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Simulation and Visualization Tool Design
for Robot Software
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Abstract. Modern embedded systems are designed for multiple and increasingly de-
manding tasks. Complex concurrent software is required by multi-task automated ser-
vice robotics for implementing their challenging (control) algorithms. TERRA is a
Communicating Sequential Processes (CSP) algebra-based Eclipse graphical mod-
elling tool suite which is capable of C++ code generation. It is designed to ease te-
dious and error-prone concurrent software development for robotics. However, suffi-
cient simulation and visualization supports are not provided yet in TERRA. A hybrid
simulation approach is proposed in this paper to provide simulation capabilities for
the TERRA tool suite with respect to the Cyber-Physical Systems (CPS) co-design.
Moreover, a visualization for the simulation is designed as well to provide animation
facilities which enable users to visually trace simulated execution flows. Finally, we
use an example to test the hybrid simulation approach as well as visualization facili-
ties. The simulation approach is shown to be sufficient and the visualization works as
intended.
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Introduction

Context

Modern embedded systems that are widely used in automated service robotics, are becom-
ing increasingly complex as they are designed to execute multiple and increasingly demand-
ing tasks. Additionally, service robotics are always required to interact with the environ-
ment seamlessly, which makes the design even more difficult. This combination of several
research and engineering fields is quite challenging for professionals who only focus on their
own domains. Following this trend, the term of the Cyber-Physical Systems (CPS) was pro-
posed [1,2,3], which considers the cyberspace and the physical world to be more closely
integrated compared to traditional design of embedded systems.

In CPS, Cyber represents the information-based computation and network elements, in-
cluding computing processes, logical communicating processes, and discrete feedback con-
trol processes. Physical represents the processes, objects, and events in natural or man-made
physical systems, operating according to laws of physics in continuous time. Physical pro-
cesses are combinations of many events occurring at the same time, so they are concurrent
by nature. Controlling the dynamics of such processes is one of the main tasks in CPS de-
sign. Consequently, concurrency is intrinsic to CPS. To put it another way with respect to the
cyberspace, complex concurrent software design is required by multi-tasking automated ser-
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vice robotics for their challenging control algorithms, unlike traditional embedded systems
in which software processes are rooted in sequential steps. Many of the technical challenges
in designing and analysing embedded control software come from the need to bridge an in-
herently sequential semantics with an intrinsically concurrent physical world [4]. The Com-
municating Sequential Processes (CSP) algebra is a formal language for describing patterns
of interaction in concurrent systems [5,6], which is a potential solution for formalization and
concurrency challenges in CPS.

Related Work: Model-Driven Design for CPS

Over the previous decade, merging the control, systems, and software engineering built on
the principles of Model-Driven Design (MDD), has become one of the key research priori-
ties [7]. Working with models has several advantages. Quality and consistency demands of
models can be rigorously checked using formal verification tools [8]. Also, modelled sys-
tems can be tested and simulated off-line [9], enabling developers to follow the logic of their
application, to check assumptions about its environment, and to gain confidence in end-to-
end behaviour [10]. Such activities make system validation straightforward, such that the real
implementation can realistically be right-first-time.
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Figure 1. Co-design methodology for CPS using MDD. Modified from (Broenink et al. [11]).

A complete model of a CPS represents the coupling of its environment, physical pro-
cesses, and embedded computations [10]. A generic concurrent co-design methodology for
CPS, proposed by Broenink et al. [11,12] is shown in Figure 1. It explains a way of working,
being used in this paper as well, which extensively uses MDD techniques for CPS co-design,
whereby the application domain is robotics and mechatronics. TERRA [13,14] is a CSP
algebra-based graphical modelling tool suite, which consists of several sets of Eclipse plug-
ins and aims to ease tedious and error-prone concurrent software development for robotics. It
supports the design methodology and covers certain scope with respect to MDD for the cy-
berspace, which includes embedded control software (ECS) architecture modelling, machine-
readable CSP [15] transformation and C++ code generation. 20-sim [16] is another graphical
modelling tool involved in the design methodology, with respect to MDD for the physical
world. It is capable of modelling plant dynamics using bond graphs as well as equation-based
control models [17]. Moreover, 20-sim can generate XML files and C++ source code that rep-
resent the control model contents and control laws simultaneously, which can be integrated
by TERRA models as functional components, e.g. for loop controllers.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



Z.Lu et al. / Simulation and Visualization Tool Design for Robot Software 65

Problem Statements and Motivation

The way of working mentioned above asks for precise modelling of both the cyber and phys-
ical parts. Iterative and incremental design and development is one of the most important
features in MDD [18,19], in which sufficient verification and/or validation of models are re-
quired from the very early design phase as well as in each design and development iteration.

