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Abstract. Current robotic systems are becoming more and more complex. This is
due to an increase in the number of subsystems that have to be controlled from a
central processing unit as well as more stringent requirements on stability, reliability
and timing. A possible solution is to offload computationally demanding parts to an
FPGA connected to the main processor. The parallel nature of FPGAs makes achiev-
ing hard real-time guarantees more easy. Additionally, due its parallel and sequential
constructs, CSP matches structurally with an FPGA. In this paper, a CSP to hardware
mapping is proposed where key CSP structures are translated to hardware using the
functional language CλaSH. The CSP structures can be designed using the TERRA
tool chain while CλaSH code is generated for implementing hardware. The function-
ality of the CSP mapping is illustrated using some producer-consumer examples. In
this paper, the design, implementation and tests are presented. Future work is to im-
plement the ALT construct, generate token diagrams for user understanding.
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Introduction

Software for embedded systems has an increasing amount of requirements, constantly in-
creasing the complexity of the design process. Additionally, quality control and automatic
consistency checking are of essence in a design with an increasing amount of requirements.
An often used approach to meet these requirements and simplify the design process is MDD
(Model-Driven Design). CSP (Communicating Sequential processes) is such a model and is
often used to verify timing of embedded control systems.

Embedded control system often consist of a central embedded processor combined with
an FPGA. The central processor is often used for the control loop while the FPGA is mostly
used for I/O purposes. Hard real-time guarantees are often difficult to accomplish on a em-
bedded processor that also used for other computing purposes. Offloading these real-time
processes to the FPGA should make this easier.

Due to their parallel nature, FPGAs are extremely suitable for CSP execution. CSP con-
structs can be executed in parallel in stead of concurrently on a embedded processor. This
does not only make execution faster, but also makes the execution more predictable.

For FPGA code generation, we use CλaSH [1,2]. CλaSH is a hardware descrip-
tion language borrowing syntax and semantics from the functional programming language
Haskell [3]. Additionally, the code can be simulated by the interpreter. One of the Goals of
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MDD is designing a system that is first-time right, simulation before actual testing on hard-
ware brings this one step closer. To make the process even less error prone it is desirable that
the CλaSH code is also auto-generated using MDD with the TERRA tool chain [4].

In this paper, a mapping from CSP to hardware using the functional language CλaSH is
presented. As a proof of concept, several producer/consumer examples are implemented and
simulated using the aforementioned mapping.

Outline

The remainder of this paper is structured as follows. First, background information is given
on CλaSH, TERRA and other related work. In Section 2, the design and design choices of
the CSP to CλaSH mapping are illustrated. In Section 3, CλaSH code generation and model-
driven design using the TERRA tool is explained. The CSP mapping and tested by means of
some simple producer-consumer examples are covered in Section 4. Finally, conclusions are
drawn and directions for future work are presented in Section 5 and 6 respectively.

1. Background

The background section first starts with a short introduction in CλaSH. This work makes
extensive use of Finite State Machines structured as Mealy machines [5], which are ex-
plained using a small example. Furthermore, some background information is given about
the TERRA tool and other related work.

1.1. CλaSH

CλaSH is a functional hardware description language (HDL), whose descriptions are trans-
lated to VHDL or Verilog by the CλaSH compiler. Conventional HDLs, such as VHDL or
Verilog, allow specifying detailed hardware properties, which can be cumbersome for larger
projects. CλaSH allows for quick development of both combinational and synchronous cir-
cuits [1,2].

Since CλaSH is a functional language, each of the CSP constructs can be defined in a
function. The functionality of these structures can be checked using CλaSH simulation, even
before synthesis is necessary.

Hardware components in this work have a state which is achieved using registers. In
CλaSH a state can be achieved by instantiating register components directly or using Mealy
machines, i.e. every output and new state is a function of the current state and the input.
A register is a component like any other component in CλaSH and simply delays the input
signal by one clock cycle. A Mealy machine is constructed by using a function in the form
shown in Algorithm 1 where the state variable s contains state information. The input variable
i is the input of the mealy machine. The output of the function is a tuple that contains both
the new state s´ and the output o. A function in this form can be used to construct a Mealy
machine by using the function mealy. This mealy function also requires the initial value of
the state. The CλaSH compiler recognizes the mealy structure and translates the use of the
current and next state into a register.
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-- Mealy machine function format
func :: State -> Input -> (State, output)
func s i = (s’, o)

where
s’ = .....
o = ....

