe structure in ROS.

added, for sending over the ROS-network as arrays of bytes. For the user it is also easy to add
new parts, since Python and C++ (amongst others) are supported as programming languages.

Using these automatically generated functions makes the communication robust. To ver-
ify whether the same messagedefinition is used by both sides of the communication, MD5
checksums are added. These checksums are checked during runtime, when a Subscriber con-
nects to a Publisher. This allows verification whether both the Publisher and Subscriber use
the same message definition, and thus use the same serialization/deserialization functions.
This assures the correctness of the received data. Publishers and subscribers are generically
instantiated using the message type: in C++ for example a publisher on topic ”chatter” with
String from the std msgs package is made using2:

r o s : : NodeHandle n ;
r o s : : P u b l i s h e r c h a t t e r p u b = n . a d v e r t i s e <s t d m s g s : : S t r i n g >(” c h a t t e r ” ,

1000) ;

A subscriber listening to this same topic, is instantiated with:

r o s : : S u b s c r i b e r sub = n . s u b s c r i b e ( ” c h a t t e r ” , 1000 , c h a t t e r C a l l b a c k ) ;

In the specified callback function (”chatterCallback”), the type of the received message
should be specified:

vo id c h a t t e r C a l l b a c k ( c o n s t s t d m s g s : : S t r i n g : : C o n s t P t r& msg )
{

/ / Code t o h a n d l e d a t a from t h e msg
}

When a message type changes (or a new one is added), the ROS environment should be
rebuild, to update the changes in these message classes. When a program uses a messagetype,
it should also be rebuild, to update the definitions and the checksums. Due to the complex and
reconfigurable structure of ROS, it is not capable to provide hard real-time tasks: the timed
execution of a node and the arrival of data cannot be guaranteed. Most of the time the system
will function fast enough however, making ROS suitable for soft real-time tasks.

The ease of use of ROS comes at the cost of more overhead, making it less suitable to
run on embedded processors: these processors tend to have less resources at their disposal, in
favor of energy consumption, weight and cost.

1.3. Combining ROS and LUNA

The work presented in Bezemer et al. [4] is already able to connect an embedded (LUNA-
based) application during runtime to ROS. Runtime binding to a ROS publisher is performed
through the MessagePublisher class. This MessagePublisher class has a switch construct
to determine the variable type of the received variable from LUNA, and generates a ROS
Publisher with the corresponding message type. This allows publishing on topics with basic
message types.

Subscribing to topics is done by using the TopicListener and MessageDecoder class. The
MessageDecoder uses raw data of the message, provided by the ShapeShifter class present in

2http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)
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ROS. The raw data consists of a serialized version of the variable data of the message. Along
with the raw data, a message definition (a text stream containing the type and name of each
field in the message) is sent. This definition is used in the MessageDecoder class to iterate
through the raw data, until the desired field inside the message definition is found, and the
correct bytes can be selected from the raw data. Since the size of a serialized variable needs
to be known to iterate through the raw data stream, it is only possible to listen to topics with
a message type containing standard data types, like ints, bools and strings.

A communication managing component is used to send and receive data over a TCP con-
nection, as soon as the data is made available. Calculations are presented, showing reduction
in bandwidth when multiple variables are packed into one TCP packet.

To connect the received data in LUNA to CSP, a CSP channel is modified to perform its
read and write operations through the communication managing component. This modified
channel is hard coded to use the desired data type of the variable.

The simple tests described indicate correct functioning of the bridge: variables are sent
from a LUNA application to ROS, and values are returned and received by the LUNA appli-
cation. Since the bridge only supports basic types, it does not support the full functionality
and freedom ROS combined with LUNA could offer. When the bridge is further improved, it
could be used in all types of systems: indirectly allowing CSP constructs through the LUNA
framework to interact with the real world, by using algorithms and functions present in the
open source environment of ROS.

1.4. Related Work

Connecting different (embedded) environments is also done before in other projects.
Unity-Link [7] combines FPGA-based controllers with software running on a PC, where

ROS is used as middleware. This solution to add real-time control is rather specific: it only
works when (re)configurable hardware is present in the device, while many embedded sys-
tems favour an embedded processor over programmable logic.