Using simulation in MDD for CPS, implies that one or more domain models involved,
namely Discrete-Event and Continuous-Time domains. Combined simulations of multiple
domain models is called co-simulation. If different domain models can be co-simulated
together efficiently, relevant co-enhancement to certain models can be made through co-
simulation results. Consequently, the reliability of software and the confidence in the design
will both be increased.

Developing, modifying and integrating models that cover all CPS design disciplines is
one of the major challenges [20]. Incrementally co-modelling and co-simulation are crucial
in CPS co-design. In our way of working, the TERRA tool suite can deal with the MDD
for the cyberspace while 20-sim can model plant dynamics in the physical world. However,
currently facilities in neither of them is sufficient to satisfy requirements pertaining to CPS
co-design. To be more specific, although TERRA and 20-sim have already covered certain
areas of cyber-physical modelling, as shown in Figure 1, TERRA does not provide enough
simulation facilities to integrate modelled plant dynamics in 20-sim into the design loop.
Meanwhile, certain visualization techniques are not sufficient either to fully assess models.

Outline

We propose an MDD approach and implemented facilities for the TERRA suite to simulate
the process execution flow, which can be used to gain insight into models. This is summarized
in Section 1. However, that approach is not able to simulate functional components that con-
tain certain algorithms which are implemented in C++ code. The scope of this paper focuses
on a new approach which is capable of simulating and visualizing the process execution flow
whereby functional results of certain algorithms can be obtained simultaneously as well.

In Section 2, design space exploration for obtaining executable models is discussed first.
Then a hybrid simulation approach for our way of working is proposed. In Section 3, we
introduce a design for visualizing simulation results, followed by results analysis and discus-
sion in Section 4. Conclusions and recommendations are summarized in Section 5.

1. Previous Work

The TERRA tool suite uses an explicit CSP meta-model [13] as its fundamental basis, from
which MDD techniques can profit to generate corresponding machine-readable CSP code
of a TERRA model. Consequently, required behaviour of the modelled software architec-
ture can be formally specified and verified during the early design phases using the Failures
Divergences Refinement (FDR) tool [21]. In the automated service robotics domain, lots of
CPS are safety-critical. Their required behaviour goes beyond fundamental properties (e.g.
freedom from deadlock and livelock) to include liveness properties (e.g. that the system will
react in a certain way, given a certain set of signals received and system state). Many of these
can be formally specified and verified [22] but, depending on the complexity, many cannot
because of state-space explosion. For the latter, an MDD approach with simulation to follow
and observe process execution flow was proposed in [7]. A simulation meta-model was de-
signed to abstract the execution procedure of processes. It consists of hierarchical abstrac-
tion levels to represent semantics in TERRA models and is able of generating a simulated
execution trace that represents the process execution flow. In addition, rules were defined for
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model-to-model (M2M) transformation, where the source model and the target model con-
forms to the CSP meta-model and the TERRA simulation meta-model respectively. Figure 2
is a TERRA example and its simulated execution trace.

-- Generated by TERRA SIM to simTrace version 0.0.4
-- Input file: test.sim

-- Execution Queue
SimDiagram = MainModel
Top Level Object = SEQUENTIAL 
SEQUENTIAL is Recursive
SEQUENTIAL -> Start SP = SEQUENTIAL
SEQUENTIAL -> Next SP = P

SimDiagram = P
Top Level Object = subPARALLEL
subPARALLEL -> Start SP = subPARALLEL
subPARALLEL -> Next SP = subP1
subP1 -> Next SP = subP2
subP2 = isEnd

SimDiagram = C1
Top Level Object = sub_C1_SEQ
sub_C1_SEQ -> Start SP = sub_C1_SEQ 
sub_C1_SEQ -> Next SP = C1Code
C1Code -> Next SP = Wr_C1
Wr_C1 = isEnd

SimDiagram = C2
Top Level Object = sub_C2_SEQ
sub_C2_SEQ -> Start SP = sub_C2_SEQ 
sub_C2_SEQ -> Next SP = Rd_C2
Rd_C2 -> Next SP = C2Code
C2Code = isEnd

Figure 2. A TERRA model example and its simulated execution trace.

As we can see from the figure, although the simulated execution trace text indicates
the process execution flow, neither signals to be varied nor results of algorithms were taken
into account. Actually, source code manually added into code blocks cannot be handled. See
C1Code to produce data and C2Code to consume data in Figure 2. However, the functionality
of the algorithms have to be taken into account within the design loop, otherwise it will be
meaningless with respect to a real-world CPS. Moreover, the execution order was visualized
in the form of text which is obviously not elegant nor user-friendly. Users have to put a lot of
energy into analysing traces, which is error-prone and inefficient.

Here, this paper presents a better approach for simulation and visualization supports to
the TERRA tool suite.

2. Design for Simulation

2.1. Design Space Exploration

In the traditional discussion about MDD, the design of a system starts at a high level of
abstraction. If a model is defined by a Domain-Specific Language (DSL), in our case the
CSP meta-model we use, it always aims to achieve an easier and more formal assessment
of problems in the modelled system. Lot of effort has been done to deal with assessment
of models, in which one of the most popular and well-known method is about executable
models [23,24].