-- Construction of a mealy machine using a function called func.
machine = mealy func initialState

Algorithm 1. Mealy machine function structure in CλaSH.

Algorithm 2 shows an example of a discrete integrator to demonstrate the usage of the
Mealy-machine function format. The new state of the Mealy machine is the current state
incremented by the input while the output is the new state [6]. The last line shows how the
final architecture is created using the Mealy-machine function that assigns the initial state 0
to the circuit.

integrator s inp = (s’, out)
where

s’ = s + inp
out = s’

-- Construction of a mealy machine for integrator
machine = mealy integrator 0

Algorithm 2. Integrator example in CλaSH.

Every CλaSH description is a valid Haskell description and can be simulated by a
Haskell compiler or simulator such as GHC. This does not work the other way around, i.e.
not every Haskell description is a CλaSH program. For instance, CλaSH does not support
recursive functions and recursive datatypes (yet).

1.2. TERRA

The Twente Embedded Real-time Robotic Application (TERRA) tool chain is a Model-Driven
Design (MDD) tool chain for the design process of embedded systems [4]. TERRA supports
designing using CSP models and integrates models from other tools, such as 20-sim1 models
and co-simulation. Properties of TERRA models can be formally verified by exporting to
machine-readable CSP and using a tool like FDR3 [7]. TERRA allows easy use of the CSP-
execution engine of LUNA [8], allowing the CSP structure to be drawn instead of written by
hand.

CSP allows an easy decomposition of the structure of a program into a set of sequen-
tial and parallel tasks. Support for more advanced structures (e.g. timed channels, (guarded)
alternatives) is present, allowing also complex structures to be decomposed. Adding blocks
with custom C++ code allows the user to add the functionality of the program to the struc-
ture defined with the CSP constructs. Furthermore, embedding converted 20-sim models is
supported, allowing for easy implementation of digital controllers.

1.3. Related Work

Groothuis et al [9] use gCSP extended with automated Handel-C code generation to FP-
GAs. Loop controllers are converted from floating point to integer-based calculations, be-

1http://www.20sim.com/
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cause Handel-C does not support floating point operations. Development using this approach
has stopped since Handel-C is not supported anymore.

Coyle et al [10] use UML diagrams to describe hardware, the models are transformed
to hardware using MODCO, a transformation tool which takes UML state diagrams as input
and generates a HDL description for an FPGA. This research focuses on the translation of
state diagrams and does not exploit the parallel nature of the FPGA.

Basten et al [11] present the GASPARD design framework for massively parallel em-
bedded systems. This framework allows design using a model-driven design approach using
MARTE [12]. These models are then refined to lower abstraction levels. Subsequently, code
can be generated for formal verification, simulation and hardware synthesis.

Brown [13] has a different approach to translating CSP into Haskell. Monads are used to
specify sequence and monadic combinators allow for composition of monadic actions. This
is however only a translation to Haskell, not to hardware. CλaSH has limited support for
monads therefore this approach cannot be used.

2. CSP Constructs in CλaSH

2.1. CSP Compositions

The Haskell CSP structures have to be designed in a way that conforms to the way FPGA
hardware operates. Haskell functions realized on a FPGA can be executed immediately, and
in parallel. CSP defines parallel structures, sequential structures, alternative structures with
deterministic choice, and without. The order of execution of these structures has to be ac-
complished within the FPGA. Structures have to be stopped and started accordingly.

In this work, tokens are used to enforce the execution order of CSP structures. This
similar to the use of tokens data-flow graphs except that there is no data stored inside of them.
A token is used to activate a CSP structure. A CSP process is designed as a structure that
can receive and return a token. The token is returned by the structure when it is finished. So,
when a reader “contains” a token, it is ready to receive a value. Tokens work in the same way
for writers, and structures of other CSP constructs. A CSP process can be a reader or writer,
or a composition of readers and writers. A composition itself is also a CSP process, and can
have a relation with another structure, e.g two parallel structures can be sequential.

