
Communicating Process Architectures 2016
K. Chalmers, J.B. Pedersen et al. (Eds.)
Open Channel Publishing Ltd., 2016
© 2016 The authors and Open Channel Publishing Ltd. All rights reserved.

197

The π-Calculus for SoS:
Novel π-Calculus for the Formal Modeling
of Software-intensive Systems-of-Systems

Flavio OQUENDO1
IRISA – UMR CNRS, Univ. de Bretagne-Sud, France

Abstract. A major research challenge in the architectural design of a software-
intensive System-of-Systems (SoS) is to enable the formal modeling of its
evolutionary architecture. One of the main issues is that SoS architectures evolve
dynamically, during run-time, in unexpected ways while producing emergent
behavior. To address this issue, this paper proposes a novel process calculus, called
“the π-Calculus for SoS”, defined as a novel variant of the π-Calculus based on
concurrent constraints and inferred channel bindings for enabling the formal
modeling of software-intensive SoSs, meeting their challenging architectural
characteristics.

Keywords. π-calculus, concurrent constraints, formal modeling languages, software
architecture, software-intensive systems-of-systems.

Introduction

The pervasiveness of communication networks has made increasingly possible to
interconnect software-intensive systems that are developed, operated, managed, and
evolved independently. The result is a new kind of complex software-intensive system, the
so-called System-of-Systems (SoS), which develops evolutionarily by composing several
existing systems to achieve missions not possible with a single system.

This is the case of SoSs found in different areas as diverse as aeronautics, energy,
healthcare, manufacturing, and transportation; and applications that address societal needs
as e.g. environmental monitoring, emergency coordination, traffic control, smart grids, and
smart cities. Moreover, enabling platforms such as the Internet of Things (generalizing
wireless sensor/actuator networks in the Cloud) and nascent classes of SoSs such as cyber-
physical ones are accelerating the deployment of software-intensive SoSs [28].

An SoS has intrinsic characteristics that are hard to address when compared to those of
single systems [19]. In an SoS, constituent systems are: operationally independent,
managerially independent, geographically distributed and physically decoupled (limiting
the exchange to information only). The SoS as a whole is always subject to evolutionary
development and emergent behavior, i.e. new behavior that stem from the local interactions
among constituent systems, but cannot be deduced from the behaviors of the constituent
systems themselves.

Complexity is intrinsically associated to emergent behavior; a complex system being
defined to be a system of interacting parts that displays emergent behavior. By its nature, by

1 Corresponding author: Flavio Oquendo, IRISA – UMR CNRS, Univ. de Bretagne-Sud,
France; E-mail: flavio.oquendo@irisa.fr

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

198 F. Oquendo / The π-Calculus for SoS

definition [19], SoSs always produce emergent behaviors. In SoSs, missions are achieved
through emergent behaviors [36].

Hence, complexity poses the need for separation of concerns between architecture and
engineering: architecture focuses on design and analysis about interactions of parts and
their emergent properties while engineering focuses on designing and constructing such
parts and integrating them as architected.

More specifically, according to ISO/IEC/IEEE Standard 42010 [15], an SoS
architecture can be defined as the fundamental organization of an SoS embodied in its
constituent systems, their relationships to each other and to the environment, and the
principles guiding its design and evolution.

Conceiving Architecture Description Languages (ADLs) for software-intensive
systems has been the subject of intensive research in the last two decades resulting in the
definition of several ADLs for formally describing the architectures of (often large) single
systems [21][22][30]. However, none of these ADLs has the expressive power to formally
describe the architecture of software-intensive SoSs [12][18].

Indeed, all these ADLs for single systems have formal foundations that only cope with
the specification of architectures that are static (i.e. architectures defined at design-time
which never change at run-time) or dynamic (i.e. architectures which may change at run-
time according to the anticipated reconfigurations known at design-time).

However, SoS architectures are evolutionary, being unpredictably dynamic due to
emergent behaviors [11]. Moreover, the actual constituent systems of an SoS are generally
not known at design-time and are only selected at run-time. Therefore, the intrinsic
characteristics of SoSs lead to software architectures at run-time that cannot be predicted at
design-time [19]. To address the research challenge raised by the unique characteristics of
SoSs, the targeted breakthrough is to conceive a novel ADL providing the formal
foundation to describe SoS architectures, which may change unpredictably at run-time in
SoSs [11][12][18].

As a matter of fact, in ADLs for describing the architecture of single software-
intensive systems, process calculi have been shown to constitute the suitable mathematical
foundation. As expected, the main concern in the formal description of these architectures
is how structure and behavior are interrelated in concurrent sets, and this is the purpose of
process calculi as formal theory [37].

To fill this gap, we conceived a novel process calculus in the family of the π-
Calculus [23]. Named “the π-Calculus for SoS”, it provides the primary formal foundation
having the expressive power to address the challenge of modeling the evolutionary
architecture of software-intensive SoSs. Based on this foundation, we defined an ADL for
SoS, named SosADL [26].

This paper focuses on the presentation of the π-Calculus for SoS from the
communicating process architecture viewpoint. It complements three others recently
published: [26] and [27] that presented the ADL for SoS, i.e. SosADL, and its formal
foundation from the viewpoint of SoS architects at the IEEE SoS Engineering Conference –
SoSE 2016; and [29] that described the validation of SosADL based on a real pilot project
and related case study to be presented in the IEEE International Conference on Systems,
Man, and Cybernetics – SMC 2016.

The remainder of this paper is organized as follows. Section 1 describes the motivation
for conceiving a novel process calculus for SoS and presents related work. Section 2
presents the formal definition of the π-Calculus for SoS in terms of its abstract syntax and
its structural operational semantics expressed in terms of labeled transition rules. In section
3, we describe how to apply the π-Calculus for SoS for modeling the architectural
behaviors of an SoS. In section 4, we briefly introduce the supporting toolset and the

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 199

validation of the π-Calculus for SoS. To conclude we summarize, in section 5, the main
contributions of this paper and outline future work.

1. Motivation and Related Work

The combination of intrinsic SoS characteristics turns SoS architectures to be naturally
highly evolvable, unpredictably changing at run-time with regard to their constituent
systems and operational environment. SoSs have evolutionary architectures (with the
meaning that they dynamically adapt and continuously evolve at run-time in ways not
envisaged at design-time).