2.1.1. Executable Models

An executable model is a model complete enough to be executable, and the ’executability’
depends more on the execution tool than on the model itself. Some tools might be able to
execute models that partially abstract the system while some others require more complete
and precise models. In most situations the form or the type of the execution tool depends on
what kind of assessment you need for the modelled system. For instance in our case, if we
only want to check the software architecture to verify the absence of deadlock or livelock,
then FDR and the generated machine-readable CSP (from TERRA models) are sufficient.
Furthermore, if we need to know the execution order of processes then we need to compile
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the TERRA model to a simulation model, and then generate the corresponding simulated ex-
ecution trace. However, if not only taking the software architecture but also functional com-
ponents such as control algorithms and physical dynamics into account, which are crucial and
indispensable in CPS co-design, things become different and more complex. The completely
designed executable model should represent key characteristics and behaviours of the sys-
tem, meanwhile functions of the system need to be taken into account, where the former con-
tributes to the system verification and the latter contributes to the system validation. Hence,
we need to design and develop suitable tools to sufficiently assess the modelled CPS.

Model Interpretation
Strategy

Intermediate 
Representation

Virtual Execution
Environment

Execution 
(Simulation) 

Engine

conforms to
DSL meta-modelModel

DSL Lexical Analysis
DSL Syntactic Analysis

Execution
Environment

System 
Representation

Facilities

Executable
Model

platform
specification

static
libraries

shared
libraries

Source Code
Compiler

Source
Code

Real Execution
Environment

Code Generation
Strategy

Machine Code
(Assemble, 

Java Bytecode...) Flow

Sets

Figure 3. Two strategies to implement execution tools for models.

2.1.2. Different Strategies: Code Generation

In MDD, there are several ways to implement execution tools for models. Code generation
and model interpretation are the most acceptable and common strategies. Figure 3 is the work
flow of the two strategies mentioned above. The code generation strategy involves using a
model compiler, which is usually defined as a model-to-text transformation (as what we used
in the TERRA tool suite to generate C++ code from models). It aims to generate a lower-level
representation of the modelled system using existing programming languages, e.g. C++. In
this case, the generated code can be compiled, using a platform-dependent compiler and li-
braries, to build an executable system to run on an actual target platform. However, although
the automatic code generation can ease lots of work for developers, there are still some disad-
vantages which are innate and hard to eliminate, for instance, the inflexibility. Assume when
the execution target platform has been updated with respect to hardware or OS, code gener-
ation need to be modified as well to eliminate the discrepancies between different platform
specifications. And moreover, most code generation techniques usually only provide skele-
tons thus produce fragments of code. This implies that developers still must manually add
code of certain algorithms for functional purposes. Then there will be an ’asynchronization’
between the refined model (intend to re-generate skeletons) and the manually added code.
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2.1.3. Different Strategies: Model Interpretation

Instead, the model interpretation strategy relies on the existence of a Virtual Execution Envi-
ronment (VEE), also called a simulator or a Virtual Machine (VM), like a Java VM, which
is able to directly interpret and execute the model. The model interpretation strategy will be
more flexible comparing to the code generation strategy and it brings more opportunities to
analyse and refine models. Since a model only needs to be interpreted by the VEE to pro-
ceed the execution. Hence, it becomes platform-independent as long as necessary facilities
are provided to run the VEE, or it is only dependent on the VEE. Another benefit is that the
model interpretation and the execution can be done dynamically, which also means it can
enable changes to models at runtime. We have to confirm that internally the model interpreta-
tion strategy can be seen as a lightweight code generation, since the model need to be parsed
and interpreted by the VEE.

One more thing that needs to be determined is whether the VEE is not essentially differ-
ent from the target platform, then there will be no significant differences between the code
generation strategy and the model interpretation strategy. For instance, the JVM provides
platform runtime specifications and a bytecode interpreter to execute Java bytecode on any
platform that can run the JVM. However, you need to represent your model in Java bytecode
first, which means you have to translate your model to an intermediate representation that
can be compiled to get a Java bytecode file. The compilation for intermediate code will be
a serious amount of work unless there has been a compiler for this. The best choice is to
interpret a model to Java source code or to Python source code which enables to directly use
the javac compiler or the jython compiler. Then it is basically the same as the code generation
strategy.

2.1.4. Obtaining Executable Models for CPS

Only models providing complete information on a system can be used to obtain fully opera-
tional and functional executable models, by generating source code from models for a target
platform, or by interpreting models and executing intermediate representation in one or more
virtual execution environments.

With respect to the model interpretation strategy and the code generation strategy, there
are different options to obtain (one or more) executable models which can fully represent
operations and functions of a cyber-physical system:

• Using the model interpretation strategy to interpret and execute models:

* Design and develop different virtual execution environments (simulators) that con-
tain different interpreters, then coordinate and incorporate multi simulated execu-
tion results.

