
Communicating Process Architectures 2016
K. Chalmers, J.B. Pedersen et al. (Eds.)
Open Channel Publishing Ltd., 2016
© 2016 The authors and Open Channel Publishing Ltd. All rights reserved.

223

Development and Evaluation of a Modern
C++CSP Library

Kevin CHALMERS 1

School of Computing, Edinburgh Napier University

Abstract. Although many CSP inspired libraries exist, none yet have targeted modern
C++ (C++11 onwards). The work presented has a main objective of providing a new
C++CSP library which adheres to modern C++ design principles and standards. A sec-
ondary objective is to develop a library that provides simple message passing concur-
rency in C++ using only the standard library. The library is evaluated in comparison to
JCSP using microbenchmarks. CommsTime and StressedAlt are used to determine the
properties of coordination time, selection time, and maximum process count. Further
macrobenchmarks, Monte Carlo π and Mandelbrot, are gathered to measure poten-
tial speedup with C++CSP. From the microbenchmarks, it is shown that C++CSP per-
forms better than JCSP in communication and selection operations, and due to using
the same threading model as JCSP can create an equal number of processes. From the
macrobenchmarks, it is shown that C++CSP can provide an almost six times speedup
for computation based workloads, and a four times speedup for memory based work-
loads. The implementation of move semantics in channels have provided suitable en-
hancements to overcome data copy costs in channels. Therefore, C++CSP is consid-
ered a useful addition to the range of CSP libraries available. Future work will inves-
tigate other benchmarks within C++CSP as well as development of networking and
skeleton based frameworks.

Keywords. CSP library, microbenchmarking, macrobenchmarking, C++

Introduction

This paper describes work undertaken in the development and evaluation of a new C++ li-
brary supporting CSP semantics that uses modern C++ standards and design principles. The
aim of the developed library is to provide an API familiar to both the JCSP programmer
and the C++ programmer, with the latest C++ standard exploited to provide some additional
syntactic sugar. The aim of the work is not to build an optimised runtime at present, but
rather build upon the concurrency model exposed in modern C++, that is, the C++11 standard
onwards.

The rest of the paper is divided as follows. In Section 1 background on related CSP
libraries is presented alongside an overview of modern C++ standards and design principles,
and how these are used in the new C++CSP library is discussed in Section 2. In Section 3
an experimental framework is described, the defined benchmarks being used to evaluate the
library. Results of the experimental work are provided in Section 4. Finally, Section 5 draws
conclusions and highlights future work directions with the library.

1Corresponding Author: Kevin Chalmers, School of Computing, Edinburgh Napier University, Edinburgh,
EH10 5DT. Tel.: +44 131 455 2484; E-mail: k.chalmers@napier.ac.uk.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

224 K. Chalmers / A Modern C++CSP Library

1. Background

A number of libraries supporting Hoare’s CSP semantics [1] exist. Languages such as
Java (JCSP [2], CTJ [3]), Python (PyCSP[4]), Haskell (CHP [5]), JavaScript [6] and C++
(C++CSP [7]) have all had a library developed and evaluated, either using the language’s
inbuilt threading support or through external library support. Of these libraries, JCSP is the
most well known.

Developed libraries are almost always implemented within the language’s provided
multi-threading mechanisms. For example, JCSP utilises operating system threads as exposed
through Java’s runtime. Other approaches exist for implementing CSP semantics. A recent
C# approach has investigated the use of asynchronous operations [8]. Python approaches to
CSP semantics have explored stackless and non-concurrent methods. Java approaches have
also aimed at millions of processes via bytecode rewriting [9]. Also, previous C++ work eval-
uated both thread and fiber support as provided by external libraries and the native operating
system.

Most CSP libraries provide primitives in an API that would be familiar to the standard
programmer in the target language. However, Communicating Scala Objects [10] aims to
provide familiarity to the CSP user.

1.1. Why Another C++CSP Library?

C++CSP2 launched in 2007, the last update occurring in 2013. C++CSP2 requires the Boost
set of C++ libraries, requires the library be pre-built, and the library is not easily extensible.

An advantage of aiming at a low level language such as C or C++ is the ability to in-
tegrate with other languages. Indeed, the CCSP library has been integrated into Java [11].
Although CCSP would be an ideal target library for many concurrent runtimes, the library
requires a Unix based operating system for building, and therefore some areas of the market
are excluded.

In addition, modern C++ has threading support provided within the standard library.
Therefore, a further aim of this work is to build and evaluate a C++CSP library using modern
C++ standards.

1.2. Modern C++ and C++ Design

C++CSP utilises the various design principles encouraged in modern C++. C++CSP is a
header only library and thus requires no pre-built code, and is therefore easy to incorporate
within existing code. A compliant C++11 compiler is all that is required to use C++CSP.

One of the design decisions made for C++CSP was to allow expression of parallelism as
simply as possible. Therefore, a number of approaches in C++ have been utilised as detailed
in Section 2.

The rest of this section discusses the features and design principles utilised in C++CSP.
The C++11 standard onwards provides a number of new features to the language and standard
library, however only those relevant to the development of C++CSP are discussed in this
section. The topics covered are:

• new C++ language features.
• threading support in C++.
• modern C++ design features.

1.2.1. New Language Features

C++ as added a number of new language features to simplify and optimise application de-
velopment. Here, four new features are described: move semantics; initializer lists; variadic

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 225

templates, and lambda expressions. Smart pointers are also described, although they are part
of the standard library supported by the language features discussed.

Move Semantics The C++11 standard introduced a new parameter passing concept in the
form of move semantics. Move semantics (rvalue references) enable parameters to be moved
into new scopes rather than being copied or referenced, and are enabled via new constructors
and assignment overrides, as well as declaring parameters as rvalues using the && type
declaration. Move semantics provide advantages over both copy and reference passing:

1. there is no reference held in the caller’s scope, reducing side-effects.
2. there is no copy created, reducing memory overhead.

A key use of move semantics is in collections. All C++ standard collections implement
move constructors and assignment operators, and therefore as data is moved into the new
scope rather than explicit copies being made, temporary memory allocation and copying is
removed.

Initializer Lists Initilializer lists provide a method to construct an object via a list of values.
A list of values is defined which can be iterated across to initialise an object, or passed into
a function for a similar purpose. For example, C++ collections are automatically constructed
from an initializer list of the correct type.

As an example, consider Listing 1.

1 vector <int > v{1, 2, 3, 4, 5};

Listing 1: Object Creation via an Initializer List.

Here, the vector v is provided elements in a bracketed list. Elements of the list become
elements of the vector in the order defined, and as the list is also a rvalue, the elements are
moved into the vector constructor.

Initializer lists are useful for the declaration of small lists of data in code, or for a list of
elements that share a common base type. They are not useful as a data store themselves, but
are rather syntactic sugar for object creation with some optimisation.

Variadic Templates C++11 also introduced variadic template concepts, which enhance the
power of C++ templating with a richer set of possibilities. Variadic templates are powered by
the parameter pack, a variable length type definition denoted by A parameter pack is
expanded during compilation to provide access to the types held within.

As an example, consider Listing 2.