As mentioned, many works have addressed the issue of formally describing the
architecture of single software-intensive systems [21][22][30]. Most of the work carried out
addressed how existing or extended process calculi and related languages enable the formal
description of software architectures.

Therefore, we must pose the question: do the process calculi constituting the formal
foundations of these ADLs provide enough expressive power for modeling SoS
architectures?

To answer this question, let us analyze the state-of-the-art on formal foundations of
ADLs for single software-intensive systems. In fact, different process calculi were applied
as formal foundations for describing the architecture of single systems, of which the main
ones, from an ADL perspective, are: FSP [20] (the formal foundation of Darwin [17]), CSP
[14] (the formal foundation of Wright [1]), and π-Calculus [23] (the formal foundation of π-
ADL [6][25]). In addition, emerging formal languages for modeling contracts in SoSs [3],
of which the main representative is CML [40], base their foundations on variants of process
calculi, in particular CSP-CIRCUS for CML [41].

These process calculi have been applied to formalize architecture description where:
• a “component” is specified as a process interacting with its environment by

providing ports specified by channel names and having its behavior specified in a
specific process calculus;

• a “connection” is specified as a channel binding for linking together ports of
different components, enabling communication between connected processes
(besides simple connections, more complicated “connectors” may be specified).

Figure 1 below depicts these typical structural elements of process calculi in terms of a
flow graph, where processes P and Q are composed, the former exposing channel names a,
complement of b, and c for interaction and the later channel names b, d, and e and where
also a channel binding is declared between b and its complement enabling interaction
between P and Q.

Figure 1: Flowgraph showing typical structural elements of process calculi.

The formal mechanisms for declaring processes, channel names and their bindings

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

200 F. Oquendo / The π-Calculus for SoS

vary from a process calculus to another. In particular, regarding ADLs, the binding
mechanism is a discriminating feature of different process calculi. Concerning process
calculi grounding ADLs for single systems, the binding mechanism is shared actions in
FSP/Darwin, statistic channels in CSP/Wright and CSP-CIRCUS/CML, and extruded
channels in π-Calculus/π-ADL.

Four aspects of the binding mechanism are key for supporting different kinds of
architecture description:

• endogenous vs exogenous bindings: are the channel bindings decided within the
process definitions, i.e. endogenously, or outside in the definition of their
compositions, i.e. exogenously?

• unconstrained vs constrained bindings: are the channel bindings unconstrained,
i.e. once declared they always hold, or constrained, i.e. a channel binding will
hold only if it satisfies a specific set of properties?

• extensional vs intentional bindings: are the channel bindings declared explicitly
in the process composition or not, i.e. intentionally by a set of properties?

• unmediated vs mediated bindings: are the channel bindings created without any
mediation between the related processes, i.e. unmediated, or is the channel
binding created after mediation between related processes taking into account
mutually agreed properties?

Regarding these four aspects of bindings in process calculi grounding ADLs for single
systems, they are:

• endogenously decided at design-time;
• unconstrainedly specified;
• extensionally declared at design-time (even if π-Calculus supports mobility at

run-time, while FSP and CSP2 do not);
• unmediated between processes.
In particular, in FSP and CSP the channel bindings are defined explicitly, by extension,

in the process definitions (design-time) and cannot change during their application (run-
time). In the π-Calculus, channel bindings may evolve according to the interaction of
processes based on channel mobility, however the linkage structure is completely defined in
an endogenous way.

By the nature of single system architectures, these different process calculi capture the
needs for establishing the formal foundations of single system ADLs. Indeed, architectures
of single systems are basically static (where all the architectural decisions are taken at
design/definition time) or dynamic (where all anticipated reconfigurations are known at
design/definition-time).

Indeed, all ADLs for single systems have formal foundations that only cope with the
specification of architectures that are static or dynamic by having their binding mechanism
being endogenous, unconstrained, extensional, and unmediated.

Let us now come back to the posed question: do the process calculi constituting the
formal foundations of these ADLs provide enough expressive power for modeling SoS
architectures?

The answer is clearly: no, they do not. None of these process calculi provides a
suitable basis for formalizing SoS architectures [11]. Necessarily, the description of SoS
architectures needs to specify:

• a “constituent” as a process interacting with its local environment;
• a “connection” as a channel binding inferred from local environments, subject to

2 Note also that variants of CSP have been defined with extensions enabling the mobility of channels inspired
by the π-Calculus [38].

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 201

uncertain information, i.e. actual bindings must only be decided at run-time
among actual constituents of the SoS, not at design-time like in single systems.

Moreover, “mediators” need to be defined in order to cope with constraints coming
from processes to be linked by connections.

In the case of SoSs, the channel bindings connecting constituents together enabling
interaction must thereby be:

• exogenous: interactions in an SoS are due to the mission of the SoS and not to
the missions of the constituent systems themselves, which moreover are not
necessarily aware of the SoS mission (interactions must therefore by exogenous
to the constituents, and not endogenous like in single systems);

• constrained: interactions in an SoS are constrained by local environments (as
opposed to single systems whose architectures are unaware of local contexts) and
in particular subject to uncertain information;

• intentional: interactions in an SoS are actually decided at run-time (not
extensionally decided at design-time like in single systems, in particular as
concrete SoS constituents are often not known at design-time);

• mediated: interactions in an SoS must be mediated by local environments of
constituent systems (unlike in single system architectures where decisions are
made at design-time and are thereby unmediated).

As none of these process calculi meet the needs of SoSs, we must pose the subsequent
question: beyond these process calculi underlying single system ADLs, are there other
process calculi that are suitable for describing SoS architectures?

To answer this question, we have evaluated different process calculi developed for
modeling complex systems, beyond engineered systems and systems-of-systems, and
identified several forms of the π-Calculus that were developed for modeling natural
complex systems in Biology [34] and Chemistry [32]. Some other process calculi were also
extended with the mobility mechanisms of the π-Calculus, e.g. CSP with mobile channels
[38] and its derived occam-π language which was used for modeling natural systems [35].

For answering that question, we further evaluated the π-Calculus in its original form
[23] as well as its enhanced forms that have been developed along the years.