Table 1 lists all the functions explained in the subsections below. Each of the structures
are first introduced shortly followed by a data-flow diagram displaying the token-flow. Fi-
nally, the CλaSH code of each function is listed and explained.

Table 1. List of CSP constructs and their CλaSH functions.

CSPm Haskell function
p ||| q parallel
p ; q sequential
p [] q alternative (future work)
c ! variable writer
c ? variable reader
channel c channel

2.2. The Parallel and the Sequential Operator

The interleaving-parallel operator, see Figure 1, is one that maps very well to the FPGA
platform. The operator stands for independent concurrent activity. The process behaves as
process P and Q simultaneously. On a single-core embedded processor P and Q would be

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



F.P. Kuipers et al. / Mapping CSP Models to Hardware using CλaSH 137

arbitrarily interleaved in time while on an FPGA, both processes can be executed completely
parallel.

P |||Q
Figure 1. Interleaving operator. The process behaves as process P and Q simultaneously.

CSP also has a sequential operator for sequencing two processes denoted by a semi-
colon, shown in Figure 2. The process initially behaves as P, after P has finished it behaves
as Q.

P ;Q

Figure 2. Sequential operator. This process behaves first as process P. When P is finished it behaves as Q.

The sequential and parallel structure data flow diagrams are shown in Figure 3. The
sequential operation is achieved by pipelining processes. When a sequential block receives a
token, the token is forwarded to process P thereby activating it. When process P is finished
it forwards the token to the next process in sequence, process Q. Finally, the last process
returns its token to the sequential structure. The sequential structure then returns its token to
its parent.

The parallel operator produces as much tokens as the amount of processes in parallel.
This way all processes are activated simultaneously. After all processes in parallel have fin-
ished the parallel structure returns its token. This means the parallel structure has to collect
all the tokens and return its own token only when all internal tokens are received.

PAR P Q

tio1

tio2

tii1

tii2

tei

teo SEQ

Q

Ptio

tii

tei

teo

Figure 3. Data flow graphs of the parallel and sequential composition. Lines carry tokens. Processes are de-
noted as boxes.

The Haskell description of the parallel structure is shown in Algorithm 3. It conforms to
the Mealy function format and has three state variables, (te,ti1,ti2). These state variables
store respectively the input token, the returned token of process P (tii1), and the returned
token of process Q (tii2). The structure updates the states and the outputs. Tokens are sent
immediately to P and Q when the parallel structure receives a token. These structures return
their token when finished. The parallel structure returns its token to the outside when both
tokens have been received. Analogously, both tokens are removed from the state when the
token is returned from the structure.
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parallel’ (te, ti1, ti2) (tei, tii1, tii2) = ((tei, ti1r, ti2r), (teo, tio1, tio2))
where

-- Return token when both are received
teo = ti1 && ti2

-- Only consume token one if both are received
ti1r = ti1 && ti2

-- Only consume token two if both are received
ti2r = ti1 && ti2

-- Return token to both structures in parallel
tio1 = te
tio2 = te

parallel tei tii1 tii2 = mealy parallel’ (False, False, False) (tei, tii1, tii2)

Algorithm 3. Parallel construct in CλaSH. The behaviour is described in parallel’ in the format according to
Algorithm 1. The function is transformed to a mealy machine in parallel.

As shown in Algorithm 3, the parallel construct has three inputs: tei, tii1 and tii2. tei is a
token input that triggers the execution of the parallel construct. tii1 and tii2 are the signals for
the tokens from the parallel processes. Similarly, the outputs teo, tio1 tio2 are used indicate
to the parent process whether the processing is finished. The other variables on the first line
indicate the current and next state. The two statements in the middle of the code compute the
value for registers ti1r and ti2r which indicate to the two parallel process weather the trigger
tokens have been received. The vertical bar symbols are used to check for the completion
condition of the child processes, i.e., both processes have to be finished before the parallel
construct is finished.