Scholl et al [8] combine multiple devices with small resources to form a wireless sensor
network, and connect this network to ROS. These devices are programmed to use fixed data
structures in the communication to ROS. This is less useful for a bridge between ROS and
LUNA, since LUNA should be able to use more dynamic data structures. Furthermore, only
the ROS client is used, resulting in a soft real-time environment.

YARP (Yet Another Robot Platform) [9] and OROCOS (Open RObot COntrol Software)
[10], [11] are versatile robot middleware environments. Support for both hard- and soft real-
time tasks is available, and it supports an extensive way of configuring. It is less suitable for
mobile setups however: it has a larger footprint and has therefore higher requirements on the
processor.

In Einhorn et al. [12] MIRA is presented as a new middleware for robotic applications.
Through a custom implementation of reflection in C++, it is able to optimize the serialization
and deserialization processes in the communication between distributed parts of the applica-
tion, making it faster in terms of latency and computation time compared to other middle-
wares like YARP and ROS. It lacks a large community, making it less favourable compared to
an environment like ROS. Although the middleware is able to run on different environments,
it is not designed and tested for real-time purposes, making it less suitable for embedded
controllers, and therefore also less suitable as a complete solution for a robotic system.

In Wei et al. [13] a real-time extension is made to ROS, called RT-ROS. A multicore
system is used in this approach: one part of the cores runs a generic Linux distribution,
while simultaneously a real-time Linux distribution Nuttx is running on the other part of the
cores. The Nuttx environment is adapted, so it is able to compile ROS nodes. In this setup,
a combination of two environments is made on one processor. The used test setup uses a

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



48 W.M.van der Werff et al. / Connecting Two Robot-Software Communicating Architectures

multicore processor and a processor architecture (Intel Core 2 Duo) that is commonly found
in desktop PCs, and is therefore less suitable to be used in mobile robotics, limiting the
possibilities to use this approach.

The ROSpackage ROSSerial3 provides a method to connect embedded devices (like Ar-
duinos) to the ROS network. Runtime binding is performed through the ShapeShifter class,
or using rospy, a Python implementation of ROS. The embedded side needs to be informed
about the setup of ROS (regarding the message structure) before compilation. This is achieved
by including a special set of libraries, which are generated by a script. This increases the
overhead, which is a problem in systems with sparse resources [14]. Furthermore, each time
a message definition is added or modified, the conversion needs to be redone, which causes
the program depending on them to be recompiled. Since LUNA is a provided to the end user
a a pre-compiled library, it is therefore not possible to use ROSSerial.

2. Design of the ROS - LUNA bridge

The new version of the ROS-LUNA bridge needs to connect the CSP environment of LUNA
to the topics of ROS: allowing CSP-channel constructs (Writer/Readers) to send/receive data
from an external source located in a ROS topic. Connecting CSP channels to fields in Sub-
scribers and Publishers in ROS should be reusable, to allow easy integration into the TERRA
tool suite. Furthermore, support for flexible (re)configuration and versatile data types should
be present, allowing reuse of the bridge in future projects.

ROS
Complex algorithms

L
U

N
A

br
id

ge

LUNA application
Loop controllers/ CSPR

O
S-

C
ha

nn
el

M
an

ag
er Actuators

Sensors

TCP/IP

ROS network
(User configured)

ROS-LUNA bridge LUNA application
(User configured)

Robotic setup

Base station Embedded system

Figure 4. Global overview of the ROS-LUNA bridge.

As depicted in Figure 4, the design of the ROS-LUNA bridge is spread out over
three subsystems: an implementation in ROS (LUNA bridge), an implementation in LUNA
(ROSChannelManager), and a link over a TCP/IP network specified by a communication
protocol.

2.1. Connection management and Communication protocol

The communication protocol specifies how data is sent between ROS and LUNA. A straight
forward approach is to make a TCP link between the two sides of the system for each variable,
and send each new value in a separate packet as soon as it becomes available.

This would lead to too large overhead however: TCP connections were designed to be
reused, and the maximum size of a TCP packet (theoretically: 216 bytes, but is limited by the
Maximum Transfer Unit [15]. The MTU for Fast Ethernet is 1500 bytes, and upto 9000 bytes

3http://wiki.ros.org/rosserial
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in Gigabit Ethernet) allows combining of variable values in one packet. The communication
protocol defines how multiple variables are serialized into one packet, and how their values
are retrieved during deserialization. Although widespread serialization methods, like JSON4

could be used, it would also increase overhead and dependency on third party implementa-
tions. A tailored solution is preferred, which reduces overhead by specifically supporting just
the communication type of this bridge.