1 template <typename T, typename ... args >
2 void foo(T value , args ... rest)
3 {
4 cout << value;
5 if (sizeof ...(args) > 0)
6 foo(rest);
7 }

Listing 2: Variadic Template Example.

Listing 2 declares a templated function foo with a standard type T and a variadic type
args. foo also takes parameters of type T and args. foo prints the parameter of type T, and
then recursively calls itself if the size of the remaining parameter pack is one or greater. The
recursive call ensures that the head of the parameter pack is allocated to T in the recursive
call, and the remainder of the parameter pack is allocated to args.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

226 K. Chalmers / A Modern C++CSP Library

In comparison to standard C++ templating and the generic capabilities of Java and C#,
the power of variadic templating is the enabling of new compile time types. Variadic tem-
plates permit function objects of various type lengths, and allow thread creation with
multiple parameters to be type safe. Listing 3 illustrates this concept.

1 void work(int x, float y, string str)
2 {
3 // ... do some work
4 }
5
6 int main(int argc , char **argv)
7 {
8 // Create thread from work function
9 thread t(work , 5, 2.0f, string("test"));

10
11 // ...
12 }

Listing 3: Thread Creation with Multiple Parameters.

The C++ standard library uses variadic templates throughout. The standard advises that
C-style variadic functions be no longer used, with variadic templates replacing the capability
in a type safe manner. Variadic templates also enable and support other new features of C++
including tuples and lambda expressions.

Lambda Expressions Lambda expressions are another addition to C++. The general prin-
ciples follow those of other languages which have added lambda expressions; functions can
now be treated as first class objects and anonymous functions can be defined. An example
lambda expression is provided in Listing 4.

1 int a = 5;
2 int b = 10;
3 auto fun = [=](int x, int y) { return x / a + y / b; };

Listing 4: Lambda Expression in C++.

auto allows the compiler to determine the type at compile time, negating the need to
explicitly define the type.

Lambda expressions in C++ have three parts: the capture method; the parameter list; and
the function body. The capture method is defined using square brackets ([]). The method
allows the programmer to explicitly define how used variables in the lambda expression are
captured in the constructed object. = means values are copied, whereas & means a value
is referenced, leading to potential mutation of the created object. Capture methods can be
mixed, and others exist to enable capture of the this pointer.

The parameter list is a basic list of parameter types and associated names. The lambda
body is a standard set of instructions. The return type of the lambda can be defined or the
compiler can determine it based on the return call made.

function objects provide the expressiveness required to utilise lambda expressions.
function is a templated type; the type template being the same as the type definition for the
lambda expression. For example, we can have:

• void(int, int) a function that takes two int parameters and returns nothing.
• int() a function that returns an int and takes no parameters.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 227

function objects can be created from existing functions. The function object can then
have values bound to it, allowing further currying of the function. Once curryed, the function
can be called with the new set of required parameters. Listing 5 illustrates this concept.

1 void add(int x, int y)
2 {
3 return x + y;
4 }
5
6 int main(int argc , char **argv)
7 {
8 auto add_three = bind(add , 3, _1);
9 int x = add_three (5); // x is now equal to 8

10 }

Listing 5: Currying a C++ Function.

The _1 denotes a placeholder, stating the first parameter passed to add_three will be
used for this parameter. Other numbered placeholders exist.

Finally, as C++ has operator overloading capabilities, functor objects can be used to
create function objects. Consider Listing 6.

1 struct functor
2 {
3 void operator(int x, int y) { /* ... */ }
4 };
5
6 int main(int argc , char **argv)
7 {
8 functor f;
9 function <void(int , int)> fun(f);

10 }

Listing 6: Using Functor Objects.

In Listing 6, struct functor declares a call operator overload, and therefore we can
convert the object into a function object.

With lambda expressions, C++ provides functional programming mechanisms. Tem-
plates provide the strong typing at compile time, but flexibility at development time. Variadic
templates in particular can be useful here.

Smart Pointers Smart pointers overcome the need for keeping track of allocated resources
without the use of garbage collection. Resources are tracked through the use of copy con-
struction, move semantics, and object destruction to determine when a resource should be
freed. The C++11 standard formalised three smart pointer types:

• unique_ptr is a resource owned by one, and only one, scope.
• shared_ptr is a resource owned by multiple scopes and controlled via reference

counting.
• weak_ptr is a non-owning (i.e., non-counted) reference to a shared_ptr controlled

resource.

unique_ptr has zero overhead beyond object construction and destruction and en-
ables automatic cleanup of allocated resource. shared_ptr has an overhead due to reference
counting, but does enable simple management of shared resources that need to be cleaned up
when no longer needed. weak_ptr is used in circumstances where temporary referencing is
required, and has some overhead associated with copying the shared_ptr object.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

228 K. Chalmers / A Modern C++CSP Library

1.2.2. Threading Support in Modern C++

Threading support in the standard library is also a feature of modern C++. Support is provided
in four features:

• Threads and the associated locking mechanisms.
• Futures.
• Atomics.
• A defined C++ memory model.

Thread Creation Basic multi-threading support is provided via instantiation of the thread
class. Listing 3 provided an example of how to create a thread object.

The thread class is similar in most regards to the Java and C# threading classes. How-
ever, C++ threads have subtle differences.

Firstly, C++ threads are not necessarily operating system threads, although it is likely
that they are, and major compilers have adopted this model. Therefore, a C++ thread could
be represented via a lightweight threading library under the hood.

Secondly, as a C++ thread may not be an operating system thread, certain features com-
mon in threading libraries are not present. For example, a C++ thread cannot be interrupted
externally. The CPA community will find this concept intuitive as events replace interrupts in
most regards.

Finally, a C++ thread is owned by the creating context/scope. C++ threads cannot be
copied, and can only be shared using pointers or move semantics.

Mutex Basic C++ thread coordination is provided by the mutex object. Unlike Java and C#,
where every object can be used for coordination, C++ requires explicit creation of individual
mutex objects to control access to shared resources.

A mutex provides only three methods: lock; unlock; and try_lock. lock and unlock
are obvious, and try_lock returns true or false dependent on the success of attempting to
lock the mutex. In this case, no waiting will occur.

As with threads, mutexes are typically provided by the OS, although may be replaced
with other backend dependent on the compiler used.

Lock guards Automated mutex locking is supported in C++ by the lock_guard type. The
lock_guard will automatically lock a mutex on the guard’s creation, and will automatically
unlock the mutex on the guard’s destruction. lock_guard utilises RAII concepts (see Sec-
tion 1.2.3) and an example is provided in Listing 7.

C++ provides two guard techniques. lock_guard operates as described, and unique_lock
ensures the lock is accessible in only one scope. unique_lock is used within the condition_variable
discussed next.

Condition variables Mutexes and lock guards provide only mechanisms to lock resources,
and provide no mechanisms for signaling between threads. The condition_variable is the
C++ class providing such functionality, via suitable methods for both waiting and notifying.

A condition_variable is a separate object to mutex and lock_guard, and a call to
wait on a condition variable must provide a unique_lock object as a parameter.

1.2.3. C++ Design Principles

Two main design principles have been used to ensure a well designed library for C++CSP -
PIMPL and RAII.