The description of the sequential operator is shown in Figure 3. The sequential operator
just passes its input token to the first construct in sequence. When it receives the token from
the last construct in the sequence, it passes the token to its parent. The register in the construct
is used to store the token of both processes.

sequential tei tii = (teo, tio)
where

teo = register False tii
tio = register False tei

Algorithm 4. Sequential function. The tokens are returned with one clock cycle delay from the inputs (tei,tii)
to the outputs (teo,tio).

2.3. Multiple CSP Structures in Parallel

The sequential composition can easily be extended to three or more processes by adding more
processes in the token passing chain. The extension of the parallel composition is a little
bit more complicated, since the parallel function only has ports for two processes. It would
possible to construct a parallel component for every number of structures necessary, but this
requires a large amount of functions which are hard to maintain. So, it is chosen to compose
four parallel structures by parallelising two parallel structures essentially parallelising four
CSP structures. The resulting composition for four and three CSP structures is shown in
Figure 3. The downside of this approach is that it takes one clock tick longer to activate the
CSP components in this structure.
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PAR PARPQ PARRS

tio1

tio2

tii1

tii2

tei
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Figure 4. Three or more parallel CSP structures can be parallelised by using compositions of parallel structures
and processes.

2.4. Channel Communication

Communication between processes works through channels. A process can output its data
using a writer, while another process can input data using a reader. These operations are
denoted in CSP by respectively an exclamation mark and question mark. Transfer of data
can not proceed until the other end is ready to offer or accept data. Handshake signals are
introduced to facilitate the communication. The order of execution in CSP is therefore not
only determined by CSP relational structures, but also by (rendezvous) channels.

Although channels have one-way data communication, their synchronisation is bi-
directional. A channel has bi-directional communication to ensure proper functionality. For
example, a writer block may only finish (return its token) when its value is received. A chan-
nel “block” in this description is always active and does not need a token.

! channel ?

token

t

token

token

t

token

vivalue value

s
success success

value value

viwriter ready writer ready

Figure 5. Channel communication and synchronisation.

In Figure 5, the communication and synchronisation of a channel in a producer-consumer
example is shown using three signals. One of them, value, contains the value written by the
writer, denoting the data communication. The writer ready signal indicates the writer is active
and the reader is receiving valid data. This signal is combined with the value signal using the
Maybe type. A Maybe type can be in state Nothing or Just with a corresponding value. As
soon as the reader has accepted the data it returns a success signal. This way the writer knows
the communication has finished and it can return its token.

The reader and writer functions are displayed in Algorithms 5 and 6. Both are im-
plemented using pattern matching and conform to the Mealy function structure (see Algo-
rithm 1).

The writer has three state variables: (haveToken, success, value). haveToken stores the
token of the writer and will be returned when channel communication has finished. success
stores the success value returned from the reader. value stores the value the writer intends to
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send. When the token is available and there is no success, the writer component reads a new
value from its input, and outputs the current value from its memory. When the writer com-
ponent is active, it is assumed the input is stable. When the reader has successfully received
the value from the writer component, the success signal is set. When the success signal is
received by the writer component the token is returned to its parent. In all other cases the
writer component outputs Nothing.

writer’ (haveToken,success,value) (t,s,vi) = case (haveToken,success,value) of
-- When Token is available and no success (yet) get new value from
-- input and output current value.
(True, False, v) -> ((True, s, vi), (False, v))
-- When Token is available and success return the token and output Nothing.
(True, True, v) -> ((False, False, vi), (True, Nothing))
-- In all other cases output nothing.
(_, _, v) -> ((t, s, vi), (False, Nothing))

Algorithm 5. Haskell code for the Reader.

The reader has two state variables: (haveToken, value). haveToken is the token of the
reader and will be returned when channel communication has finished. value is the value
of the reader, received from the writer. When no token is available, the reader component
keeps it current states. When the token is available and Nothing is on the reader components
channel input, the writer component is apparently not active and the reader keeps its current
states. When the token is available and there is a value on the channel, communication takes
place. The reader saves the new value to its value state and sets the success flag.

reader’ (haveToken,value) (t,vi) = case (haveToken,value,vi) of
-- When no token is available keep the current value. Success is false.
(False,v,vi) -> ((t,v), (v,False))
-- Token is available, nothing on input -> Keep current value. Success is false.
(True,v,Nothing) -> ((True,v), (v,False))
-- Token is available, new value on input -> take new value. Success is true.
(True,v,vi) -> ((False,vi), (v,True))

Algorithm 6. Haskell code for Reader.