Variables are serialized by placing the type, name length and data length represented by
one byte each in a buffer. In a secondary buffer the name of the variable is added, followed by
the variable value represented as byte array. Once the packet needs to be sent, both buffers are
copied into the payload of an actual TCP packet. The payload is preceded with an additional
header with a predefined layout. This header identifies the type of packet, and the sizes of
both buffers. These sizes are used in deserialization: allowing to extract the two buffers from
a stream of bytes. With the 3 bytes per variable in the first buffer, the name and data are
extracted from the second buffer. Using the name, earlier registered callbacks are called,
which will copy the byte array into an actual variable using the size of the received data.

2.2. LUNA-side

Sending to, and receiving data from ROS needs to be usable with CSP constructs offered in
LUNA: this allows better integration in TERRA, allowing the end user to use the graphical
design environment to design his application. Furthermore, the way how data is sent and
received is important: writing to ROS might be performed from a hard real-time task in
LUNA, and needs to be handled quickly and without locking. Reading data from ROS should
block however: it is of no use to read data when it is not yet available. Integration is possible
by using custom code blocks, managing the sending and receiving of data, inside the model
in TERRA. Although this would have reduced the changed needed in LUNA and TERRA, it
would have been less user friendly, since the user has to copy these code blocks and re-derive
the accompanying CSP structure when new models are designed.

Since sending and receiving data has similarities with the CSP writer and reader, a cus-
tom channel type (a ROSChannel) was derived to support communication to ROS. This chan-
nel is implemented as a templated class, making it possible to define the variable type of the
channel based on its connected reader or writer. Writing to the network is an unpredictable
task, since the hardware may not be available as it is a shared resource. To make write oper-
ations non blocking, two buffers are added. One buffer is marked to be accessible for write
operations. After an user specified period, the filled buffer will be made available to a soft
real time process responsible for actually sending the data over the network. In the mean
time, the second buffer is marked to be accessible for the write operations.

A block diagram of the blocking read is depicted in Figure 5. The read operations consist
either of directly copying data when it is available, or by placing a callback and blocking the
context of the reader. When data is received, the callback is called, unblocking the reader and
allowing the data to be copied. Finally, the next (CSP) component could be activated. Since
in some cases it is desirable to do a non-blocking read (e.g. reuse an old value when no new
value is present), it is possible to compose the reader in an unguarded alternative structure,
as depicted in Figure 6. This allows the sequential process to continue when the reader is
blocked, by executing an empty model instead. Since multiple ROSchannels could be present
in a LUNA application, a single component (called ROSChannelManager, implemented as
singleton object) is added to implement the buffers, register and call the callbacks, handle the
actual TCP connection and use the defined communication protocol.

4http://www.json.org/
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Figure 5. Schematic representation of receiving network data combined with CSP read operations.

Figure 6. Example of unguarded alternative structure used to perform a non-blocking read on the ROSChannel.

2.3. ROS-side

Sending to, and receiving data from a LUNA application needs to be combined with the com-
munication structure in ROS: during runtime, publishers and subscribers need to be made.
The message type of these publishers and subscribers need to be configured from the LUNA
application: the same bridge could be used in multiple projects with different LUNA appli-
cations. A method is needed to bind publishers and subscribers to a messagetype during run-
time: normally this is done during compile time, by instantiating the publisher or subscriber
object with the message type’s class.

One way to perform this runtime binding, is to use a code generation tool to make a
large switch structure, which combines the name of a messagetype, to the instantiation of
an actual object. The tool also need to generate get and set functions, since a message could
exist of multiple fields. Using this type of code generation results in a large code file and
program, since all possible messages are coded inside it. Also, using code generation adds
another step in the design process: each time message definitions change in ROS, the code
generation need to be rerun and the compile process of ROS restarted. Another way is to
use an interpreted language, like Python. Since the implementation is then also interpreted,
it is able to load new classes during runtime and generate objects based on the name of the
message type. This reduces performance however: interpreted languages are generically 4 -
5 times slower compared to compiled programs. The reduced performance is not ideal in a
forward path.