PIMPL PIMPL is short for private implementation or pointer to implementation. PIMPL is
a design principle in C++ where the inner workings of a class are hidden from global scope
by using a privately declared, internal class, with a pointer to an instance of the internal class

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 229

contained within the external class. PIMPL allows an object to be copied easily - the overhead
being a pointer copy, and therefore provides a mechanism similar to Java referencing.

PIMPL is a useful paradigm for object-orientated C++, as C++ polymorphism requires
pointers or references to function. As a C++ reference must be associated with an instantiated
object, and cannot change which object it is associated with, pointers become the only rea-
sonable design choice for C++ polymorphism. PIMPL permits base class instantiation when
working with class hierarchy with an abstract base class. As the external class provides an
interface to the internal class, there are no pure virtual methods in global scope, and hence
no abstract classes externally. A specialization class implements its own internal specialized
class, providing an actual implementable definition.

RAII Resource Acquisition is Initialisation (RAII) is a design principle used to control re-
source lifetime. RAII states that an object should create/acquire its resources on instantiation,
and destroy/free its resources on destruction. The principle requires that a resource exists and
is held by an object between the end of initialisation (construction) and the start of finalisa-
tion (destruction), and thus correct use of RAII ensures resources do not leak as long as the
object does not leak (i.e., is cleaned up correctly).

RAII is typically associated with object lifetim, however the general principle of RAII is
also used in C++ for scope based resource management. In particular, C++ threading relies
on RAII principles, an example of which is provided in Listing 7.

1 mutex mut;
2 resource res;
3
4 void work()
5 {
6 lock_guard <mutex > lock(mut);
7 // ... work with locked resource.
8 // End of scope. lock_guard automatically released.
9 }

Listing 7: lock_guard with RAII.

A lock_guard object is created at the start of the function scope. For initialisation of the
lock_guard to complete, it must acquire (lock) control of the mutex, and at this point the
scope has exclusive access to the resource managed by the mutex. At the end of the function
scope, the lock_guard object is automatically destroyed as it is a stack based object, and
on object destruction, the lock_guard automatically calls unlock on the mutex, freeing the
resource.

1.3. Objectives

The aim of this work is to develop and evaluate a modern C++CSP library. The library should
be easy to use by any C++ programmer, utilise C++ threading support, and adhere to modern
C++ design principles.

Library evaluation is undertaken using micro and macro level benchmarks. Microbench-
marks allow base properties of the C++CSP library such as communication time, selection
time, and memory usage, to be examined. JCSP will be used as a comparator to C++CSP
as JCSP is the maturest library taking CSP as an inspiration, and therefore provides a good
baseline. Ideally the existing C++CSP library would also be used as a comparator. However,
it was determined that the existing version of C++CSP no longer builds with a modern C++
compiler and Boost installation.

The objective in undertaking microbenchmarking is the comparison of the basic prop-
erties in C++CSP to a standard. The aim is therefore to determine if a modern C++CSP is a

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

230 K. Chalmers / A Modern C++CSP Library

useful addition. C++CSP itself is a stepping stone towards further work outlined in the Future
Work section of this paper.

Macrobenchmarking will analyse the potential speedup available using C++CSP. It is
expected using C++CSP will incur a minimal overhead, and therefore a good overall speedup
should be evidenced. The objective of the macrobenchmarks therefore lie in illustrating good
speedup potential.

2. Design of C++CSP

In this section, the design aspects of C++CSP are discussed within the context of the stan-
dards and principles described in Section 1.2. The goal of the library is to make C++CSP as
simple to use as possible, and the concepts used are as follows:

move semantics and rvalues used throughout the library; channel communication exploits
data movement when possible.

smart pointers used throughout the library; C++CSP has a pointer free API.
initializer lists used throughout; especially useful in par construction.
variadic templates used in process creation.
lambda expressions used in process creation and helper patterns.
PIMPL used throughout to provide pointer free API.
RAII used throughout; resource management hidden from API user as much as possible.

Operator overloading has been used to provide callable objects and automatic conversion
of channel types to channel end types.

The remainder of the section is divided into six subsections as follows:

1. an example of the high level design of the library.
2. library features.
3. primitive implementation (channels and barriers).
4. process and parallel usage.
5. selection and timers.
6. exemplar applications.

2.1. High Level Design

Figure 1 presents a high level view of class associations in part of the library. The
one2one_chan type is shown as it provides enough for discussion on the use of PIMPL and
RAII.

For each row in Figure 1, only the leftmost type is user accessible and usable. The other
types are internal support classes for C++CSP hidden from the C++CSP library user. There
are six types of note: one2one_chan; chan; alting_chan_in; chan_in; chan_out; and
guard. Of these types, only one2one_chan is user creatable, the others being accessible from
the this core instantiated channel.

one2one_chan is a core channel type in C++CSP, with one2any, any2one, and any2any
channel types also supported by C++CSP. one2one_chan itself is only a shell definition,
containing a created chan object (RAII), and methods to construct input and output channel
ends from the instantiated chan object.

The channel end types - alting_chan_in, chan_in, and chan_out in Figure 1 - pro-
vide read and write functionality exposure from the chan object. alting_chan_in extends
both the chan_in and guard classes to expose correct external behaviour. Each of the chan-
nel end types also use the PIMPL idiom, and therefore have private internal implementa-
tion classes, the outer classes being shells to interact with these internal class implemen-

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 231

one2one_chan
T

chan
T

chan_internal
T

chan_in
T

chan_in_internal
T

guard guard_internal

alting_chan_in
T

alting_chan_in_internal
T

chan_out
T

chan_out_internal
T

_chan _internal

_in

_internal

_internal

_out

_internal

_internal

_chan

_chan

_guarded

Figure 1. High Level Diagram Example of C++CSP Architecture.

tations. Because of the PIMPL approach, alting_chan_in_internal also specialises the
chan_in_internal and guard_internal classes.

The internal class instantiations each have a copy of the chan object, itself a shell
to the private chan_internal class. However, chan_internal itself is abstract, with
basic_chan_internal and buffered_chan_internal types provided in C++CSP for
core channel functionality.

C++CSP therefore operates on a cenralised channel model. Other classes are effectively
interfaces to the inner chan instantiation, providing access to the chan_internal class for
other parts of the C++CSP library. Such an approach enables simple updating of the channel
functionality as only basic_chan_internal and buffered_chan_internal contain ac-
tual channel operation code. Thus, simple extensibility is possible in future, such as planned
network channel functionality.

2.1.1. Pointer Free API

One criticism often levelled at C and C++ is the requirement to work with memory resources
via pointers. Although C++11 provides smart pointers to automate resource management, an
understanding of when to use and define pointer types is still often required.

The PIMPL idiom was developed to overcome the requirement of working with pointers
directly, and best practice in C++ now dictates that pointers be avoided in all but exceptional
circumstances. Indeed, the C++ standard library does not expose pointers itself, utilising the
PIMPL idiom throughout.

The RAII idiom ensures resource lifetime is managed by object lifetime. Therefore,
combining RAII and PIMPL, and augmented by smart pointers, provides a C++CSP API that
exposes no pointers, and requires no usage of pointers.