* Integrate different models by using model-to-model (M2M) transformations, then
design and develop one VEE to interpret and execute the integrated model.

• Using the code generation strategy to obtain (one or more) executable models:

* Generate source code (same language for single execution platform) from different
models which contain certain interfacing properties to generate APIs for interacting
purpose (an execution coordinator is needed as well).

* Integrate different models by using M2M transformations then carrying out source
code generation.

Design choices listed above can be categorized into two different types with respect to
execution strategies. The former item listed under each execution strategy is classified as
Loose-Coupling Execution (LCE) while the latter item is classified as Tight-Coupling Execu-
tion (TCE). Certain techniques need to be implemented to achieve goals respectively for dif-
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Table 1. Design choices analysis of obtaining executable models for CPS: advantages (+) and disadvantages (-).

Execution
Strategies

Advantage &
Disadvantage

Model
Coupling

Loose-Coupling Execution
LCE

Tight-Coupling Execution
TCE

+ No M2M transformation + Single VEE (and interpreter)

+
Flexible to update models

(separately and might at runtime)
-

M2M transformation
is crucial

Model
Interpretation

- Multi VEE (and interpreters) -
Inflexible to update models

due to consistency
after integration

-
Manually programming

in the end
-

Manually programming
in the end

-
Coordinate and incorporate

multi simulated
execution results

+ No M2M transformation + Single execution platform
+ Single execution platform + Single code generation engine
+ Source code will be at hand + Source code will be at hand

Code
Generation

- Multi code generation engines -
M2M transformation

is crucial

-
’Asynchronization’ between

added code and models
-

’Asynchronization’ between
added code and models

-
Extra model interfacing

properties
- Extra execution coordinator

ferent design choices. Advantages and disadvantages are analysed with respect to obtaining
executable models for CPS, as shown in Table 1.

2.2. A Hybrid Approach for the Simulation

We propose a hybrid approach for simulation with respect to our way of working in order to
mitigate as much as possible the disadvantages mentioned in Table 1. Figure 4 is the overall
structure of the hybrid approach which is separated into three different layers.

As mentioned before, the tool chain we currently use consists of TERRA and 20-sim,
which cover certain scope on modelling the cyberspace as well as the physical world. As
shown in Figure 4, in the modelling layer (at the top of the figure) the 20-sim tool is capable
of modelling a loop control system for a robotic set-up in which components, like signal
generators, controllers, A/D converters and plant dynamics, are connected with each other
through ports. Both the model-to-model transformation and the code generation are involved
as intermediate steps, such that each 20-sim component can be transformed to a TERRA
CSP model and generate relevant C++ source code for functional algorithms. Meanwhile, the
TERRA tool suite is capable of integrating those TERRA CSP models which can represent
the loop control system architecture. Additionally, TERRA CSP models can be transformed
to machine-readable CSP models for verification by FDR.

If considering work flows of two strategies to obtain executable models as discussed be-
fore but from an opposite way, we should notice that we have already got some C++ code
at hand, generated from 20-sim, representing control algorithms. Then, the problem is quite
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Figure 4. A hybrid approach for simulation.

obvious that we need to determine how to choose from those two strategies to obtain exe-
cutable models and which one can be a better choice. The first option is using the model
interpretation strategy to interpret models into some intermediate representation that contains
sufficient semantics to make use of the C++ code generated from 20-sim models. Besides, a
certain execution environment is required to support a synchronized execution between inter-
preted models and C++ code. Although we have designed a simulation meta-model to inter-
pret TERRA models, unfortunately it is not sufficient with respect to requirements mentioned
above.

And since we have already got some C++ code at hand, will it be a better choice to take
advantage from the code generation strategy to obtain executable models? From a practical
point of view but more convenient for development and experimentations, the answer is Yes.
The TERRA tool suite is capable of generating C++ code from TERRA CSP models. More-
over, the LUNA execution framework [25] can provide execution libraries which support
hard real-time, multi platforms and are CSP-capable. Then, with a standard and commonly
used C++ compiler for the execution platform (e.g. g++ for Linux or qcc for QNX [26]), we
can successfully build an executable binary (i.e a LUNA executable or LUNA application)
which is also a representation of the modelled system such that it can be seen as an exe-
cutable model as well. Although that executable model is built for a specific platform, it will
not influence functional criteria which can be presented during execution or simulation (e.g.
process execution flow, signals to be varied and functions of algorithms).

Once we obtain executable models through the code generation strategy, both the LCE
and the TCE can be used in our hybrid approach regarding to the model coupling crite-
rion in Table 1. From the physical-world perspective, modelled plant dynamics can be trans-
formed to a Functional Mock-up Interface (FMI) [27] model which are commonly used in
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co-simulation, and relevant C functions will be generated as well. The FMI model and C code
will be wrapped together to obtain an executable model defined as a Functional Mock-up
Unit (FMU) which can be used to achieve co-simulation.