The ShapeShifter class in ROS provides a method to publish and subscribe data without
a predefined messagetype. It requires however a custom implementation of the serialization
and deserialization of the message’s variables, and the checksums and message definition
need to be set by the user: these are normally specified in the generated header files of the
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message type. Two classes were derived, performing these actions during runtime. For the
publisher, the RuntimeBindingPublisher was derived; for the subscriber the TopicListener
was extended. The RuntimeBindingPublisher (RBP) calls a ROSservice in Python when a
new message type is desired during runtime: this service is able to load the definition and
checksum of this type, and replies it to the RBP. The RBP stores the definition, and the
checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge
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Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
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different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

3. Testing

Two series of tests are performed on the design of the ROS-LUNA bridge. The first series is
used to verify and compare performance of the implementation at the ROS side of the sys-
tem. The second series uses a more complete setup, where the correctness and performance
of the bridge is shown using an actual connection between a ROS to an embedded LUNA
application through the bridge. Also, a demonstration setup is described and tested, showing
that the bridge is possible to be used in a distributed application, by using both platforms
in an area they perform well. The embedded side consist of hard real-time loop controllers
implemented using CSP structures and the LUNA library. ROS is used to perform a complex
task, represented by an image processing algorithm.

3.1. Test 1: Checking runtime binding

To check the implementation and performance of the runtime binding publisher (RBP), two
subtests were designed and executed. The first test verifies the correct serialization during
runtime using code generation: a C++ file is generated, which contains code to make a serial-
ized message for each message type present on the system, both for the generic way using a
normal publisher and by using the new RBP. The resulting serialized messages are compared.
It is stored whether the message type was correctly serialized, failed, or was unsupported (for
example, when it contained an array). The list with failed message types was used to further
improve the implementation, until the failed list was empty.

A second test was performed, to compare the different implementations of ROS Publish-
ers. A total of 5 types can be distinguished: the generic ROS Publisher in C++, the generic
ROS Publisher in Python, the RBP (both with and without prior stored knowledge about the
message type) and a simple version of runtime binding implemented in Python. The test is
done by measuring the time needed for initialization, and measuring the interval needed to
publish a message for each publisher type. Inside the published message, the intervals from
the initialization and the previous publish are stored, allowing an external subscriber node to
handle and store the timestamps. An average over 100 samples is taken to measure the time
needed for publishing. In one test, the initialization and publishing of 100 samples is repeated
50 times, using a different topic name each time. This test is repeated 10 times: running one
large test results in too many topics (10 ∗ 50 ∗ 5 = 2500) being registered at the ROS core,
resulting in the system to crash.

This test results in an average over 500 initializations and 50,000 publications of each
publisher implementation.

The test is carried out on generic notebook (Intel i5@2.53 GHz, 4 GB RAM, Ubuntu
15.10, ROS Jade).

The results are depicted in Figure 8. In initialization, the Runtime Binding Publisher
in C++ (RBPC++) is slowest: this is due to the call to the external Python helper node. In
RBPC++,2, this call is not needed since the messagestructure is reused from a previous call:
this results in an initialization time just a little higher compared to the generic C++ imple-
mentation. Python is also slower compared to generic C++ Publisher. The additional calls
needed to load the message modules during runtime cause the runtime binding version in
Python to also be slower compared to the generic Python implementation.
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Figure 8. Performance comparison between different Publisher types.

After initialization, it can be seen that both RBP C++ implementations have comparable
results for publishing: this is expected, since only the initialization changed and the normal
publish call did not. When RBP is compared to both Python implementations, it can be seen
that the RBP is faster. Compared to a generic C++ implementation, it is slower however.
This is due to additional lookups that need to happen to map the name of a variable to the
variable, which are not needed in the generic C++ publisher. From these measurements, it can
be determined that the Publish function of RBP is between 70-74% slower compared to its
implementation in C++, but is roughly 64% faster compared to both Python implementations.