2.2. Library Features

Two features of note are provided with the C++CSP library: the ability to treat certain objects
as functions (via operator overloads); and the provision of helper patterns to support simple,
common behaviours found in CSP libraries.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

232 K. Chalmers / A Modern C++CSP Library

2.2.1. Operator Overload for Common Behaviour

An often overlooked feature of C++ is the ability to overload operator behaviour on an object.
One such operator is the call or invoke operator (). This operator allows the programmer to
treat the object as a callable function.

C++CSP uses operator overloading of the invoke operator to call common behaviour of
the object in question. As an example, consider Listing 8.

1 void successor(chan_in <int > in, chan_out <int > out)
2 {
3 while (true)
4 {
5 auto val = in();
6 out (++ val);
7 }
8 }

Listing 8: Callable Channel Objects.

Here, a value is read from the the in channel by invoking it using the call operator. A
value is also written to the out channel in a similar manner, but with a parameter passed into
the call.

C++CSP provides invoke operator overloads on most basic types:

• channels
• barriers
• parallels
• processes
• alts

The overloads provide syntactic sugar when working with these types, and the override
simply calls an existing method on the object. For example, calling an alt object will invoke
the fair select method.

2.2.2. Helper Patterns

One common requirement when developing in a CPA style is the need to perform certain
common operations in parallel. For example, reading or writing with a collection of channel
ends in parallel is a common pattern of behaviour. Replicated parallel operations (parallel
loops) are also features of both CSP and occam, and therefore it is sensible to implement
such behavioural patterns directly within a CSP inspired library.

par_for allows a function to be executed in parallel based on a collection of parameter.
Listing 9 provides an example of how par_for can be used.

1 void delta(chan_in <int > in, vector <chan_out <int >> out)
2 {
3 while (true)
4 {
5 auto value = in();
6 par_for(out.begin(), out.end(), [&](chan_out <int > chan){chan(

value);});
7 }
8 }

Listing 9: par_for Helper Pattern.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 233

par_read and par_write are similar patterns that perform parallel reads and parallel
writes on a collection of channels. Their definitions are provided in Listing 10 with other
definitions for working with vector types and ranges part of the C++CSP library.

1 template <typename T>
2 std::vector <T> par_read(std:: initializer_list <chan_in <T>> && chans);
3
4 template <typename T>
5 void par_write(std:: initializer_list <chan_out <T>> &&chans , const

std::vector <T> &values);

Listing 10: par_read and par_write Definitions.

The helper patterns provide further syntactic sugar to the programmer, but at the cost of
threads being created each time the helper patter function is called. That being said, the plug
and play library provided with C++CSP uses the helper patterns whenever possible.

2.3. Primitives Implementation

C++CSP provides two core event primitives: channels; and barriers. A discussion of the
model used to implement channels was provided in Section 2.1, and barrier follows the
same principles. A selectable alting_barrier that extends the barrier type has also been
provided in the C++CSP library.

2.3.1. Channels

Figure 1 provided an extract of the high-level architectural view of a C++CSP channels. In
this section, the behavioural implementation of C++CSP channels is provided, presenting
both the write and read operations.

Listing 11 presents a simplified version of the C++CSP channel write operation. Step-
ping through the pertinent lines:

1 void write(T value)
2 {
3 std:: unique_lock <std::mutex > lock(_mut);
4 _hold.push_back(std::move(value));
5 if (_empty)
6 {
7 _empty = false;
8 if (_alting)
9 guard:: guard_internal :: schedule(_alt);

10 }
11 else
12 {
13 _empty = true;
14 _cond.notify_one ();
15 }
16 _cond.wait(lock);
17 }

Listing 11: Channel Write Operation.

3 lock the channel for exclusive use.
4 store the written value. Note that C++CSP uses a vector to store values to enable simple

movement communication.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

234 K. Chalmers / A Modern C++CSP Library

5-10 if the channel is empty, set empty to false, and notify any waiting alt.
11-15 otherwise the reader is waiting, so set empty to true and notify the reader.
16 wait for the read to finish.

Listing 12 presents a simplified version of the C++CSP channel read operation. Stepping
through the pertinent lines:

1 T read()
2 {
3 std:: unique_lock <std::mutex > lock(_mut);
4 if (_empty)
5 {
6 _empty = false;
7 _cond.wait(lock);
8 }
9 else

10 _empty = true;
11 auto to_return = std::move(_hold [0]);
12 _hold.pop_back ();
13 _cond.notify_one ();
14 return std::move(to_return);
15 }

Listing 12: Channel Read Operation.

3 lock the channel for exclusive use.
4-8 if the channel is empty, set empty to false and wait for the writer.
9-10 otherwise set empty to true.
11 retrieve the value from the store.
12 empty the store.
13 notify the writer.
14 return retrieved value.

Combined together, we have behaviour defined for either the read committing first, or
the write committing first. The different behaviours are illustrated in Figure 2.

Tick Reader Writer Reader Writer
1 lock lock
2 set empty false store
3 wait set empty false
4 lock schedule
5 store wait
6 set empty true lock
7 notify set empty true
8 wait retrieve
9 retrieve notify

10 notify return
11 return return
12 return

Figure 2. Overview of Channel Behaviour. Read commit first is on the left, and Write commit first is on the
right.

Channel ends provide the correct interface to the internal channel, with mutexes, etc.,
created utilised as required.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 235

2.3.2. Move Semantic Channels

Channels in C++CSP exploit move semantics, and when a channel is written to, the C++CSP
user can choose to pass the parameter directly as a copy, or they can move it into the channel.
Listing 13 illustrates how pure movement can be achieved.

1 chan_out <mandelbrot_packet > out;
2 // Value is copied into channel , then moved out.
3 out(packet);
4 // Value is moved into channel , then moved out.
5 out(move(packet));

Listing 13: Using Channels.

Within the channel, the written value is moved into the local store, and then moved out
during the subsequent read operation. The channel retains no copy, nor creates any additional
copies unless the programmer chooses to when calling the write operation. The aim in pro-
viding move functionality in channels is to reduce copying, while ensuring values are not
referenced between process scopes.

2.3.3. Auto Conversion of Types

Channels can be converted to their respective input and output ends automatically. This func-
tionality is enabled via operator overloads that perform implicit conversion of channel types
to their respective channel end types. As a further example, consider Listing 14.

1 template <typename T>
2 class prefix : public process
3 {
4 // ... rest of definition
5 public:
6 prefix(T value , chan_in <T> in , chan_out <T> out)
7 {
8 // ... construct object
9 }

10 // ... rest of definition
11 };
12
13 int main(int argc , char **argv)
14 {
15 one2one_chan <int > a;
16 one2one_chan <int > b;
17
18 par
19 {
20 prefix <int >(0, a, b),
21 // ... other processes
22 }();
23 }

Listing 14: Conversion from one2one_chan to chan_in and chan_out.

prefix has a defined constructor that takes a value, an input channel end, and an output
channel end as parameters. However, in the instantiation of prefix within main, the param-
eters passed are 0 and two one2one_chan typed objects. The implicit conversion operator
overload ensures the respective input and output ends of the channel are captured accordingly.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

236 K. Chalmers / A Modern C++CSP Library

2.3.4. Barriers

The C++CSP barrier implementation follows that of the channel implementation, with
PIMPL, RAII, and operation overloads used to simplify the API provided. The barrier class
is implemented in a similar manner to JCSP, with alting barriers also provided, and likewise
implemented in a similar manner to JCSP. Listing 15 provides an example of C++CSP barrier
usage.