This evaluation included, on the one hand, general-purpose π-Calculi and, on the other
hand, π-Calculi that were specially developed for modeling complex systems. The
conclusion of this study is that the binding mechanism underlying interactions for creating
composite behaviors in:

• the original π-Calculus [23] is endogenous, unconstrained, extensional, and
unmediated;

• the Fusion-Calculus [31], extending the original π-Calculus, is exogenous,
unconstrained, extensional, and unmediated;

• the explicit fusion π-F-Calculus [39], extending the Fusion-Calculus, is
exogenous, constrained, extensional, and unmediated;

• the Attributed π-Calculus [16], extending the π-F-Calculus, is exogenous,
constrained, extensional, and unmediated;

• the Constrained CC-π-Calculus [5], also extending the π-F-Calculus, is
exogenous, constrained, extensional, and unmediated.

Again, the answer is: no, they do not. None of these process calculi provides a suitable
basis for formalizing the architecture of SoSs. Therefore, a novel process calculus is needed
as a suitable formal foundation of an ADL for SoS as none of existing π-Calculi meets SoS
architecture needs.

The design decisions underlying the π-Calculus for SoS are: (i) processes must be
constrained by their local environments; and (ii) bindings enabling interaction between

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

202 F. Oquendo / The π-Calculus for SoS

processes must be exogenous, constrained, intentional, and mediated.
Our approach to design a novel π-Calculus coping with SoS needs was to generalize

the original π-Calculus with mediated concurrent constraints, where mediation is achieved
by constraining channel bindings (bindings will appear, disappear or reappear according to
mediated constraints between concurrent processes).

Straightforwardly speaking, static process calculi such as FSP (underlying Darwin) and
CSP (underlying Wright) specify a single system architecture in terms of “unconstrained
processes and fixed channels”, dynamic process calculi such as π-Calculus (underlying π-
ADL) specify a single system architecture in terms of “unconstrained processes and mobile
channels”, while the π-Calculus for SoS specifies a system-of-systems architecture in terms
of “local constrained processes and mediated constrained channels”.

Therefore, for meeting the needs of SoS architecture description, the π-Calculus for
SoS generalizes the π-Calculus with the notion of “concurrent constraints” based on the
Concurrent Constraint Paradigm (CCP)3 [24][10], and on the principles of CCP-based
calculi [24]. More specifically, it enhances the CC-π-Calculus with constraint-mediated
channel bindings while providing a more expressive constraint specification formalism.

CCP is based on four principles: (i) concurrency (processes which run concurrently);
(ii) communication (these running processes interact according to the accumulation of
constraints in a shared environment); (iii) coordination (the presence or absence of
information in the shared environment guards execution of a running process); and
(iv) localization (in addition to the shared environment, each running process has access
only to local, varying pieces of information, and may create new pieces of information on
the fly).

A fundamental concept in CCP is the specification of composition of concurrent
processes by means of constraints. A constraint may represent partial information on the
state of the environment. During the computation, the current state of the environment is
specified by a set of constraints. Processes can change the state of the environment by
telling information (i.e. adding constraints), and can synchronize by asking information
from the environment (i.e. determining whether a given constraint can be inferred from the
told constraints).

Typically, CCP calculi contain the following primitives [24]: (i) a tell operator for
adding a constraint to the shared environment; (ii) an ask operator for inquiring if a
constraint can be inferred from the shared environment; (iii) parallel composition
combining processes concurrently; (iv) a restriction operator introducing local variables,
restricting the interface that the process can use to interact with others.

Intuitively speaking, using CCP primitives, a process can publicly ‘tell’ the shared
environment about pieces of information that it knows, while maintaining private
information internally. A process can also ‘ask’ information from the shared environment
which influences on its own behavior.

It is also worth noting that ‘telling’ and ‘asking’ constraints support computation with
partial information. Thereby, another noteworthy difference of the formal basis of ADL for
single systems (e.g. FSP, CSP and π-Calculus) and the π-Calculus for SoS is the treatment
of partial information (i.e. each process has incomplete information on the state of the
environment as a whole, this information being limited to its local environment). While in
single systems, all components may have access to complete information, in SoS, all
constituents have access to incomplete information by nature. In SoSs, partial information
contributes to uncertainty, in addition to the uncertainty of emergent behavior.

Summing up, the π-Calculus for SoS extends the π-Calculus with CCP primitives and

3 Including calculi such as Concurrent Constraint Programming and Concurrent Constraint Logic Programing.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 203

inferred channel bindings from mediated concurrent constraints embodying SoS
characteristics. It subsumes the original π-Calculus as well as extensions based on fusions,
explicit fusions, attributes, and purely constraints.

2. Formal Definition of the π-Calculus for SoS

The formal definition of the π-Calculus for SoS encompasses its formal abstract syntax and
formal semantics. The basis for defining its formal semantics is the defined abstract syntax4
shown in Figure 2.

The formal semantics of the π-Calculus for SoS is defined by means of a formal
transition system, expressed by labeled transition rules, which are formulated as proof rules.

In a transition rule, shown in Figure 3, premises and conclusions are transition
relations. Thereby, if the transition relations labeled by α1 … αn can fire, then the transition
relation labeled by α can fire, i.e. if P1 can fire α1 and become P1’ … and Pn can fire αn and
become Pn’, then C can fire α and become C’. Note that P1 … Pn are terms of C and P1’ …
Pn’ are terms of C’. Side conditions can also be expressed. They are necessary conditions
on terms expressed in the premises.

Abstract syntax of π-Calculus for SoS

constrainedBehavior ::= behavior1
 | restriction1 . constrainedBehavior1 -- Constrained Behavior

 | behavior name1 (value0 …, valuen) is { behavior1 } -- Definition
 | constraint name1 is { constraint1 } -- Constraint Definition
 | compose { constrainedBehavior0 … and constrainedBehaviorn }

behavior ::= baseBehavior1
 | restriction1 . behavior1 -- Unconstrained Behavior

 | repeat { behavior1 } -- Repeat
 | apply name1 (value0 …, valuen) -- Application
 | compose { behavior0 … and behaviorn } -- Composition

baseBehavior ::= action1 . behavior1 -- Sequence
 | choose { action0 . baseBehavior0 -- Choice
 or action1 . baseBehavior1 … or actionn . baseBehaviorn }
 | if constraint1 then { baseBehavior1 } else { baseBehavior2 }
 | done -- Termination

action ::= baseAction1

 | tell constraint1 -- Tell
 | untell constraint1 -- Unsaid

 | check constraint1 -- Check

 | ask constraint1 -- Ask

baseAction ::= via connection1 send value0 -- Output
 | via connection1 receive name0 : type0 -- Input
 | unobservable -- Unobservable

connection ::= connection name1
restriction ::= value name1 = value0 | connection1
Figure 2: Abstract syntax of typed behaviors and values.