As third test four different implementations of Subscribers are tested: normal Subscribers
implemented in C++ and Python, the implementation using the TopicListener and a sim-
ple implementation of a runtime binding subscriber in Python. All subscribers use the same
message type, a custom type containing a header and two float64 fields. The test initial-
izes each type of Subscriber 100 times, and measures the average time needed for initial-
ization. A secondary test is started, which publishes 6,000 messages at a rate of 200 Hz,
containing the current time stamp in one of the float64 fields (refer to Figure 9). Publishing
is done distributed over 4 topics (/sub test 1 to /sub test 4), these topics are connected to
two nodes, implemented in either C++ (/sub test cpp) or Python (/sub test python), where
both a runtime binding and a normal subscriber are present and connect to one of these
topics. When a message is received, the timestamp is extracted, and compared to the cur-
rent timestamp. This difference is published on an additional topic (/res cpp N, /res cpp RB,
/res pyt N, /res pyt RB). The messages on these topics are received by an analysis node
(/analysis), where they are stored in a CSV file for further analysis. The measured delays
consist of the delay imposed by the publisher present in the time stamp generation node
(/timestamp generation), the delay in the network, and the delay the subscriber types has.
The measured delay consist, besides the delay introduced by the type of subscriber, also of
delays imposed by the network and the publishers. Since the network and publisher will have
the same delay on average over all the tests, the difference in measured delays could be used
to compare the performance of the subscribers. The results of both tests are presented in Fig-
ure 10. In initialization both Python implementations seem fastest, followed by the runtime
binding implementation in C++. The normal C++ subscriber initializes slowest. It is expected
that RBC + + and both implementations in Python perform some of the tasks performed dur-
ing initialization of the normal C++ subscriber during runtime: for example, registering the
callback of the subscriber is based on a template in the normal C++ implementation, while
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Figure 9. ROS graph of test setup measuring the delays the different types of subscribers impose.

0

1

2

3

4

5

6

7

8

6
.8

9

5
.8

2

3
.1

9

3
.2

6

Ti
m

e(
m

s)

Initialization

0

100

200

300

400

500

2
6
7
.8

8

3
4
8
.3

9

3
0
0
.9

6

3
0
5
.0

3

Ti
m

e(
us

)
Message delay

NormalC++

RBC++

NormalPython

RBPython

Figure 10. Performance comparison between different Subscriber types.

the other implementations have a generic callback, and have to perform an additional check
whether the messagetype is correct.

This results in faster initialization, but reduced performance in during runtime. Further-
more, Python seems to be able to use optimizations, since the test is repeated multiple times,
definitions are already loaded in the interpreter.

The runtime binding C++ implementation is slowest during runtime: it has to iterate over
the description fields to find the correct data that it is listening to. The Python implementa-
tions are faster compared to the runtime binding implementation, probably due to optimiza-
tions. It is expected, when actual processing is done on the received data, the total execution
time of a Python node will be higher, compared to a node in C++.

No large difference is present between both implementations in Python: the runtime
binding is rather basic, adding almost no additional delays in the interpreter. Furthermore,
Python is already an interpreted environment, allowing easy runtime binding add just a small
increase in overhead.

3.2. Test 2: complete system

To test a setup closely related to a real world application, a test setup demonstrating vision
in the loop was devised. Refer to Figure 11. It consists of a camera combined with image
processing, which will provide feedback about the state of the plant to the controller. Data
from the controller is sent to a visualization node (e.g. using rqt plot) to inform the user about
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the state of the system. Using the physical location of a node and whether it is real-time or
not, a mapping is performed, dividing the system over ROS and the embedded system.

PC / ROS Network Embedded system

Image
processing

(Soft real-time)

Visualization
(Soft real-time)

Controller
(Hard real-time) Plant

Camera

Visualization data

Video stream

Setpoint
data

Actuation

Sensor data

Hard real-time
Soft real-time

Figure 11. Block diagram of a vision-in-the-loop system distributed over two systems.

The same notebook mentioned in test 1 is used as resource-rich platform. As embed-
ded system, a board (called RaMstix) containing a Gumstix Overo Fire5 module with Linux
3.2.21 and Xenomai patch 2.6.3 is used. A 100 MBit/s dedicated network is used in most
tests, where the notebook is configured both as DHCP server and NTP6 server, allowing
time-synchronization between the two platforms.

3.2.1. Initialization

The first part of the test is to determine whether the initialization is correct. ROS nodes are
started that will perform visualization (ROS monitor) and a node containing the image pro-
cessing (ROS imageprocessing). The ROS monitor node receives a message type containing
a Header and 3 float values. The ROS imageprocessing publishes a message type containing
a Header and two float values containing setpoints for the plant. Alongside these two nodes,
the luna bridge node is running accompanied by the rlb helper node, containing the helper
node to perform runtime binding. This setup results in the (simplified) graph depicted in left
in Figure 12. The LUNA application on the embedded system is configured to send initial-
ization instructions to let the luna bridge node connect to the two setpoint fields inside the
ROS imageprocessing node, and to make publishers for the ROS monitor node. When these
commands are received, it results in the structure depicted right in Figure 12: the nodes are
now connected.