1 barrier bar(3); // Three processes to register.
2 par
3 {
4 [=]()
5 {
6 while (true)
7 {
8 // ... do some work
9 bar();

10 }
11 },
12 }();

Listing 15: Barrier Usage Example

2.4. Processes and Parallels

The par type of C++CSP internally operates with the same thread pool approach as JCSP,
and therefore the inner workings of par will not be presented. Rather, this section will look
at how processes are represented, and how par can be used simply.

2.4.1. Lambda Expression Processes

Although C++CSP does provide a process type, the par construct operates on objects of
type function<void()>. This decision was made to provide flexibility within the API, as
process objects can be automatically converted to function<void()> due to their invoke
operator being overloaded.

par working with function<void()> has some advantages. In particular, any void
function can be converted to function<void()> by binding all the required parameters as
was discussed in Section 1.2.1. However, as such a call is common in C++CSP code, a helper
function has been provided called make_proc.

make_proc is variadically templated, and therefore any function returning void can be
used. make_proc only requires the function that is to be called and the parameters to bind to
the function. Listing 16 illustrates how make_proc is used.

make_proc is simply a helper function, and underneath calls bind on the function with
the parameters provided to create an object of type function<void()> which the par can
use.

An offshoot of having par use function objects is that lambda expressions can be used
directly in a par definition, as shown in Listing 17.

The syntax here is not ideal, and this feature is just an outcome of using function
objects within the par. A possibility is to define seq as [=]() to make the code somewhat
cleaner if required, as will be shown in the exemplar applications.

2.4.2. Parallel with Lists

C++CSP provides initializer list constructors for a number of types, one of which is the
par. With an initializer list, it becomes possible to define a parallel construct as a list of

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 237

1 void prefix(int value , chan_in <int > in, chan_out <int > out)
2 {
3 out(value);
4 while (true)
5 out(in());
6 }
7
8 int main(int argc , char **argv)
9 {

10 one2one_chan <int > a;
11 one2one_chan <int > b;
12
13 par
14 {
15 make_proc(prefix , 0, a, b),
16 // ... other processes
17 }();
18 }

Listing 16: Using make_proc to Create a Process.

1 int main(int argc , char **argv)
2 {
3 one2one_chan <int > a;
4 one2one_chan <int > b;
5
6 par
7 {
8 [=]() // Prefix
9 {

10 a(0);
11 while (true)
12 a(b());
13 },
14 // ... other processes
15 }();
16 }

Listing 17: Using Lamda Expressions to Create a Process.

processes to execute. As an example, Listing 18 defines a CommsTime process network using
an initializer list construct.

The advantage of this definition is purely syntactic sugar, and it means a par can be de-
fined as a braced list of processes. It allows a syntax similar to occam in many regards. Also,
note the use of another initializer list to define the output channels for the delta process.

2.5. Selection and Timers

The final key feature of any CSP inspired library is the ability to select between events.
C++CSP provides an alt type that can be used to select between a set of guard objects.
Operator overloads and initializer lists are again used to simplify syntax. Listing 19 illustrates
the use of alt in this manner.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

238 K. Chalmers / A Modern C++CSP Library

1 int main(int argc , char **argv)
2 {
3 one2one_chan <int > a;
4 one2one_chan <int > b;
5 one2one_chan <int > c;
6 one2one_chan <int > d;
7
8 par
9 {

10 prefix <int >(0, c, a),
11 delta <int >(a, {b, d}),
12 successor <int >(b, c),
13 consumer(d)
14 }();
15 }

Listing 18: Parallel with Lists.

1 alt a{a, b, c, d};
2 // Perform fair select
3 auto selected = a();
4 // Perform fair select with guards
5 selected = a({true , true , false , true});

Listing 19: Example of C++CSP alt Use.

C++11 also introduced a chrono namespace to the standard library, which enables sim-
pler interaction with clocks and temporal primitives. The C++CSP timer incorporates these
temporal capabilities, with the ability to capture time points, and wait until either a time point
or for a duration as available functions. timer extends guard, and has operator overloads to
simplify use. Listing 20 illustrates the creation and use of a timer in C++CSP.

1 timer t;
2 // Get current time
3 auto now = t();
4 // Add five seconds
5 auto future = now + seconds (5);
6 // Wait until this time
7 t(future);
8 // Could just wait 5 seconds
9 t(seconds (5));

Listing 20: Example of C++CSP timer Use.

2.6. Exemplar Applications

To demonstrate how to use C++CSP, two exemplar applications are presented. The first, a
CommsTime example, uses lambda expressions captured within a par block. The second, an
implementation of the Dining Philosophers problem, uses defined function objects that are
bound with parameters.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 239

2.6.1. CommsTime

Listing 21 provides an example of CommsTime where the individual processes are defined
inline within the par.

1 #define seq [=]()
2
3 int main(int argc , char **argv)
4 {
5 one2one_chan <int > a;
6 one2one_chan <int > b;
7 one2one_chan <int > c;
8 one2one_chan <int > d;
9

10 par
11 {
12 seq // prefix
13 {
14 a(0);
15 while (true)
16 a(c());
17 },
18 seq // delta
19 {
20 while (true)
21 {
22 auto value = a();
23 par_write ({b, d}, {value , value });
24 }
25 },
26 seq // successor
27 {
28 while (true)
29 {
30 auto value = b();
31 c(++ value);
32 }
33 },
34 seq // consumer
35 {
36 while (true)
37 cout << d() << endl;
38 }
39 }();
40 }

Listing 21: CommsTime using Inline Lambda Expressions.

There are a few items of note in Listing 21. Firstly, line 1 defines seq as [=](), and
thus we can use seq at the start of our lambda expressions on lines 12, 18, 26, and 34.
Secondly, note that channels are not converted to the respective ends, but written to and read
from explicitly. Each channel type has operator overloads to enable use of the channel in
this manner. Finally, line 23 demonstrates the use of the par_write helper function to write
to a list of channels (b and d), also building the values to write to the channels as a list.
Thereby, we can write a CommsTime application in 18 lines of C++CSP code (excluding
curly brackets).

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

240 K. Chalmers / A Modern C++CSP Library

2.6.2. Dining Philosophers

For the Dining Philosophers example, N fork processes and N philosopher processes are
controlled by a security process. Each process definition is declared as a lambda expression,
assigned to a function object for binding in the network definition.

Fork Definition FORK uses an alt to select between the left and right owners. Listing 22
provides the definition of FORK in C++CSP.

1 auto FORK = [=](alting_chan_in <int > left ,
2 alting_chan_in <int > right)
3 {
4 alt a{left , right};
5 while (true)
6 {
7 switch (a())
8 {
9 case 0: left(); left(); break;

10 case 1: right(); right (); break;
11 }
12 }
13 };

Listing 22: FORK Definition.

Philosopher Definition The PHIL process uses a timer (declared line 5), and writes status
updates to a printer process via a report channel. Between each state change, PHIL waits i
seconds (e.g. line 8), i being the index of the philosopher.