4 The abstract syntax of the π-Calculus for SoS is defined using the following notation for the abstract
production rules: (i) keywords are written with bold; (ii) non-terminals are written without bold; (iii) a
sequence of zero, one or more elements is written: Elementmin, …, Elementmax, where the value of min
specifies the minimum number of elements (0 specifies possibly no elements, 1 specifies at least one element)
and the value of max specifies the maximum number of elements (Elementn specifies any number of
elements); (iv) alternative choices are written separated by |.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

204 F. Oquendo / The π-Calculus for SoS

 Transition rule:
P1 α1

⎯ →⎯⎯⎯⎯⎯⎯⎯ P1' ... Pn αn
⎯ →⎯⎯⎯⎯⎯⎯⎯ Pn'

C α
⎯ →⎯⎯⎯⎯⎯⎯⎯ C'

where side conditions

Figure 3: Form of a labeled transition rule in terms of proof rule.

Using transition rules, the π-Calculus for SoS is defined in terms of structural

operational semantics [2]: first we define transition rules (axioms) for actions (shown in
Figure 4) and then define the transition rules representing behaviors (shown in Figure 5)
composed by these actions and defined behaviors5.

2.1 Structural Operational Semantics for Actions

In this formal definition, every construct of the π-Calculus for SoS expressed in its abstract
syntax has its structural operational semantics specified by a set of transition rules (as seen
in Figure 4 for actions and in Figure 5 for behaviors performing these actions). Each
transition rule specifies a possible behavior associated to a construct that straightforwardly
corresponds to the defined abstract syntax.

Precisely, regarding the formal semantics of actions shown in Figure 4, the first three
labeled transition rules, i.e. Output, Input, and Unobservable define the semantics of the π-
Calculus for SoS constructs expressing respectively the output action via connection1 send
value1, the input action via connection1 receive value, and the internal action unobservable.
It means that in these three cases, we have three axioms that can always apply for firing
atomic behaviors.

In the first case, executing action via connection1 send value1 implies that value1 is
sent through connection1 and the continuation of the behavior is the sequel behavior1. In the
second case, executing action via connection1 receive value implies that a value1 is received
through connection1 and the continuation of the behavior is the sequel behavior1 where the
variable value is bound to the received value1 by adding an equality constraint (value =
value1) to the local environment. In the third case, executing any internal, unobservable
action implies that the continuation of the behavior is the sequel behavior1. Note that the
Output and Input are complementary transition rules that need to be executed together, in
synchronization, as defined by the Communication transition rule (shown in Figure 5).

The next transition rules, Tell and Untell, define constraint-handling constructs that are
grounded on constraint satisfaction (see [13] for details). The former, i.e. Tell, adds a new
constraint to the local environment (if and only if constraints together with the new told
constraint are consistent6). The later, i.e. Untell, removes a constraint from the local
environment, if it exists, while maintaining its consistency.

The following transition rule, i.e. Check, checks if a constraint and the set of
constraints in the local environment would be consistent all together. After execution, the
behavior continues by executing the sequel behavior1. If not, it remains blocked. This
construct therefore supports checking the consistency of a new constraint with the local
environment before possibly telling it.

The next rule, i.e. Ask, asks whether a constraint can be derived from the constraints in
the local environment. If yes, i.e. this constraint can be entailed, it continues by executing
the continuation of the behavior, i.e. the sequel behavior1. If not, it remains blocked.

5 The term behavior is used instead of process in π-Calculus for SoS.
6 In the sense of logical consistency: a consistent set of constraints is one that does not contain a contradiction.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 205

Formal semantics of π-Calculus for SoS: labeled transition rules for actions
Output:

compose
constraint0..n
and (via connection1 send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose constraint0..n and behavior1{ }

Input:

compose
constraint0..n

and (via connection1 receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose

constraint0..n

and (value = value1)
and behavior1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together
with constraint0..n

Unobservable:
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }

Tell:

compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

Untell:

compose constraint0..n and (untell constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

Check:
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

Ask: compose constraint0..m and (ask constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m

Figure 4: Formal semantics of actions in the π-Calculus for SoS.

2.2 Structural Operational Semantics for Behaviors

Let us now present the labeled transition rules defining the formal semantics of behaviors,
shown in in Figure 5.

The transition rule Restriction defines the semantics of local declaration of connection
restricting scope. It declares that a connection that is restricted to a behavior has no impact
on other actions carried out by the behavior.

The transition rule Communication defines the semantics of communication between
behaviors, where one is ready to send and the other ready to receive via a bound
connection. Once the communication is fired, a new constraint is added to the environment
telling that the variable value is equal to the sent value1.

The restriction within communication is formalized by the transition rule Restriction-
Open, where a restricted value is passed to another behavior that may already have this
value in its scope or not. In the former situation, its scope is not changed. In the latter
situation, its scope is extended to the other behavior (a.k.a. scope extrusion, the resulting
scope embracing both behaviors).

Expression of scope extrusion results from the transition rule Restriction-Open
followed by the transition rule Communication-Close.

The transition rule Communication-Close defines that if a behavior passes a restricted
value to another, the scope of this value is extruded to include both the behavior that sent it
and the behavior that received it. This is particularly interesting in the case the value sent is

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

206 F. Oquendo / The π-Calculus for SoS

a connection, which expresses the extrusion of local connections.
Note that the side condition in this case inhibits a behavior from communicating

through a connection that was declared as restricted. It is worth noting also that its sub-
behaviors can use this restricted connection to communicate between them (even if the
behavior itself cannot).