Figure 12. ROS graphs showing node overview before (left) and after (right) the LUNA application connects.

5https://www.gumstix.com/
6http://www.ntp.org/
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3.2.2. Timing analysis

A second test is performed to analyse the timeliness in the different parts of the sys-
tem. To perform this, the LUNA application is configured to receive values from the
ROS imageprocessing, store these values and reply them in soft real-time. Parallel with this
task, a hard real-time task with higher frequency is performed, emulating the controller. Since
timeliness is analysed, no actual controller and no plant is connected to the setup. The times-
tamps from these actions are saved for further analysis. The nodes running in ROS also store
the time stamps. For better repeatable test, the camera on the embedded system is replaced
with a video file, which is streamed from the embedded system using gstreamer (an open
source multimedia framework)7. The stream is converted to a virtual webcam at the PC, and
used in the ROS imageprocessing node. This structure is depicted in Figure 13.

Figure 13. Overview of the total system, drawn in TERRA. Implementation of the CSP-based application and
distribution over systems are added for clarity.

Only the LUNA application block is implemented in LUNA, the other parts are just
representations of the different links present in the setups. The frequency of the HRT task is
set to 500 Hz, and the frequency of writing packages to ROS is set to 62.5 Hz.

Inside the LUNA application (refer to Figure 13), three sequential processes are com-
posed inside a PriPar setting. The hard real-time task (HRT TASK) receives highest priority.
Inside this process, a time stamp is recorded, allowing to measure the frequency of the pro-
cess, and the observation of the deviation in start time (jitter). To make synchronization of
measurement data over multiple processes easier, also a unique value is written to the output
buffer using the HRT variable out variable. The period of this process is controlled through
the first writer, which is connected to a TimerChannel. This TimerChannel is activated after
its specified period, letting the writer at the start of the process wait until the period indicates
the process should start.

The second process (SRT SENDBUFFER) is the process which controls when data
should be written to ROS. It would be possible to make this write conditional (where a con-
dition checks whether a write is needed, e.g. when there are a certain amount of variables
present in the buffer), but for simplicity a TimedChannel is used again. The third process
(with lowest priority, SRT ROS READWRITE) asynchronously receives values from ROS
using two readers. It receives the asynchronous data from the network and uses readers to
convert it to synchronous variables. These readers are connected to ROS using the ROSChan-
nels, and receive the X and Y position from the image processing node. The readers are

7https://gstreamer.freedesktop.org/
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Table 1. Jitter measured at multiple parts of the setup.

HRT task SRT send buffer SRT received notify ROS imageprocessing ROS monitor
∆T (ms) 20.0 16.0 66.7 66.7 66.6
std(∆T )(ms) 0.0635 0.0730 15.2 1.97 17.6
J(ms) 0.0530 0.0598 12.2 1.58 14.5
Jrelative 0.265% 0.373% 18.3% 2.38% 21.7%

placed in a Parallel composition, and the received values are stored in intermediate variables.
When both readers are finished, a code block copies these intermediate variables to the ac-
tual variables. This assures synchronized update of variables originating from the same ROS
message.

After receiving these values, the time stamp is recorded, and the same values are written
back to ROS using writers connected to the ROS monitor node. This allows the measurement
of the round-trip time.

The time stamps at the ROS side of the setup are also recorded. The time stamp when
the X and Y position are published is recorded, and the time when the ROS monitor receives
a value is monitored. Using the values and order of the data in the messages, it is possible to
determine the delays in the system. Analysing the difference in start time (∆T) between two
successive executions, allows to measure the jitter (J).

Since different frequencies are being observed, the jitter of different periods needs to be
compared relative to their period:

J = |∆T −∆T |

Jrelative = 100% ∗ J

∆T

In Table 1, the results are depicted of these jitter measurements.
The results show, that the HRT task (HRT task) has the least jitter: 0.265%. The SRT

task which sends the buffer (SRT send buffer) also has has a low value for the jitter: 0.373%.
These two tasks are purely located on the embedded system inside the LUNA application, and
are activated by a TimedChannel: therefore the low jitter complies with the expectation. The
image processing (ROS imageprocessing) is running on a non real-time PC, and therefore
has higher jitter. When the data is sent over the network, this jitter increases: the process that
receives the data (SRT received notify)) has a jitter of 18.3%. Sending the data back to the
ROS monitor introduces again an increase in jitter: the visualization node has a relative jitter
of 21.7%.