The channel used in this example is the standard rendezvous channel. The implementa-
tion of this channel is straightforward. It simply connects the signals from the writer and the
reader. Essentially, the function just describes some wires, as the synchronisation is imple-
mented in the reader and writer. The channel function is shown in Algorithm 7.

The channel function will be removed by synthesising the generated VHDL code. It can
be removed by just connecting the writer and the reader directly. It is chosen to keep the
channel function separate to support buffered channels later on in the development process.
This way the channel function can be easily swapped out for a buffered version. This also
simplifies code generation earlier in the design process.

-- | Unbuffered Channel (Rendezvous channel)
channel valueIn valueReady = (valueIn, valueReady)

Algorithm 7. Haskell code of the channel.
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3. MDD Work-flow and Code Generation

The TERRA tool chain is a MDD tool suite simplifying the design process of embedded sys-
tems [4]. Based on models in TERRA LUNA C++ descriptions can generated. In this work,
LUNA is extended with CλaSH code generation. This section describes the MDD work-
flow using this approach. The current MDD work-flow is displayed in Figure 6. The design
starts by defining a CSP model in the TERRA tool suite. Currently, the diagram needs to be
translated by hand by drawing a data-flow diagram and writing the CλaSH description by
hand. However, the TERRA toolchain is extended with Model-to-Text (M2T) code gener-
ation. This code generation uses the CSP model defined in TERRA and directly generates
a CλaSH description. Subsequently, this CλaSH description can be simulated by using the
techniques presented in Section 1. This simulation shows the output of the defined structures
per clock cycle. A test input and expected output can be defined to test the CSP model, using
the functions: testInput and expectedOutput.

The CλaSH description can be transformed to a HDL description (either VHDL or Ver-
ilog) using the CλaSH compiler. The CλaSH compiler uses the previously defined testIn-
put and expectedOutput to generate a test-bench. This test bench inputs the values defined
in testInput and asserts the expectedOutput. The VHDL description including the test-bench
VHDL can be tested using Modelsim2. During the simulation the assertions are checked,
when all succeed the model works as expected. Finally, the VHDL description can be syn-
thesized using for instance Altera Quartus2.

CSP model

Data-flow diagram

CλaSH Description

VHDL

Realisation (RaMstix)

Timing diagram

Timing diagram

Translation by hand

TERRA M2T

Translation by hand

CλaSH compiler

Quartus synthesis

GHC simulation

Modelsim

Figure 6. The current MDD work-flow from CSP models to hardware realization.

In current implementations, FPGAs are mostly used as I/O boards. The FPGA descrip-
tion is pre-defined and not part of the model. The first goal of this work is to be able to
describe I/O in CSP Models, making simulations and editing of I/O functions more simple.
This opens the possibility to move more functionality from embedded control software to
the FPGA platform, see Figure 7. For instance the safety layer can be moved to the FPGA
hardware, which makes the system more robust and the safety layer does not rely on context
switching anymore. Finally, it is possible to move the loop controller to the FPGA platform,
eliminating delays and jitter between I/O and loop control, see for instance [14]. This re-

2https://www.altera.com/products/design-software/
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quires some challenges to be overcome. For instance, most controllers require floating point
operations, which are not (yet) supported in the CλaSH compiler.
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Figure 7. Use case of the CλaSH CSP mapping in embedded control.

4. Examples

As a proof of concept, two producer-consumer examples are implemented using the mapping
methodology presented in Section 2. The first example shows a parallel composition of a
single writer and a single reader. The second example contains two writers and two readers
showing a more complicated ordering of execution. Additionally, an alteration of the second
example is shown containing a deadlock.

4.1. Producer Consumer

The first example is shown in Figure 8. A writer and a reader are connected by a channel
using a parallel construct. Since both the reader and writer are active in a parallel constructs,
channel communication can take place. Note that the parallel structure is not recursive, be-
cause it is activated manually.