The FMI model can also be transformed to a TERRA FMI model (tight-coupling) which
provides interfacing definitions like unit and variable references, which have been prototypi-
cally implemented and validated with respect to our hybrid approach. However, they are not
in the scope of this paper. Combining FMI techniques and our hybrid approach, it is able
of interacting with modelled plant dynamics (loose-coupling) simulated by the 20-sim FMU
simulator (still work in progress by Controllab Products B.V. [16]).

3. Visualizing the Simulation

The visualization, or to be more specific, the visual representation of simulation results,
which should be presented to users for analysing behaviour of the system, is also required in
our hybrid approach. Simultaneously, system functionality, such as process execution flow,
signals to be varied and results of algorithms, need to be assessed during the simulation. In
order to support our hybrid simulation approach which is actually execution-based, numer-
ical and functional, a new visualization design is proposed which implement the animation
and other relevant facilities in the tool chain.

3.1. Tracing the Execution Flow in LUNA

3.1.1. States for CSP Constructs and Processes

In LUNA, a CSP construct emits an event when it is activated. Whilst active, it may activate
other processes and wait for them to finish. When this is all done, it has finished and emits
another event. A CSP process (e.g. a Reader, a Writer or a ’normal’ process) emits an event
when activated, when it has to go into a waiting state (for its partner Writer or Reader), when
it is running and when it is done. Hence, there are five possible states defined in total for CSP
constructs and processes: Activate, Running, Done, Waiting, and Activating other processes.
All state changes generate events and these can be traced during execution to indicate pro-
cess execution order, which enables better understanding and analysing with respect to CSP
specifications.

Figure 5 shows state machine diagrams of certain CSP constructs and processes. The
CSP Sequential construct needs to wait for a child to finish before activate the next one,
it transitions between Activating other processes and Waiting until the last child has been
activated and has finished, as shown in Figure 5a. Figure 5b is the state machine diagram for
the CSP Alternative and the Parallel constructs. For the Parallel construct, it remains in state
Activating other processes until all children have been activated; in Waiting, it waits until all
children have finished. As to the Alternative construct, Activating other processes applies to
activate a single child, one for which the guard expression is met. It might have to wait for
this to happen. If more than one guard expression are satisfied, any of them can be chosen,
unless the guard order is prioritised, in which case the one with highest priority is chosen.
In Waiting, the Alternative waits for the activated child to finish. Regarding the rendezvous
communication in CSP, it must indicate whether the Writer or the Reader on the other end
of the channel is ready for communication or not. Hence, in the state machine diagram for
the CSP Writer and the Reader processes, as shown in Figure 5c, after a Writer or a Reader
is in the state Activate, it transitions to Running if and only if the corresponding Reader or
Writer is already in Activate or is Waiting and takes that corresponding Reader or Writer also
to Running, otherwise, it transitions to Waiting. Care must be taken to avoid race hazards so
that, for example, they do not both enter their Waiting state.
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Figure 5. State machine diagrams of CSP constructs and processes, modified from (Ran [28]).

3.1.2. Recording and Transmitting the Execution Flow

In order to record and transmit execution flow information for a LUNA executable,as shown
in Figure 4, which includes discrete state changes that occur for all CSP constructs and pro-
cesses, as well as their ordering, an original design of LUNA’s real-time logging facility was
proposed as a proof-of-concept [29]. The logging facility mainly consists of two parts: the
logger and the log receiver. The logger is integrated within a developed LUNA executable,
or to put it another way, it is part of a LUNA executable. When the logging function is be-
ing called by certain objects during execution, it only pays for placing the log data into a
large buffer. The logger thread then takes care of transmitting data whenever computational
resources are unused such that it will not break the real-time constrains. Anther standalone
receiver program named ’loggerServer’ will run on the development platform (before the
logger starts). The logger server receives and stores log data as files in Comma-Separated
Values (CSV) format.

The logger facility for recording state changes can be divided into two phases: the reg-
istration phase, and the state recording phase. In the registration phase, the logger intends to
register (map) each CSP construct or process to an element (named ’Channel’ in Figure 6c)
with a specific ID, a name and a type when they are being initialized. The original logger
facility has been modified and partially re-factored towards animation facilities (e.g. regis-
tering ParentID and updating previous registration), in order to obtain a tree structure model,
stored as a CSV file named ’logfile’ that represents the hierarchical structure of the executable
model. Each CSP construct or process can be defined as a tree node, and each tree node could
have one parent and some siblings. A simple tree structure in different presenting forms is
shown in Figure 6.