Both the increase in jitter when data is sent over the network, and the high jitter in the
execution of the imageprocessing show the need for a combined setup, where a real-time
capable framework is used for the real-time tasks.

The delays between three different parts of the system are interesting: the delay
between publishing the results from the image processing and receiving these values
(ROS imageprocessing→ SRT receive notify), the delay between receiving the values and
sending values back (SRT receive notify→ SRT send buffer), and the delay between start-
ing transmission from LUNA and receiving them in the ROS monitor (SRT send buffer
→ ROS monitor). Refer to Table 2.

In this setup, there is an average round trip time of 31.5 ms. The largest part from this
delay is present in sending from the image processing node to LUNA. The second largest
delay is present between receiving and returning the values inside LUNA. This occurs due to
the buffering: data is buffered for 0.016 s. When data arrives at the start of this period, it has
to wait for the whole period before it is sent back. The maximum delay in this test is 15.2 ms,
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Table 2. Delay measurements.

ROS imageprocessing
→ SRT receive notify

SRT receive notify
→ SRT send buffer

SRT send buffer
→ ROS monitor

Total
RTT

Average (ms) 15.5 13.4 2.6 31.5
Stdev (ms) 10.0 3.3 4.6 11.7
Max (ms) 76.6 15.2 26.6 89.3
Min (ms) 5.5 0.5 0.5 9.8

which is within this 16 ms period. Sending data back to ROS is faster than receiving: on
average 2.6 ms is needed to send data back. The delays have a large standard deviation. This
coincides with the measured jitter in the previous test: the deviations in the network make the
jitter increase inside the nodes.

3.2.3. Controlling a robotic setup

In the next test, the LUNA application from the previous test was modified. The hard real-
time task was replaced with a controller, and connected to a real robotic setup. This setup,
named JIWY, is a pan/tilt camera controlled by two motors. The LUNA application executes
the controller at a rate of 100 Hz, for which the control loops where derived. The architecture
is changed, to fit the new controllers (PanPositionController and TiltPositionController) and a
block to interface with the IO of the encoders and the PWM of the motors. Refer to Figure 14.
A block is added to send data to ROS after a specified time, and a block to generate setpoints

Figure 14. Architecture of setup to control a JIWY setup, drawn in TERRA

is added. Generating these setpoints is done at 100 Hz, and uses the last received setpoints
from ROS, allowing the system to easily update the setpoints, without the need to wait for
non real-time data from ROS (Figure 15). The last received setpoint values are updated in
var sync, assuring synchronized update of the pan and tilt setpoints. The controllers will wait
until these setpoints are placed on their channels, causing the controllers to also run at 100 Hz.

3.2.4. Setting orientation of JIWY from ROS

Using the same videostream as in the timing analysis, it was possible to let the JIWY setup
follow the same trajectory as the green dot present in the videostream.

The setpoint and encoder values in pan direction are fairly similar: some small settling
effects are present on the encoder values. A series of setpoints is set, and the controller can
overshoot this setpoint due to its integral action. It tries to steer back to the setpoint, until the
next setpoint arrives. Refer to Figure 16.

A larger error is present in the tilt direction: although the same pattern is followed, a
scaling error is present. This is caused by an inproperly tuned controller, which has a DC
gain.
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Figure 15. CSP diagram for generating setpoints and receiving new setpoints from ROS.
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Figure 16. Pan and tilt setpoint from image processing versus the encoder values.

3.2.5. Object tracking using JIWY

An additional test was done by slightly modifying the previous test: the filestream was re-
placed by the actual camera in the JIWY setup. Since the image data now also will change
due to the rotation of the camera, the image processing was adapted to publish the differ-
ence between the location of a green blob and the center of the frame. Furthermore, the net-
work link was also replaced by a wireless one, causing delays from the network to be less
predictable.

Using this setup, it was possible to follow a moving green dot present in the cameras
view. A graph depicting the pan and tilt setpoints compared to the pan and tilt encoder values
is presented in Figure 17.