In this example, trigger tokens are injected externally from a test bench. This trigger
token is is sent to the parallel construct which activates both the reader and writer. Execution
of the parallel construct finishes when both the reader and writer are finished, sending a
finished trigger back to the parallel construct.

Figure 8. Producer consumer example. A writer and a reader in parallel relation connected by a channel.

The execution order of the producer consumer is shown in Figure 9. First, the parallel
construct is activated, by a trigger token. The parallel construct then activates both the reader
and writer in parallel by sending them a trigger token. The writer outputs the ready signal and
its value. When the reader receives the ready signal, it reads the value and sets the success
signal. Afterwards, both the writer and the reader return their trigger token to indicate to the
parallel construct that both processes are finished.
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parallel writer channel reader

pass token
pass token

ready and value
ready and value

success

Figure 9. Sequence diagram of a producer-consumer example.

Figure 10 shows how the CSP constructs are mapped to an FPGA using CλaSH com-
ponents. The ordering and dependencies in timing among constructs are made explicit with
wires. Additionally, data communication using a channel is also made explicit using an in-
stantiation of a channel component. Note that every component in the CλaSH definition is
mapped to a different location on the FPGA. The implementation is therefore completely
parallel.

As shown in Figure 10, the execution of the parallel construct is triggered by a token
in input ti. Both the writer and reader are triggered by a token on tio1 and tio2 respectively.
Since channel communication requires acknowledgements to ensure that transmissions are
finished completely, status signals s and rr are connected to the channel. Using rr, the reader
indicates to the channel that the value is read while s indicates to the the writer that the value
is successfully sent through the channel and that a new value can be sent. When both the
writer and the reader finished their operation, both send a token back to the parallel construct
to indicate their completion using the wired tii1 and tii2 respectively. Finally, when both
tokens are received by the parallel construct, a token is put on the discard output thereby
indicating the completion of the whole computation.

writer channel readerparallel vi rOut
ti

discard

s rr

wOut cOut

tio1

tio2

tii1

tii2

Figure 10. Data-flow diagram of the producer-consumer example.

The CλaSH code of the producer consumer example of Figure 10 is shown in Algo-
rithm 8. On the first line, prod_cons is the function representing the whole circuit. As argu-
ment, the function prod_cons accepts a singe token containing a trigger input ti and value
for the writer vi. On the output, a tuple is produced containing the value produced by the
reader rOut and the discard signal. All instantiations of the components are described in the
where-clause. For each component, the all incoming signals are connected on the right hand
side while the output signals can be found left of the equal-sign. Note that the ordering in the
where-clause has no impact on the execution, the code is a completely structural description
of the circuit. The code is therefore structurally equivalent to the circuit shown in Figure 10.
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prod_cons (ti, vi) = (rOut, discard)
where

(tii1, wOut) = writer vi s tio1 -- writer connected to channel
(cOut, s) = channel wOut rr -- channel
(tii2, rOut, rr) = reader cOut tio2 -- reader connected to channel
(discard, tio1, tio2) = parallel ti tii1 tii2 -- reader and writer in parallel

Algorithm 8. CλaSH code of producer consumer example.

Using the CλaSH compiler, the description of Algorithm 8 is compiled and simulated.
During simulation, the output is calculated for every input value. The simulation results are
converted into a timing diagram as shown in Figure 11.

First, the token is injected to trigger the execution of the parallel construct. Subsequently,
the writer and reader are activated in the next clock-cycle. The writer and the reader are now
ready for communication. The writer sets its value on the channel followed by the reader
setting the success signal. One clock-cycle later the value is set on the output of the reader.

clock

Injected token - ti

Input writer - vi 1

Channel value - cOut Nothing 1 Nothing

Success - s

Output value - rOut Nothing 1

Figure 11. Timing diagram of the producer consumer example.

4.2. Multiple Producer Consumer

The second example is composed of two writers, two readers and two channels for commu-
nication. Figure 12 shows the structure of and relations among processes. Both the writers
and readers are in sequential relationship. Therefore, data is first sent through one channel
(the lower one in the figure) followed by the second. The structure of the circuit is basically
a doubling of the components from the first example and omitted.