When in the state recording phase, each time when a certain CSP construct or a process
transitions from one state to another, the logger will update an element value (state) in a vector
whose indices correspond to IDs of all tree nodes, and then places the data into a buffer. Once
computational resources are available, the logger thread will transmit the buffered data to the
log receiver to store them into a CSV file named ’datafile’. Figure 7 shows the data structure
that is used for storing state changes. Each update (state transition) is stored as one line in the
CSV file by the log receiver enabling a single entry per line for animation facilities.

Moreover, as discussed before, our hybrid simulation approach is execution-based which
should be capable of providing numerical and functional assessment for an executable
model (or a modelled system). Hence, during the execution, various signal or variable val-
ues need to be logged as well. In principle, it is the same as the logging procedure for state
changes. Each interested signal or variable needs to be registered with a specific ID and then
can be logged when its value varies. In our current progress an easier alternative implemen-
tation is done for prototyping, which directly outputs varied values of a specified signal or
a variable through the logger. The output messages are handled automatically by the logger
and the log receiver, to save them into a file, also in CSV format, and it does not require
registration beforehand.
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(a) TERRA CSP model

A
ID: 6

MainModel
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PARALLEL
ID: 4
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ID: 5

SEQUENTIAL
ID: 1

C
ID: 2

D
ID: 3

Parent

Parent

Parent Parent
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(b) Abstracted tree structure

(c) Tree structure logged from a LUNA executable

Figure 6. Tree structure representation of a TERRA CSP model.

time stamp State
Index 1

State
Index 2

State
Index 3

Process ID:1 Process ID:2 Process ID:3

State
Index n-1

State
Index n

Process ID:nProcess ID:n-1

............

Figure 7. Data structure for storing state changes.

3.2. Visualizing Traced Log Data

As discussed in the previous section, the LUNA logging facility is capable of tracing the
execution flow of an executable model by recording its log information. The tree structure
of the modelled system contains registration information (mapped with IDs, names, etc) for
each CSP construct and process, as well as state changes during execution are recorded and
transmitted. However, if state changes that represent the execution flow cannot be shown
in the form of visualization to designers, it will hinder designers to gain more insight into
models, since logged data are many lines of varied values which stand for different states of
each registered CSP construct and process. That is obviously inefficient and unnecessary to
analyse by designers ’manually’.

Regarding to our hybrid approach, when a LUNA executable model runs on an execu-
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Figure 8. Overall structure of the visualization.

tion environment, its logged data will be transmitted to the development platform at runtime
by the logger and be received by the log receiver. Since the LUNA executable model is com-
piled from certain C++ code that generated from TERRA models, meanwhile those TERRA
models are graphically designed and presented, thus logged data can be reused to depict state
changes of all CSP model elements as well as the execution order of processes by the form of
animation in the TERRA tool suite. Hence, certain facilities are designed and developed in
order to visualize traced log data in order to meet all requirements as discussed before. In Fig-
ure 8, the overall structure of our visualization design is presented. All visualization related
facilities within the scope of the TERRA tool suite are implemented as sets of Eclipse plug-
ins, which includes the SimCon facility, the Animation facility and other relevant facilities
like a Console for the log receiver and user interface.

The SimCon facility mainly consists of execution parameters configuration for both the
simulation (like simulation step size, simulation end time, etc) and the logging facility (file
names, port number, etc), as well as execution control (like start/stop/pause/resume) for the
simulation. It can also help to mimic a ’slow’ simulated execution in order to provide users a
better visual experience by setting a parameter which aims to configure time delay between
steps during the simulation. Otherwise, since logged data will be treated as snapshots during
the simulation, if it flows too fast then it will become like a flash which is impossible for
designers to observe. In our current prototype this is implemented as a simple mechanism that
either adds a timer to the LUNA executable or, manually, provides a pause/resume facility on
the Console with which the user can intervene during execution.

The Animation facility is the core part of the visualization design. Once the simulation
starts, the logging facility will log certain data and store them into corresponding CSV files.
The first file is the tree structure file that logged and stored during the initialization phase
for different objects from code perspective, which register each CSP construct or process to
an element with a specific ID, as shown in Figure 6c. Then, it is the state changes file that
logged and stored during the execution phase which represent different states for registered
elements. The last one is the signal values CSV file which stores varied values for one or
more specified signals. The animation facility will first map each TERRA model component
with a corresponding element in the tree structure file. Then it will read and parse the state
changes data line by line, since each line is defined as a single entry for the animation, or put
it another way, each line represents a snapshot of the simulation. After reading and parsing
one log entry, a database object will be updated and then a new snapshot will be published
to subscribers (the graphical view and the textual view). Human observers are good at spot-
ting differences, especially from a graphical view where colour changes instantly command
attention. Additionally, the database object can also be used to enable backward stepping ca-
pability, which will bring advantage to system validation. In our current implementation, we

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



Z.Lu et al. / Simulation and Visualization Tool Design for Robot Software 75

use different colours to graphically identify states for each TERRA model component, and a
textual view is provided as well. Although varied signal values are stored in a file, they are
not visualized in any kinds of views yet which is also part of our future work.