Note also that transition rules Restriction-Open and Communication-Close define
together the expression of scope extrusion where the rule Restriction-Open enables a value
to be opened to a new scope and then the rule Communication-Close closes this new scope
to embrace both behaviors (the one that sent the restricted connection and the one that
received it). Scope extrusion thereby supports dynamic reconfiguration.

The transition rule Choice defines the semantics of the choice construct choose
{ action0 . behavior0 … or actionm . behaviorm }. This rule can be triggered when the prefix
action is enabled in any of the behaviors. In case several prefix actions are enabled, the
choice is non-deterministic.

Note that there is no transition rule for inferring transitions of done, as the inaction
represents that no transition is possible (it is the equivalent of a choose with no choices).

The conditional construct if constraint then behavior1 else behavior2 is defined by the
next two rules, i.e. Conditional-Then and Conditional-Else.

The side condition constraint≡ true or constraint ≡ false implies that it will be
behavior1 (the then behavior) or it will be behavior2 (the else behavior) that is enabled to be
executed according to the truth value.

The iteration construct repeat { behavior1 } is defined by the transition rule Repetition
enabling repeated execution of behavior1.

The construct compose { constrainedBehavior0 … and constrainedBehaviorn } is
defined by the transition rule Composition. This rule means that composition may trigger
the execution of any of its behaviors concurrently according to the told constraints in its
environment. It is worth noting that this construct encompasses the case of behaviors
subject to no constraint: the construct compose { constrainedBehavior0 … and
constrainedBehaviorn } encompasses the construct compose { behavior0 … and behaviorn }
which is a syntactical restriction of the former where no constraints are specified.

2.3 Constraint System for Handling Constraints in the π-Calculus for SoS

Let us now complete the formal definition of the π-Calculus for SoS with the definition of
the formal constraint system. We defined the π-Calculus for SoS parameterized by a call-
by-value data expression formalism [4] providing means to compute values as well as to
impose constraints on interactions.

A constraint system provides a signature, defining a constraint language, from which
the constraints can be expressed and an entailment relation (denoted �) for specifying
interdependencies between constraints. A constraint represents a piece of information (or
partial information) upon which processes may act. The inter-dependency, c1 �c2,
expresses that the information specified by c2 can be entailed from the information
specified by c1.

Let Σ be a signature (i.e. a set of constant, function and predicate symbols with their
arity and typing) and ∆ be a consistent first-order theory over Σ (i.e. a set of sentences over
Σ having at least one model).

Constraints are first-order formulae over Σ. We can then state that c1 �c2 if the
implication c1 � c2 is valid in ∆. This basis gives us a simple and general formalization of
the notion of constraint system as a pair (Σ, ∆).

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 207

Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors

Restriction:

constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ value value1 . constrainedBehavior1 '

where value1 ∉ names(action1), i.e. value1 is not among the names used in action1

Communication:

behavior1 via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n
and (connection1 = connection2)
and behavior1 and behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯ compose

constraint0..n
and (connection1 = connection2)
and (value = value1) and behavior1' and behavior2'

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or unification

Restriction-Open:

constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1 '

where value1 ≠ connection1, i.e. value1 cannot be used for connection as it is restricted

Communication-Close:

behavior1 value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n
and (connection1=connection2)
and behavior1 and behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯ value connection . compose

constraint0..n

and (connection1=connection2)
and (value = connection)
and behavior1' and behavior2'

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉ free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1

Choice:
constraint0..n and (actioni . behaviori') actioni ⎯ →⎯⎯⎯ constraint0..n' and behaviori'

compose
constraint0..n

and choose action0 . behavior0' ... or actionm . behaviorm'{ }
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni⎯ →⎯⎯⎯ compose

constraint0..n'
and behaviori'

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 0..m, i.e. only one of the actions action0..m is performed

Conditional-Then:

behavior1 action1⎯ →⎯⎯⎯ behavior1' constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior1'{ }

Conditional-Else:

behavior2 action2⎯ →⎯⎯⎯ behavior2' constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior2'{ }

Repetition:

behavior1 action1 ⎯ →⎯⎯⎯ behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯ behavior1 ' . repeat behavior1{ }
where behavior1' . behavior1 is a sequential composition, i.e. behavior1' must be performed before behavior1

Composition:

constrainedBehaviori actioni ⎯ →⎯⎯⎯ constrainedBehaviori'

compose
constrainedBehavior0 ...
and constrainedBehaviori
and constrainedBehaviorn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 actioni ⎯ →⎯⎯⎯ compose

constrainedBehavior0 ...
and constrainedBehaviori''
and constrainedBehaviorn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where i ∈ 1..n and bound(actioni) ∩ free(constrainedBehavior0..n - i) = ∅,
i.e. restricted names in actioni are not restricted elsewhere

Figure 5: Formal semantics of behaviors in architectural abstractions.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

208 F. Oquendo / The π-Calculus for SoS

Let us take as basis the constraint system over finite domains (FD) [9]. In FD,

variables are assumed to range over finite domains and, in addition to equality, we may
have predicates that restrict the possible values of a variable to some finite set.

More formally, FD[n] (n > 0) is the constraint system where Σ is given by the constant
symbols 0..n-1 as well as by the equality =, and ∆ is given by the axioms of equational
theory x = x, x = y � y = x, x = y � y = z � x = z , and v = w � false for each two different
constants v, w � Σ.

In the π-Calculus for SoS, the constraint system is defined by the pair (Σ, ∆), where:
• Σ is defined by the set of constant symbols declared as values in the π-Calculus

for SoS, the set of function symbols declared in the value types, and the set of
predicate symbols equally declared in the value types, including built-in
datatypes.

• ∆ is defined by a first-order theory over Σ according to the value types defined in
the π-Calculus for SoS using the logical operators shown in Figure 6.

The logical operators shown in Figure 6 include data (value) and channel binding
predicates. Value predicates are expressed with relational operators on data expressions.
Binding predicates describes the two possible channel bindings: unify (it is true if two
connections are bound together by an equality constraint between internal connections of
different constituents) and relay (it is true if two connections are bound together by an
equality constraint between an external connection and an internal one of a constituent and
the encompassing SoS.