Figure 12. Multiple producer consumer example. Two writers sequential in parallel with two readers sequential
communicating over separate channels. The orderings within the sequential constructs are indicated by the thick
vertical arrows.
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Algorithm 9 shows the CλaSH code for the doubling producer consumer example. Sim-
ilar to the first example, the first argument for double_prod_cons is a tuple with the input
data for the channels (vi0 and vi1) and a trigger input ti to start the process. Also the output
has a similar structure with two outputs from the readers (rOut0 and rOut1) and the discard
output to indicate completion of the whole process. In the where-clause, all readers, writers
and channels are instantiated and connected. To control the execution order, one parallel and
two sequential constructs are instantiated as well.

double_prod_cons (ti, vi0, vi1) = bundle (rOut0, rOut1, discard)
where

-- Two writers sequential
(wT0, wOut0) = writer vi0 s0 tio0
(wT1, wOut1) = writer vi1 s1 wT0
(teo0, tio0) = sequential pT1 wT1

-- Channels
(cOut0, s0) = channel wOut0 rr0
(cOut1, s1) = channel wOut1 rr1

-- Two readers sequential
(rT0, rOut0, rr0) = reader cOut0 tio1
(rT1, rOut1, rr1) = reader cOut1 rT0
(teo1, tio1) = sequential pT2 rT1

-- The two structures above in parallel
(eT, pT1,pT2) = parallel ti teo0 teo1

Algorithm 9. Code for the double producer consumer example.

Again, the CλaSH code is compiled and simulated after which the timing diagram of
Figure 13 is extracted. Similar to the first example, the whole process is started by injecting
the trigger token at the parallel construct. Consequently, both sequential constructs are trig-
gered. The sequential structures pass their tokens to the first reader and writer triggering the
communication over the first channel. The active writer and reader pass their token to the
second reader and writer such that the communication over the second channel is triggered.
Finally, when the second reader and writer are finished the whole process is completed and
the channels are back into the Nothing state.

4.3. Multiple Producer Consumer with Dead-Lock

By reversing the ordering of the sequential construct containing the readers, a deadlock can
be created. This is due to the fact that the first writer to be activated cannot complete because
the second reader has to wait on the completion of the first reader. Similarly, the first reader
cannot complete its operation because it will never receive a message from the channel.
Figure 14 shows the CSP schematic of the double reader-writes with deadlock.

After the CλaSH code has been compiled, simulated and a timing diagram has been
derived, Figure 15 emerges. As expected, the first channel communication will not finish due
the fact that the reader will never become active. The second channel is never activated. In
the timing diagram, this is shown by the channel and reader outputs: the output remains a
stable Nothing.
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clock

Injected token - ti

Input writer 0 - vi 1

Input writer 1 - vi 2

Channel 0 value - cOut0 Nothing 1 Nothing

Channel 1 value - cOut1 Nothing 2 Nothing

Success 0 - s0

Success 1 - s1

Output value 0 - rOut0 Nothing 1

Output value 1 - rOut1 Nothing 2

Figure 13. Timing diagram of the multiple producer consumer example.

Figure 14. Multiple producer consumer example in a dead-locking configuration.

clock

Injected token - ti

Input writer 0 - vi 1

Input writer 1 - vi 2

Channel 0 value - cOut0 Nothing

Channel 1 value - cOut1 Nothing

Success 0 - s0

Success 1 - s1

Output value 0 - rOut0 Nothing

Output value 1 - rOut1 Nothing

Figure 15. Timing diagram of the deadlocking multiple producer consumer example.
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4.4. Resource Usage

An indication of costs of a circuit on an FPGA is expressed in logic elements (LEs), the
basic building blocks on an FPGA. Obviously, more CSP components result in more logic
element usage. Additionally, the number of LE is also determined by the data types used for
the messages that are sent using the channels. Since these messages are first kept in a writer
and then consumed by a reader, additional memory is required in both the reader and the
writer. Table 2 shows how many logic elements are required when using 8-bit signed integer
as datatype for the aforementioned messages.

Table 2. Logic element usage of the different examples.