Summarizing, continuous cycles of logging → reading → parsing → updating snap-
shots → publishing snapshots to subscribers → show difference between snapshots form an
animation for the simulated execution.

4. Results

To illustrate our hybrid simulation approach and visualization facilities, a simple but classic
model structure is used to mimic a traditional loop control system, as shown in Figure 9. At
the top, it is a 20-sim model that represents the system, which consists of a step signal gener-
ator, a P-controller and the plant dynamics modelled as a liner system, in state space form. In
the middle, it is a TERRA model which contains three top-level CSP processes (in Parallel),
namely the Step, the Controller and the Plant blocks, whose sub-level models are shown at
the bottom and are transformed from the corresponding 20-sim model. Simultaneously, al-
gorithms (C++ code) for corresponding code blocks (the XXStepModel, the XXController-
Model and the XXLinearSystemModel) are generated by 20-sim.

PARALLEL*

Controller PlantStep

SEQUENTIAL_Step

!XXStepModel

C++

v_output

SEQUENTIAL_Controller

INS

?

?

XXControllerModel

C++

!
v_output

v_SP

v_MV

SEQUENTIAL_Plant

?

XXLinearSystemModel

C++

!
v_y

v_u

Figure 9. Example: models for a loop control system.

4.1. Generated C++ Code

C++ code is generated from our testing TERRA models. Figure 10a shows fragments of code
in the constructor of the top-level model which is shown in the middle part of Figure 9. It
mainly consists of the initialization for top-level objects, such as channels, model objects
and groups, which are corresponding to CSP channels, processes and constructs. At the top-
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MainModel::MainModel() :

Recursion<CSProcess>()

{

SETNAME(this, "MainModel");

// Initialize channels

myControlleroutput_to_PlantuChannel =

new UnbufferedChannel<double, One2In, Out2One>();

myPlanty_to_ControllerMVChannel =

new UnbufferedChannel<double, One2In, Out2One>();

myStepFunctionoutput_to_ControllerSPChannel =

new UnbufferedChannel<double, One2In, Out2One>();

// Initialize model objects

myController = new Controller::Controller(myPlanty_to_ControllerMVChannel,

myStepFunctionoutput_to_ControllerSPChannel,

myControlleroutput_to_PlantuChannel);

SETNAME(myController, "Controller");

myPlant = new LinearSystem::LinearSystem(myControlleroutput_to_PlantuChannel,

myPlanty_to_ControllerMVChannel);

SETNAME(myPlant, "Plant");

myStepFunction = new Step::Step(myStepFunctionoutput_to_ControllerSPChannel);

SETNAME(myStepFunction, "StepFunction");

// Create PARALLEL group

myPARALLEL = new Parallel(

(CSPConstruct *) myController,

(CSPConstruct *) myPlant,

(CSPConstruct *) myStepFunction,

NULL

);

SETNAME(myPARALLEL, "PARALLEL");

// Register PARALLEL as top-level recursive object

setToActivate(myPARALLEL);

setEvaluateCondition(true);

}

(a) Code generated from a top-level model
Controller::Controller(ChannelOut<double> *MV,

ChannelOut<double> *SP, ChannelIn<double> *output) :

Sequential(NULL)

{......

myr_MV = new Reader<double>(&v_MV, MV);

SETNAME(myr_MV, "r_MV");

myr_SP = new Reader<double>(&v_SP, SP);

SETNAME(myr_SP, "r_SP");

myw_output = new Writer<double>(&v_output, output);

SETNAME(myw_output, "w_output");

......

// Register model objects

this->append_child(myINS);

this->append_child(myXXControllerModel);

this->append_child(myw_output);

}

(b) Code generated from a sub-level model

Figure 10. Example: C++ code generated from TERRA CSP models (Figure 9).
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level of our testing model there are three channels, three CSP processes and one CSP Parallel
construct. Meanwhile, code is generated from sub-level models. Figure 10b shows part of the
constructor code, which is generated from the bottom-middle part of Figure 9, namely the
sub-level model of the Controller process, for which it also registers child model objects.

4.2. Simulation Comparison

After generating C++ code from the integrated TERRA model, we compiled and linked all
C++ code together with a platform-specific LUNA library. The LUNA library used in our
test was built for QNX real-time OS (32-bit, on X86). An executable model (binary for QNX
on X86) that represents a whole CPS was obtained. Then, on a QNX virtual machine, the
executable model was simulated as Tight-Coupling Execution (TCE), the execution flow and
signal values were traced and recorded by the logging facility. Figure 11 is the plot diagram
of recorded signal values during simulation. 20-sim simulation executed for 10 s (simulated),
while our hybrid simulation executed for 16 s. 20-sim simulation results are treated as the
ground truth in our case. Although we can see there are minor differences between our sim-
ulation results and 20-sim, they are quite limited and are within numerical tolerance.
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Figure 11. Comparison between different simulation results, the Minor differences box is a blow-up of the
dashed oval area towards the bottom-left.