1 auto PHIL = [=](int i,
2 chan_out <int > left , chan_out <int > right ,
3 chan_out <int > down , chan_out <int > up)
4 {
5 timer t;
6 while (true)
7 {
8 report(to_string(i) + " thinking");
9 t(seconds(i));

10 report(to_string(i) + " hungary");
11 down(i);
12 report(to_string(i) + " sitting");
13 par_write ({left , right}, {i, i});
14 report(to_string(i) + " eating");
15 t(seconds(i));
16 report(to_string(i) + " leaving");
17 par_write ({left , right}, {i, i});
18 up(i);
19 }
20 };

Listing 23: PHIL Definition.

Security Definition SECURITY (Listing 24) ensures that a maximum of N − 1 philosophers
are sitting at one time, through the use of pre-conditions during the select (line 8). Note the
use of a list for supplying the pre-conditions to simplify the use of the select.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 241

1 auto SECURITY = [=](alting_chan_in <int > down ,
2 alting_chan_in <int > up)
3 {
4 alt a{down , up};
5 int sitting = 0;
6 while (true)
7 {
8 switch (a({ sitting < N - 1, true}))
9 {

10 case 0:
11 down();
12 ++ sitting;
13 break;
14 case 1:
15 up();
16 --sitting;
17 break;
18 }
19 }
20 };

Listing 24: SECURITY Definition.

Process Network Definition Finally, the definition for the Dining Philosophers process net-
work is provided in Listing 25.

1 using proc = function <void() >;
2
3 one2one_chan <int > left[N];
4 one2one_chan <int > right[N];
5 any2one_chan <int > down;
6 any2one_chan <int > up;
7
8 vector <proc > fork(N);
9 for (int i = 0; i < N; ++i)

10 fork[i] = make_proc(FORK , left[i], right [(i +1)%N]);
11
12 vector <proc > phil(N);
13 for (int i = 0; i < N; ++i)
14 phil[i] = make_proc(PHIL , i, left[i], right[i], down , up);
15
16 par
17 {
18 par(phil),
19 par(fork),
20 make_proc(SECURITY , down , up),
21 printer <string >(report , "", "")
22 }();

Listing 25: Dining Philosophers Process Network Definition.

Listing 25 is quite a typical manner for defining a set of parallel functions. For a shortcut,
we declare proc to stand in place of function<void()>. We declare arrays of channels
(lines 3 and 4), and then create vectors of processes for both the FORK (8 to 10) and PHIL (12
to 14) definitions. We can run these individual process vectors within inline par declarations
(lines 18 and 19).

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

242 K. Chalmers / A Modern C++CSP Library

2.7. Summary

This section has provided a run down of some of the key features and implementations within
C++CSP. As stated, the library itself provides an API similar to JCSP if required, but the use
of various techniques enables some simpler definitions if required. The examples provided for
CommsTime and Dining Philosophers illustrate these potential approaches to using C++CSP.

3. Methodology

The benchmarks used in this work incorporates two levels. To understand low level overheads
of C++CSP a series of microbenchmarks have been undertaken, and potential speedup of
applications developed in C++CSP are examined using macrobenchmarks.

The rest of this section describes the benchmarks used to evaluate the C++CSP library.
The benchmarks are divided into two sections. Firstly, a description is given of the mi-
crobenchmarks used to compare to JCSP, allowing measurement of properties such as chan-
nel communication time and event selection time. Secondly, a description is given of the
macrobenchmarks used to measure potential speedup when using C++CSP. The benchmarks
chosen allow analysis of computation based work and memory based work to evaluate how
well C++CSP supports both these factors.

3.1. Microbenchmarks

Microbenchmarks allow examination of three properties:

1. channel communication time (cost of coordination).
2. event selection time (cost of choice).
3. total number of processes (cost of process).

For property one a CommsTime benchmark is used. For properties two and three a
StressedAlt benchmark is used.

3.1.1. CommsTime

The CommsTime microbenchmark includes four processes: prefix, delta, successor, and con-
sumer. These four processes are connected together to produce the natural numbers. The sin-
gle iteration around the network requires four channel communications, which means that the
time of a single channel communication can be determined via recording the time to produce
one number and dividing by four.

The delta process outputs on two channels, and may do so sequentially or in parallel.
The CommsTime microbenchmark will examine both approaches as parallel communication
incurs a process creation overhead. Also, as C++CSP can define a process in three separate
manners (class, function, lambda expression), each of these methods will also be measured
using CommsTime.

3.1.2. StressedAlt

The StressedAlt microbenchmark requires two types of process: a reader, and a writer. The
reader process will perform a select operation on the set of incoming channels, then perform
a read on the selected channel. The set of writer processes put the reader process under stress
by communicating using these channels. The number of writer processes can be scaled to
determine the number of processes the C++CSP library can support.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 243

3.2. Macrobenchmarks

Two macrobenchmarks have been developed to understand the speedup when using the
C++CSP library:

1. Monte Carlo π Simulation.
2. Mandelbrot Fractal Generation.

Monte Carlo π provides a benchmark that is purely computational. Mandelbrot requires
data to be generated by a worker and then sent to a gathering process, and therefore, memory
communication overheads are possible.

3.2.1. Monte Carlo π

The Monte Carlo π simulation benchmark evaluates speedup within a purely computational
setting. The benchmark uses random number generation to estimate π, with the greater num-
ber of iterations providing a better estimation. By dividing iterations across a number of
workers, we can calculate potential speedup. No memory is allocated during the iteration,
with only a few local variables required.

To evaluate C++CSP, the Monte Carlo π benchmark evaluates π within a collection of
worker processes. The result of the local evaluation is then communicated to a calculate
process for final evaluation. Listing 26 provides the process network definition of the Monte
Carlo π benchmark within C++CSP.

1 any2one_chan <double > chan;
2 vector <function <void()>> workers;
3 for (int count = 0; count < NUM_WORKERS; ++count)
4 workers.push_back(make_proc(monte_carlo_pi , chan , iter_worker));
5 par
6 {
7 par(workers),
8 make_proc(calculate , chan , NUM_WORKERS)
9 }();

Listing 26: Monte Carlo π Parallel.

For benchmarking, 230 iterations are performed and split between 20 to 25 worker pro-
cesses.

3.2.2. Mandelbrot

The Mandelbrot fractal generation benchmark allows evaluation of speedup when working
with some memory constraints. The fractal is a n × n matrix of 64bit floating point values,
generated with an escape time algorithm. The data used has to be allocated and filled dur-
ing the algorithm. When dividing the work between a collection of workers, the subsequent
sub-matrices are sent to a gatherer process, and thus communicated between two concurrent
scopes.

To evaluate C++CSP, the developed Mandelbrot benchmark uses a producer process to
communicate line indices to a collection of worker processes. Each worker generates the data
for said line and communicates it to a consumer process which stores the data in the correct
order. Listing 27 provides the process network definition for the Mandelbrot benchmark in
C++CSP.