Constraints on the channel bindings can also be expressed in terms of multiplicity.
Universal and existential quantification are supported on all kinds of values.

2.4 Summing Up the Formal Definition of the π-Calculus for SoS

By its formal definition, the π-Calculus for SoS extends the original π-Calculus with
constructs for handling concurrent constraints supporting mediation, where the mediation
will be realized by inferred bindings from the set of constraints told to the environment.

Note that, differently from the foundations of single system ADLs which is constituted
by process calculi such as FSP, CSP and π-Calculus, which declare the possible bindings
between behaviors at design-time, the π-Calculus for SoS automatically generates them at
run-time, by solving the told constraints (for details on our constraint solving mechanisms
see [13]).

It is also worth noting that the formal operational semantics of the π-Calculus for SoS,
defined by the labeled transition rules under concurrent constraints, enable both static and
dynamic verification of properties.

In addition to structural properties derived by the topology of behaviors linked by
inferred bindings, behavior properties related to safety and liveness can be verified, as well
as absence of deadlock and livelock. Thus the π-Calculus for SoS allows these SoS
architectural models to be verified semantically correct in terms of declared behaviors and
properties.

Besides enabling verification, the formal semantics of the π-Calculus for SoS supports
validation by symbolic execution as well as validation by executing appropriate use cases,
including simulation. Moreover, communicating concurrent behaviors make possible to
achieve emergent behaviors through the mediated interaction of composed behaviors.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 209

Abstract syntax of constraints

 predicate ::= valuePredicate ½ bindingPredicate

 valuePredicate ::= value1 = value2 equality v1 = v2

 ½ value1 <> value2 inequality v1 ≠ v2

 ½ value1 < value2 is less than v1 < v2

 ½ value1 > value2 is greater than v1 > v2

 ½ value1 <= value2 is less than or equal to v1 ≤ v2

 ½ value1 >= value2 is greater than or equal v1 ≥ v2

 ½ true ½ false booleans true, false

 bindingPredicate ::=

 unify multiplicity1 { connection1 } to multiplicity2 { connection2 }

 ½ relay multiplicity1 { connection1 } to multiplicity2 { connection2 }

 multiplicity ::= [one ½ none ½ lone ½ any ½ some ½ all]

 constraint ::= predicate

 ½ not constraint1 negation ¬c1

 ½ constraint1 and constraint2 conjunction c1 Ù c2

 ½ constraint1 or constraint2 disjunction c1 Ú c2

 ½ constraint1 xor constraint2 exclusive or c1 ⊻ c2

 ½ constraint1 imply constraint2 implication c1 Þ c2

 ½ exists { name1 in sequence1 …, namen in sequencen suchthat constraint1 }
 existential quantification $ x1 ê c1

 ½ forall { name1 in sequence1 …, namen in sequencen suchthat constraint1 }
 universal quantification "x1 ê c1

 ½ valuing1 . constraint1 restriction on constraint (x1) c1

Figure 6: Abstract syntax of the constraint language.

3. Applying the π-Calculus for SoS in a Case Study

We will now present how the π-Calculus for SoS can be applied in practice for modeling
SoS architectures through a case study drawn from an SoS for Flood Monitoring and
Emergency Response.

3.1 Case Study: Flood Monitoring and Emergency Response SoS

Flood Monitoring and Emergency Response SoSs address the problem of flash floods,
which constitute a significant threat in different countries during rainy seasons. This
becomes particularly critical in cities that are crossed by rivers such as the city of Sao
Carlos, SP, Brazil, crossed by the Monjolinho river as shown in Figure 7.

To address this major problem, we have architected with SosADL, based on the π-
Calculus for SoS, a Flood Monitoring and Emergency Response SoS [8], including
Wireless River Sensors, Telecommunication Gateways, Unmanned Aerial Vehicles
(UAVs), Vehicular Ad Hoc Networks (VANETs), Meteorological Centers, Fire and Rescue
Services, Hospitals, Police Departments, SMS Centers and Social Networks.

To highlight the main concepts and constructs of the π-Calculus for SoS, we will use a
subset of this Flood Monitoring and Emergency Response SoS, which is itself an SoS, i.e.
the Urban River Monitoring SoS. Indeed, an SoS may have constituent systems that are
themselves SoSs.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

210 F. Oquendo / The π-Calculus for SoS

The Urban River Monitoring SoS is based on two kinds of constituent systems:
wireless river sensors (for measuring river level depth via physical pressure sensing) and a
gateway base station (for analyzing variations of river level depths and warning on the risk
of flash flood).

Figure 7: Monjolinho river crossing the city of Sao Carlos with deployed wireless river sensors.

A sensor node is an independent single system having as components a

microcontroller, transceiver, external memory, power source and different sensory devices.
Every sensor node periodically senses river pressure (which is then converted in river
depth) and transmits this measure towards a gateway station, also an independent single
system (note that the gateway station is in the range of transmission of some sensor nodes,
but not of all of them). The gateway station examines the flow of measures in order to
estimate if there is an imminent risk of flash flood.

Each sensor node acts as a peer to the other nodes and all together (as an SoS) has the
capability of measuring the depth level of the river. The raw sensory data inputting from the
environment (in this case, the river) first undergoes some processing in the sensor node and
then is forwarded to neighboring sensor peers that retransmit the data.

In terms of the concrete implementation in the Monjolinho river, sensor nodes use the
XBee technology and connections between nodes are materialized by ZigBee transmissions
between sensors or between sensors and the gateway. These transmissions are ad-hoc and
constrained by the distance between sensor neighbors and the distributed sensors and the
gateway. They are also constrained by the remaining battery power of sensor nodes.

The gateway (an industrial computer linked to internet) provides the base station for
collecting and processing measurements, possibly warning of the risk of imminent flood.

For achieving the stated mission by creating emergent behavior, the architecture of this
Urban River Monitoring SoS needs to be rigorously designed. In particular, resilience (even
in case of low charge in the battery of sensors) needs to be managed as well as its operation
in an energy-efficient way.