Example Logic Elements
Producer consumer 23
Double producer consumer 37
Double producer consumer deadlock 37

5. Conclusions

In this paper, a way to map CSP to hardware using CλaSH is proposed, and tested using
simulation. This mapping enables the execution of a (currently restricted set of) CSP models
on an FPGA. The implementation is made scalable and reusable for future applications. The
CSP mapping is a first step toward a model-driven design process to generate VHDL code.

CλaSH code can be generated from the CSP model in TERRA, which can be used to
generate hardware description code. This code can then can be synthesized and realized on a
FPGA.

The generated code can be simulated at two levels. The first being a interpreted CλaSH
simulation using a Haskell interpreter, for instance, GHC. This provides a per-clock-cycle
simulation, testing for functionality. The second is a simulation of the generated VHDL de-
scription in Modelsim. Next to functionality, this simulation also gives insight on the timing.

The modular token-flow approach makes extending this mapping possible. Therefore,
this mapping is suitable for all kinds of MDD purposes.

6. Future Work

This paper only provides a mapping and generation for some CSP constructs to CλaSH in
a basic setting. To allow the user to create real-life control software specifications, nesting
of presented structures is needed. Nesting can be a part of the CSP structure as long as it
conforms to the data-flow structure proposed in this paper, i.e., it consumes and produces
tokens.

Robotic systems, the target of this mapping, consists often of some reusable components,
e.g. motor drivers and sensor reads. This CSP mapping could be extended in the TERRA
tool with support for these building blocks. Re-using a set of blocks makes the developed
software more reliable. These building blocks should have some parameters, that can be set
by the user for their specific purpose. These parameters are used to make a generic block
application specific. Examples are mass and length of a specific robot arm.

6.1. Alternative Operator

This paper only provides a mapping for the parallel and the sequential construct. The alter-
native operator is also often used. A possible data-flow structure for the alternative construct
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is shown in Figure 16. The alternative relation can, optionally, be prioritised. Either way, the
ALT in Figure 16 must wait for a signal on either ’g1’ or ’g2’ to arrive. If only one of them
arrives, it accepts it and triggers the process guarded by that signal (’P’ for ’g1’ or ’Q’ for
’g2’). If they arrive together or were already present when the ALT was activated, what hap-
pens next depends on whether the ALT was prioritised. If it was, the priority order defines
which signal to take - say ’g1’. If it was not prioritised, the choice can be made arbitrarily.
An acceptable resolution is to make the same choice as if it were prioritised (i.e. ’g1’), so
that only a prioritised version of ALT need be implemented. A random choice could be made
but that is computationally expensive and unnecessary. We expect that the implementation of
the prioritised alternative, i.e. CλaSH code generation from TERRA diagrams is a matter of
careful development. A non-prioritised alt will not be implemented since it is rarely used in
physical applications.

ALT P Q

tii2

tii1

tei2

tei1

tei

teo

g1

g2

Figure 16. Data flow graph of the alternative composition. Lines carry tokens. Processes are denoted by the
letters P and Q. The guards are denoted by g1 and g2.
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CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



F.P. Kuipers et al. / Mapping CSP Models to Hardware using CλaSH 149

riet, Marc Voorhoeve, and Yang Yang. Model-Driven Design-Space Exploration for Embedded Systems:
The Octopus Toolset, pages 90–105. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[12] Imran Rafiq Quadri. MARTE based model driven design methodology for targeting dynamically recon-
figurable FPGA based SoCs. Theses, Université des Sciences et Technologie de Lille - Lille I, April
2010.

[13] Neil C.C. Brown. Communicating Haskell Processes: Composable explicit concurrency using monads. In
CPA, pages 67–83, 2008.

[14] M. A. Groothuis and J. F. Broenink. HW/SW Design Space Exploration on the Production Cell Setup.
In P.H. Welch, H. W. Roebbers, J. F. Broenink, and F. R. M. Barnes, editors, Communicating Process
Architectures 2009, Eindhoven, The Netherlands, volume 67 of Concurrent Systems Engineering Series,
pages 387–402, Amsterdam, November 2009. IOS Press. bibtex: groothuis2009cpa.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.



150 F.P. Kuipers et al. / Mapping CSP Models to Hardware using CλaSH

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.