For evaluation, fractals of dimension 28 to 213 are generated with 20 to 23 worker pro-
cesses. Each worker therefore generates 211 to 216 bytes of data and communicates it to the
consumer process.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

244 K. Chalmers / A Modern C++CSP Library

1 one2any_chan <int > lines;
2 any2one_chan <mandelbrot_packet > data;
3 vector <function <void()>> workers;
4 for (int i = 0; i < NUM_WORKERS; ++i)
5 workers.push_back(make_proc(mandelbrot , lines , data));
6 par
7 {
8 make_proc(producer , lines , DIM , NUM_WORKERS),
9 par(workers),

10 make_proc(consumer , data , DIM)
11 }();

Listing 27: Mandelbrot.

The aim with the Mandelbrot benchmark is to determine if there are any copy overheads
in the use of the channels. Therefore, three separate measures will be taken: copying into a
channel; moving into a channel; and using a pointer to the data.

3.3. Approach

All experiments are undertaken on the following machine:

CPU Intel(R) Core(TM) i7-4770K running at 3.5GHz. Four cores with hyperthreading (eight
hardware threads).

Memory 8GB DDR3 1333 MHz.
OS CentOS 7.2. Linux Kernel 3.10. 64bit.

Applications are compiled using the clang 3.4.2 C++ compiler with the posix thread
model. Programs are compiled using full optimisation using the following command line:

clang++ -std=c++11 -O3 ...

As the clang compiler used for the experiments uses the posix threading model, the
underlying thread model of both JCSP and C++CSP under test will be the same, operating
system supported, method. JCSP benchmarks use JCSP-1.1rc4 built with the OpenJDK 1.8
64bit compiler. Each version of a benchmark is run 1000 times, with the mean time calculated
from these 1000 iterations and used as the final reported value. Speedup is calculated using
the standard measure:

S =
tseq
tpar

4. Results and Discussion

In this section, the results gathered from the benchmarks are presented. Firstly, the mi-
crobenchmark results and comparisons to JCSP are provided. Secondly, the macrobench-
mark results and subsequent speedup calculations are provided. Finally, a discussion of the
results is given. For all results gathered, the standard deviation was within 0.1% of the results
provided.

4.1. Microbenchmarks

The microbenchmarks are used to calculate basic C++CSP properties: channel communica-
tion time, event selection time, and process load. These properties are compared to those of

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 245

JCSP. The first section presents the CommsTime benchmark results, and the second section
the StressedAlt benchmark results.

4.1.1. CommsTime

Table 1 presents the results for the CommsTime benchmark.

Table 1. CommsTime Benchmark Results. Times in nanoseconds.

Approach Channel Time Estimated Context Switch
JCSP 2,649 1,325
JCSP Seq 3,476 1,738
C++CSP 4,435 2,218
C++CSP Seq 1,994 997
C++CSP make_proc 4,532 2,266
C++CSP make_proc Seq 1,997 999
C++CSP lambda 4,481 2,241
C++CSP lambda Seq 2,092 1,046

It can be seen that C++CSP performs better than JCSP for the sequential benchmark,
but poorer when analysing the parallel benchmark. This is due to the extra process creation,
scheduling, and destruction when using the parallel delta process. Therefore, we can ascertain
some measures from Table 1:

• C++CSP channel communication on the test machine is approximately 2µs.
• C++CSP context switch time on the test machine is approximately 1µs.
• C++CSP has an approximate 25% faster channel communication time in comparison

to JCSP.
• C++CSP takes approximately 1.2µs to create, schedule, and destroy a process

(C++CSP Seq result subtracted from C++CSP result and divided by two for the two
processes created by delta).

• C++CSP there is no consistent difference when using the different process creation
methods.

4.1.2. StressedAlt

Table 2 presents the StressedAlt benchmark results.

Table 2. StressedAlt Benchmark Results. Times in nanoseconds.

Channels JCSP Select C++CSP Select
64 990 750

128 890 845
256 965 825
512 975 787

1,024 1,139 880
2,048 1,386 958
4,096 FAIL FAIL

As shown, C++CSP has a faster select time, ranging from 45 to 428 nanoseconds faster
depending on the channel count. The more interesting number is when the benchmark fails,
which is after the 2048 channel count. In this scenario, 2049 threads will have been created.
Both JCSP and C++CSP fail at the same point as they are both using the same threading
model. On testing, approximately 3000 threads can be created in the test.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

246 K. Chalmers / A Modern C++CSP Library

The low process count is a result of the OS being used. When the similar benchmark
is performed on a lower powered laptop with a newer Linux kernel, approximately 10000
threads can be created. Therefore, C++CSP suffers from the same process count limitations
as JCSP when compiled with most modern C++ compilers, and it is really the OS that is
bounding the process limit.

4.2. Macrobenchmarks

The macrobenchmarks are used to evaluate speedup when using C++CSP in certain applica-
tion scenarios. The two chosen benchmarks allow analysis of speedup in a purely computa-
tional scenario as well as a scenario where memory copying s used. The first section presents
the Monte Carlo π benchmark results and the second section the Mandelbrot fractal results.

4.2.1. Monte Carlo π

The results for the Monte Carlo π simulation benchmark results are provided in Table 3.

Table 3. Results for Monte Carlo π Benchmark.

Number of Workers ms speedup
1 193.84 -
2 96.95 2.0
4 51.09 3.79
8 32.87 5.90

16 32.92 5.89
32 32.87 5.90

When dealing with a purely computational load, C++CSP performs well. For two work-
ers, a two times speedup is recorded. For four workers, a 3.79 speedup is recorded. The slight
drop in performance is likely due to some cross core context switching. Finally, speedup
levels out at 5.9 times for eight workers and above.

4.2.2. Mandelbrot

The results for the Mandelbrot fractal benchmark are split across three tables: copy com-
munication; move communication; and mobile communication. Table 4 presents the results
when calling write on the channel in the standard manner.

Table 4. Results for Mandelbrot Benchmark.

Dimension 1 Worker 2 Workers 4 Workers 8 Workers
ms speedup ms speedup ms speedup ms speedup

256 18.04 - 9.33 1.93 5.05 3.57 4.44 4.06
512 21.79 - 11.11 1.96 6.84 3.19 6.07 3.59

1,024 33.74 - 17.01 1.98 11.69 2.88 10.15 3.32
2,048 73.73 - 40.02 1.84 25.53 2.89 20.14 3.66
4,096 230.24 - 124.94 1.84 80.99 2.84 63.73 3.61
8,192 837.94 - 446.74 1.88 252.89 3.31 210.72 3.98

As shown, speedup is a little less than in the Monte Carlo π benchmark, however there
is now some memory allocation and cleanup happening. The speedups are fairly consistent,
although there is a slight slowdown when working with four threads on data sizes 1024, 2048,
and 4096.

In comparison, Table 5 presents the results when data is moved into the channel upon
the write operation.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 247

Table 5. Results for Mandelbrot Benchmark using Move Semantics.