This Urban River Monitoring SoS has the five defining characteristics of an SoS. Each
sensor node operates in a way that is independent of other sensor nodes, as they belong to
different city councils and have different missions in the metropolitan region of Sao Carlos,
e.g. pollution control or water supply. Each one has its own management strategy for
transmission vs. energy consumption and will act under the authority of the different city
councils. New sensor nodes may be installed by the different councils as well as existing
ones may be changed or uninstalled without any control from the SoS. Finally, the
emergent behavior of flood detection is produced as the resulting behavior of multihop
transmissions between distributed sensors and some of these sensors and the gateway that
analyzes transmitted data.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 211

The architectural model of an SoS is specified at two levels: the abstract architecture
description (it defines the possible kinds of constituent systems that may participate in the
SoS) and the concrete architecture (it instantiates the abstract architecture according to the
selected constituent systems in a specific environment, in our case it defines the concrete
SoS architecture for monitoring the Monjolinho river).

In term of the π-Calculus for SoS, it means that we will express the process definitions
that specify the abstract architecture description and then apply these definitions in a
specific context to obtain a concrete architecture description.

3.2 Modeling an abstract SoS architecture with the π-Calculus for SoS

Let us model the SoS abstract architecture focusing on the Urban River Monitoring SoS
and then its concretization in the case of the Monjolinho river.

In the π-Calculus for SoS, the different kinds of constituent systems are declared as
process definitions as shown in Figures 8, 9, and 10.

The Sensor process definition declares three gates: measurement that comprises
connections for handling measures, location that include a connection for handling GPS
coordinates, and energy that has connections for managing energy consumption. The
behavior exposed by the Sensor system is shown in Figure 8, the diagram showing a subset
of gates.

This behavior specification first declares a variable to store the value of the sensor’s
GPS coordinate, and then tell publicly this value sending it via its gate location to its
neighbors. Subsequently, it receives the power threshold enabling operation and repeatedly
(if the remaining power is greater than the power threshold) tells that it is able to operate
and will choose between sensing raw data from the sensor device and transmitting the
corresponding measure (sending a tuple with both its GPS coordinate and the measure
converted from the raw data received) or just forward a measure received from a neighbor
sensor via connection pass. If not, it does nothing, but continues to scan the power level of
the battery to test if the remaining power became greater than the threshold. Whenever it is
the case, it will be able to operate again.

Note that by this process definition every sensor node guarantees that, if operating, it
will always be able to transmit measures (own measures or ones from its neighbors) via the
connection measure of measurement gate. It is the case whenever the power available in the
sensor node is greater than the power threshold, and if not, it will wait for the battery to
sufficiently recharge again (in the case of the Monjolinho river, some sensor nodes include
batteries charged by solar panels). Once recharged, it will continue to operate as
guaranteed.

Note that by this process definition every sensor node guarantees that, if operating, it
will always be able to transmit measures (own measures or ones from its neighbors) via the
connection measure of measurement gate. It is the case whenever the power available in the
sensor node is greater than the power threshold, and if not, it will wait for the battery to
sufficiently recharge again (in the case of the Monjolinho river, some sensor nodes include
batteries charged by solar panels). Once recharged, it will continue to operate as
guaranteed.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

212 F. Oquendo / The π-Calculus for SoS

	

 system Sensor(lps: Coordinate) is { …
 behavior sensing is {

 // 'behavior' executes when the 'system' is created
 value sensorcoordinate is Coordinate = lps
 tell sensorlocation is {sensorcoordinate = lps}

 // assert the specified constraint with name
 // and type extrusions

 via location::coordinate send sensorcoordinate
 via energy::threshold receive powerthreshold
 repeat {
 via energy::power receive powerlevel
 if (powerlevel > powerthreshold) then {
 // 'if' tests the condition without blocking

 tell powering is {powerlevel > powerthreshold}
 choose{
 via measurement::sense receive data

 via measurement::measure send
 tuple{coordinate=lps,depth=data::convert()}

 } or {
 via measurement::pass receive data
 via measurement::measure send data
 }
 }
 }
 }
 }
 	

Figure 8: Excerpt of the Sensor system with behavior described in the π-Calculus for SoS.

Let us now define, in Figure 9, the Transmitter mediator, whose purpose is to transmit
measures from each sensor towards the gateway using multihop transmissions. It has a duty
to be fulfilled by gates of constituent systems. In the Transmitter mediator, the purpose is to
bind on the one hand with a constituent system having a gate that will commit to fulfill the
duty of providing measures to the mediator through connection fromSensors and on the
other hand with another constituent system having a gate for consuming measures from the
mediator through connection towardsGateway. The commitment of the mediator itself (see
Figure 9) is to forward from the input connection to the output one without any processing
in-between, if and only if the distance calculated from the GPS coordinates of these two
bound sensors is in the range of transmission of the mediator.

The Gateway system is shown in Figure 10. For the sake of brevity, we will not detail
its behavior.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 213

	

	
	

 mediator Transmitter(distancebetweengates:Distance) is { …
 behavior transmitting is {
 via location::fromCoordinate receive sendercoordinate
 via location::toCoordinate receive receivercoordinate
 ask sendercoordinate::distance(receivercoordinate)
 < distancebetweengates
 repeat {
 via transmit::fromSensors receive measure
 via transmit::towardsGateway send measure
 }
 }
 }
 	

Figure 9: Excerpt of the Transmitter mediator with behavior described in the π-Calculus for SoS.

	
	

Figure 10: Excerpt of the Gateway system with behavior described in the π-Calculus for SoS.

Let us now describe the SoS abstract architecture, focusing on the declaration of the
coalition of constituent systems related through mediators, by expressing the policies
defining possible inferred channel bindings. As shown in Figure 11, a coalition forming this
SoS architecture may involve possibly many sensor constituents, exactly one gateway
constituent and possibly many transmitter mediators.

This coalition (expressed by a composite process definition with constraints, shown in
Figure 11) does not specify which constituent systems will exist at run-time, but simply
which are possible systems that may exist and which are the required conditions for
forming a coalition among the systems identified at run-time to participate in the SoS. It
does not specify either which concrete system will be attached to which concrete system
through a mediator. It simply specifies what constraints must be satisfied.