Since the difference in location is published to the robotic setup, the summation of this
difference is compared to the encoder values.

As seen in Figure 16, both pan and tilt seem to follow the calculated setpoint roughly:
the added delay combined with the incremental update of the setpoint, which is calculated by
taking the difference of the location of the green blob and the center of the frame, results in a
delayed and smoothed response. Measuring the location of the green blob with respect to the
center of the frame, effectively adds an additional P-type controller over the whole system,
which includes the delay caused by the network. When delays become too high, this could
reduce the stability of the system (refer to ten Berge et al. [16]). Since all setups that use a
wireless or long distance connection could suffer from these type of delays, it is not possible
to counter this effect inside the bridge. It is better to use a more complex type of controller,

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



60 W.M.van der Werff et al. / Connecting Two Robot-Software Communicating Architectures

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Pa
n

(r
ad

)

Pan setpoint Pan encoder

0 2 4 6 8 10

−0.4

−0.2

0

0.2

0.4

Time

Ti
lt

(r
ad

)

Tilt setpoint Tilt encoder

Figure 17. Pan and tilt setpoint from image processing versus the encoder values.

which holds its stability even with uncertain delays: for example by adding passivity layers
and an energy balance for safety, as proposed in Franken et al. [17].

4. Conclusion

In this paper, a way two combine two different environments is proposed, implemented and
tested. The implementation allows to connect the Robotic Operating System with LUNA,
a real time CSP-execution framework. The implementation is made in such way that it is
reusable in future applications, by supporting a high degree of freedom through the support
of basic data types, and the runtime binding to arbitrary ROS message types during runtime.
Combining ROS and LUNA allows to use both systems in the area they perform well: ROS
has a lot of algorithms and a large community, while LUNA based applications are able run
in real time on an embedded system, and allow the execution of CSP. Furthermore, combing
these two environments allows to offload parts of the software of a robotic setup to a bases-
tation: this allows the processing inside the robotic setup to remain lightweight and more
energy efficient, while complex algorithms could still be used.

Tests show that the implemented runtime binding is slower compared to a generic C++
publisher: this is as expected, since additional steps needed to perform runtime binding were
added. The implementation is faster compared to the Python implementation, showing the
favour of using compiled code. When simple runtime binding subscribers are tested, it ap-
pears that the Python implementation is faster, compared the runtime binding subscriber. This
is probably caused by optimizations present in the Python implementation, allowing simple
data types to be received faster. When the implementation is combined with other parts into
a larger application, an compilable environment is preferred, as the other parts will benefit
from compilation. Verification tests shows correct serialization of the messages during run-
time, and allow to test whether a ROS environment contain message types that are not usable
yet.

A test setup closely related to a real world application, namely controlling a robotic setup
using vision, shows correct functioning and the usability of the bridge: a pan/tilt camera is
connected to an embedded system, which streams the camera data over a (wireless) network
to a resource rich platform running ROS. The image processing in ROS detects the location
of a green dot, and sends setpoints through the ROS-LUNA bridge back to the embedded
system, which uses these setpoints to update the setpoints in the controller. The controller
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uses these setpoints to move the pan and tilt axis to the correct orientation, and send data back
to ROS, allowing visualization of the state of the setup for the user. Combined, this resulted
in a cyber-physical system tracking an object. The added delay by the network causes the
motions to be non-ideal: although at no point control was lost over the setup, the setpoints
do not exactly match the systems response. When delays become too high, it might lead
to instabilities however. Since all long range communication will suffer from these type of
delays, it is advised to make a more advanced controller, by adding a passivity layer and
an energy balance. Such systems have proven to remain stable, even when unpredictable
network delays are present in a setup.

Currently, the system is partly designed in the graphical environment TERRA: parts of
the generated code are modified after code generation to use this new LUNA bridge through
the new and improved ROSChannels. These channels are setup in such way, that they can
further be integrated in the TERRA tool suite. This increases the ease-of-use for the end user:
he will be able to design the structure of the robotic setup in one tool, even when it spans
multiple environments.

The runtime binding provided by the ROS-LUNA bridge, used to connect to an arbitrary
ROS topic during runtime and without having upfront knowledge about the message defini-
tion, is reusable for other embedded systems as well, without the use of LUNA. This allows
future expansion of ROS with embedded devices, when these devices (e.g. microcontrollers)
are not able to run LUNA.
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