Dimension 1 Worker 2 Workers 4 Workers 8 Workers
ms speedup ms speedup ms speedup ms speedup

256 18.22 - 9.32 1.95 4.99 3.65 4.41 4.13
512 21.96 - 11.18 1.96 6.67 3.29 6.11 3.59

1,024 32.81 - 17.31 1.90 10.26 3.20 9.87 3.32
2,048 73.58 - 39.02 1.89 25.32 2.91 23.19 3.17
4,096 227.81 - 119.08 1.91 70.08 3.25 57.31 3.98
8,192 826.95 - 440.54 1.88 260.58 3.17 207.94 3.98

When using move there is an occasional improvement in performance, but it is not con-
sistent. It can be observed that in general the time overall time is lower, particularly for larger
data sizes. Therefore, it can be speculated that there is a slight improvement from avoiding
the extra copy because of the move.

To fully test the communication copy overhead, a mobile data type is defined as given
in Listing 28. By defining and using this type, it is now assured that the communication is
only copying the pointer within the mobile type (an 8 byte transaction). Table 6 presents the
results for this version of the Mandelbrot benchmark.

1 template <typename T>
2 using mobile = unique_ptr <T>;

Listing 28: Defining a mobile Type.

Table 6. Results for Mandelbrot Benchmark using Mobile (unique_ptr) Semantics.

Dimension 1 Worker 2 Workers 4 Workers 8 Workers
ms speedup ms speedup ms speedup ms speedup

256 18.46 - 9.31 1.98 5.00 3.69 4.40 4.20
512 21.85 - 11.43 1.91 7.28 3.00 6.05 3.61

1,024 33.37 - 17.11 1.95 10.99 3.04 9.58 3.48
2,048 73.95 - 39.59 1.87 25.93 2.85 20.40 3.63
4,096 229.91 - 121.98 1.88 70.47 3.26 60.02 3.83
8,192 809.95 - 444.48 1.82 259.45 3.12 206.21 3.93

The results in Table 6 show a similar pattern to those between the previous two imple-
mentations of the benchmark - inconsistency. Although occasional improvements are seen,
there are occasions when this is not so.

From analysing the three tables of results for the Mandelbrot benchmark, it can be deter-
mined that there appears to be little if any overhead when copying data into the channel. This
is promising as it means the channel itself does not occur much of an overhead due to the data
being moved through. Further testing with larger data types is required to truly determine if
this is the case, but it appears likely.

4.3. Discussion

The results presented in this section have shown that C++CSP performs well in comparison
to JCSP, and also performs well when looking at potential speedup.

A number of points are worth considering from the benchmark results. Firstly, although
the parallel helper methods are useful to the programmer, they are not necessarily useful for
performance having more than doubled the CommsTime result for C++CSP. Therefore, it

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

248 K. Chalmers / A Modern C++CSP Library

could be worth considering other techniques for building such functionality such as through a
thread pooling mechanism. This would allow threads to be reused more readily and overcome
the limitations of the helper functions.

The limitation on process numbers that also impacts JCSP is an issue that needs further
investigating. A possible avenue is moving towards a coroutine model similar to that devel-
oped for C# [8]. The C++ standard committee is currently reviewing a proposal for coroutine
support in the standard library that would enable such functionality.

The speedup measures are promising, but do require further evaluation. Computational
loads appear good, and memory loads seem to be supported well. However, further evaluation
around the size of the data used will help the argument.

In all, it can be determined that C++CSP is useful, and provides performance expected
for a CSP inspired library. The additional syntactic sugar in the API will therefore hopefully
make it appealing to CSP library users in the future.

5. Conclusions

This paper presented work in the development and evaluation of a new C++CSP library built
using modern C++ standards and design principles. The library was evaluated against JCSP
using microbenchmarks, and for speedup using macrobenchmarks. From these benchmarks
the following conclusions can be made:

1. C++CSP performs better than JCSP in regards to channel communication time and
event selection time.

2. C++CSP will create as many processes as JCSP when built with a compiler using the
same threading model. There is no additional overhead for C++CSP processes.

3. In computational loads, C++CSP provides an almost six times speedup when working
with a suitable quad-core processor supporting hyperthreading.

4. In conditions where memory copying is used, a potential four times speedup is pos-
sible.

5. C++CSP channels effectively support move semantics to limit memory copying.

5.1. Future Work

Three pieces of further work are expected for C++CSP. Firstly, the development of further
benchmarks will be undertaken to further evaluate C++CSP’s suitability for undertaking par-
allel application development. Secondly, the development of a supporting network stack will
be undertaken. This will allow C++CSP to be used in distributed parallel environments. The
aim is to develop an MPI backend as part of this work. Finally, the development of a skeleton
library using C++CSP is planned. This library will use the same design principles as C++CSP
itself to provide a simple skeleton API for developers.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[2] Peter H. Welch, Neil C.C. Brown, James Moores, Kevin Chalmers, and Bernhard H.C. Sputh. Integrating
and Extending JCSP. In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter H. Welch, editors,
Communicating Process Architectures 2007, pages 349–369, jul 2007.

[3] Jan F. Broenink, Andrè W. P. Bakkers, and Gerald H. Hilderink. Communicating Threads for Java. In
Barry M. Cook, editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concur-
rent Systems, pages 243–262, mar 1999.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

K. Chalmers / A Modern C++CSP Library 249

[4] Brian Vinter, John Markus BjÃČÂÿrndalen, and Rune MÃČÂÿllegard Friborg. PyCSP Revisited. In
Peter H. Welch, Herman Roebbers, Jan F. Broenink, Frederick R. M. Barnes, Carl G. Ritson, Adam T.
Sampson, G. S. Stiles, and Brian Vinter, editors, Communicating Process Architectures 2009, pages 263–
276, nov 2009.

[5] Neil C.C. Brown. Communicating Haskell Processes: Composable Explicit Concurrency Using Monads.
In Peter H. Welch, S. Stepney, F.A.C Polack, Frederick R. M. Barnes, Alistair A. McEwan, G. S. Stiles,
Jan F. Broenink, and Adam T. Sampson, editors, Communicating Process Architectures 2008, pages 67–
83, sep 2008.

[6] Kurt Micallef and Kevin Vella. Communicating Generators in JavaScript. In Communicating Process
Architectures 2016, 2016.

[7] Neil C.C. Brown. C++CSP2: A Many-to-Many Threading. In Alistair A. McEwan, Steve Schneider,
Wilson Ifill, and Peter H. Welch, editors, Communicating Process Architectures 2007, pages 183–206, jul
2007.

[8] Kenneth Skovhede and Brian Vinter. CoCoL: Concurrent Communications Library. In Communicating
Process Architectures 2015, 2015.

[9] Cabel Shrestha and Jan BÃękgaard Pedersen. JVMCSP - Approaching Billions of Processes on a Single-
Core jvm. In Communicating Process Architectures 2016, 2016.

[10] Bernard Sufrin. Communicating Scala Objects. In Peter H. Welch, S. Stepney, F.A.C Polack, Freder-
ick R. M. Barnes, Alistair A. McEwan, G. S. Stiles, Jan F. Broenink, and Adam T. Sampson, editors,
Communicating Process Architectures 2008, pages 35–54, sep 2008.

[11] James Moores. Native JCSP - the CSP for Java library with a Low-Overhead CSP Kernel. In Peter H.
Welch and Andrè W. P. Bakkers, editors, Communicating Process Architectures 2000, pages 263–274, sep
2000.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

250 K. Chalmers / A Modern C++CSP Library

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