4.3. Visualization Test

Besides numerical signal values, state changes during the execution were recorded as well
to support visualization facilities. Figure 12 shows the tree structure mapped by the logger
during test, which is a kind of in-order traversal. Each node with a PAR or SEQ footnote
represents a CSP construct, and the one without a footnote is a CSP process. Meanwhile,
each model element was registered with a specific ID except three SEQ constructs, namely
the SEQUENTIAL Controller, the SEQUENTIAL Plant and the SEQUENTIAL Step. It is
a kind of optimization during the registration phase, since the parental node of each construct
mentioned above is a CSP process that only contains a single child, of which the process-
ing will be directly after its parental node. Each time when a state transition happened on a
specified process, a new state value was updated in a mapped vector to refresh the previous
process state. State changes were stored in a CSV file where each line stands for a states
snapshot for all processes that being simulated. Since TERRA models are graphically pre-
sented, state changes, which are dynamically stored during simulation will be published to
subscribers, being the graphical view and the textual view simultaneously. Various states (e.g.
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Activate, Activating other processes, Waiting, Running and Done) are presented by different
colours, as shown in Figure 13a. Figure 13b is the states snapshot stored in the log data file,
which was published to the graphical view during our test, at which the Step (ID: 11) and
the Controller (ID: 4) were in state Waiting (1) while the Plant (ID: 7) was just turning into
state Activate (3). Snapshots that are dynamically published to the graphical view form the
so-called animation, which can help users to analyse how the loop control flow works.
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XXController
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Figure 12. Example: the tree structure of the loop control model (Figure 9), the arrow-line of each node points
to its parent.

PARALLEL*

Controller PlantStep

(a) Animation view

0.230 1

Process ID

time stamp

1 1 1 0 0 3 0 0 0 1 0 2 4 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) States snapshot in the log data file

Figure 13. Example: one snapshot during simulation for the loop control model.
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4.4. Repeatable Execution Flow

Despite the fact that our test model is a simple loop control system, it contains quite some
states and paths through those states. Figure 14 shows only part of the state transition diagram
for our test model. For the simulation of more complex systems, a state space explosion
may (and, usually, will) occur, which quickly gets beyond our capability to analyse without
making mistakes. This problem is considerably aggravated without visualization tools to aid
the presentation of the results from the simulation.

Our simulation follows an execution of the model, where state changes information is
logged for each process in the model during execution. Only that one execution sequence
is traced. For any non-trivial model, many execution orderings are possible because of the
freedom allowed by the CSP Parallel and Alternative constructs. If a simulation run shows up
a problem that manifests itself only for the execution ordering that happened during that run,
we may need to repeat that run ordering many times in order to spot the circumstances that
caused the bug. Happily, we can do this since the activation mechanism in LUNA for Parallel
and Alternative is resolved using pseudo-random numbers [7]. All that is needed is to record
the initial random number seed used by each run and, then, force its reuse if the run needs to
be repeated with the same execution ordering.

Figure 14 shows a particular execution flow (black) that we may want to repeat (because
the behaviour presented is interesting and that presentation is sensitive to the ordering within
that flow). Numerous other flows are shown in grey.
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Figure 14. Simplified and partial state transition diagram (’act’ stands for ’activate’).

5. Conclusions and Recommendations

The simulation comparison showed that our hybrid simulation approach is working as in-
tended. It provide comparable results as the ground truth simulated in 20-sim. Although there
are minor differences in values, they are within numerical tolerance from control perspective.
The visualization test showed that the animation in TERRA is sufficient to indicate simulated
execution flow and states of processes animated are consistent with traced execution data.
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With the visualization, it is easier for designers to observe simulation results, which also
means it is easier to analyse state space and helps to gain more insight into models.

Moreover, following our hybrid simulation approach and using the visualization facili-
ties, it can provide opportunity to implement a rapid prototyping of a system for validation,
which can reduce developing costs in both time and money. Furthermore, since model-driven
development is the fundamental basis in our hybrid approach which towards obtaining an
executable model for a target platform, it also brings opportunity to obtain an executable and
deployable binary which can be right-first-time after refinements through visualized simula-
tion.

In our current progress, although the varied signal values during simulation can be stored
in a file, they cannot be automatically visualized as state changes. This is crucial for numerical
assessment of a modelled CPS. Moreover, the log receiver is not integrated into the TERRA
tool suite which brings extra overhead. Additionally, the number of logged state changes is
quite high which make orientation difficult. On the other hand, such a level of detail may be
needed for analysing and debugging. Therefore, there should be options to include or exclude
states from animations. Lastly, timing analysis need to be implemented as well, since real-
time performance is one important criterion in CPS especially for modern service robotics
which toward seamless interaction with environments.
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