The SoS architecture is thereby intentionally described. This suitably copes with the
intrinsic SoS characteristics.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

214 F. Oquendo / The π-Calculus for SoS

 architecture WnsMonitoringSosArchitecture() is {…
 behavior coalition is compose {
 sensors is sequence{Sensor}
 gateway is Gateway
 transmitters is sequence{Transmitter}
 } binding {…
 forall{isensor1 in sensors, isensor2 in sensors
 suchthat

 exits{itransmitter in transmitters
 suchthat
 (isensor1 <> isensor2) implies

 unify one{itransmitter::fromSensors}
 to one{isensor1::measurement::measure}

 and unify one{itransmitter::towardsGateway}
 to (one{isensor2::measurement::pass}
 xor unify one{itransmitter::towardsGateway}
 to one{gateway::notification::measure}
 }

 // multiplicities are 'one', 'none',
 // 'lone' (none or one),
 // 'any' (none or more),
 // 'some' (one or more), 'all'
 }
} guarantee {…}

 	

Figure 11: Excerpt of an SoS architecture with binding constraints described in the π-Calculus for SoS.

3.3 Modeling a concrete SoS architecture with the π-Calculus for SoS

Let us now illustrate a typical scenario supported by the operational semantics of the π-
Calculus for SoS. It is worth noting that it is the behavioral description of an SoS
architecture which is the major differentiator when compared to architectures of single
systems. Indeed, an SoS is specially characterized by emergent behaviors and it is by the
analysis of emergent behaviors that SoS architectures will be purposely constructed and
validated.

Let us take as an example the concrete architecture of the Urban River Monitoring SoS
deployed in the operational environment of the Monjolinho river (shown in Figure 7).
Based on the defined SoS abstract architecture with intentional channel bindings (see
Figure 11), the operational environment of the Urban River Monitoring SoS is initially
explored for identifying the actual sensors that will become constituents of this SoS (see
[13] for the description of the mechanisms for synthesizing concrete SoS architectures
based on process definitions in the π-Calculus for SoS). The concrete SoS architecture
deployed in the Monjolinho river results from the selection at run-time of possible concrete
systems that may participate in the SoS. In the case of our scenario to the Monjolinho river,
shown in Figure 12, there are several sensors installed (of which 5 are selected as
constituents of the SoS) and 1 gateway (also selected). Some sensors are too far from the
gateway to transmit measures directly, needing to perform a multihop using intermediate
sensors (it is the case of sensors 1, 2 and 3).

For constructing this initial concrete architecture, mediators were synthesized and
channels bound taking into account the range of transmission of the created mediators and
the geographical location (based on GPS coordinates) of the constituent systems. In this
case, as shown in Figure 12, the concrete inferred bindings link, directly or transitively, all
sensor nodes to the gateway base station.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 215

Figure 12: SoS concrete architecture: a coalition satisfying the constraints of the SoS abstract architecture.

Based on this concrete SoS architecture, the Urban River Monitoring SoS deployed in
the Monjolinho river, is enabled to continuously achieve its mission by evolutionary
development, automatically supporting the re-architecture of the SoS for satisfying the set
of told constraints (see [13] for details on the constraint solving mechanism), sending an
alert when the analysis performed by the gateway recognizes a risk of flash flood.

3.4 Evolutionary behavior of concrete SoS architectures with the π-Calculus for SoS

Continuing our illustrative scenario, let us now focus on the operational semantics of
concurrent behaviors for understanding the emergent behavior of the SoS architecture
formalized with the π-Calculus for SoS in the case of the Urban River Monitoring SoS
deployed in the Monjolinho river.

We will concentrate first on the behavior and interactions of sensors. Let us emulate a
sensor behavior (see Figure 8): after elaborating the value sensorcoordinate as the GPS
position of the sensor (passed as parameter in its creation), the sensor tells to its local
environment its geographical coordinates and then waits to send via the connection
location::coordinate this value. The same specified behavior is executed in the five sensors,
i.e. the five sensors are identified as constituent systems and started their execution. All five
will reach their reduction limit and wait at the connection location::coordinate.

We will now emulate a transmitter behavior. Figure 9 shows that when a transmitter is
created, it first waits to get the coordinate of the sensor that will send the data at
location::fromCoordinate and, when received, waits the coordinate of the sensor that will
receive the data at location::toCoordinate. When received, the mediator asks the
environment whether the constraint “sender and receiver must be located in a distance less
than the range of wireless transmission (value passed as a parameter of the mediator)” is
inferred from the set of constraints told to the environment (gathering the different local
environments). If it is the case, the transmitter mediator will, repeatedly, get as input the
sensed value via its connection transmit::fromSensors and then output the sensed value via

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

216 F. Oquendo / The π-Calculus for SoS

its connection transmit::towardsGateway.
Coming back to the sensor behavior (shown in Figure 8): when a mediator is created

between two sensors (in our case, as shown in Figure 12, transmitters[1] is created between
sensors[1] and sensors[4], transmitters[2] between sensors[2] and sensors[4],
transmitters[3] between sensors[3] and sensors[5], transmitters[4] between sensors[4] and
gateway, and transmitters[5] between sensors[5] and gateway), each one will get the
coordinates of the source and destination sensors via its connection
location::fromCoordinate and location::toCoordinate respectively, then ask if the
connected sensors are in its transmission range. This is the case for all the sensors in this
case, each mediator will repeatedly transmit the data from its source sensor to its
destination one.

Let us now explain how the mediators were created using the information of the
constituent systems and the role of mediators in the coalition. We will now emulate the
coalition creation (see Figure 11): possible coalitions are declaratively expressed by a set of
constraints on the possible compositions of constituent systems connected through
mediators.

The declarative expression of possible coalitions shown in Figure 11 specifies that, for
a number of identified sensors (arranged as a sequence) and a gateway, a concrete
architectural coalition must, for each pair of constituent systems, have a transmitter
mediator connecting sensors or (exclusive disjunction) connecting a sensor to the gateway.

Let us now come back to our example: the five sensors shown in Figure 12 are
identified as constituent systems and their execution started. Based on these constituent
systems, the SoS architecture solver implementing the π-Calculus for SoS will solve the
Constraint Satisfaction Problem (CSP) (see again [13] for details): “which mediators need
to be created to satisfy the set of finite constraints over variables specified in the coalition
specification?”. Note that the π-Calculus for SoS supports dynamic CSPs as the set of
constraints to consider evolves as well as decentralized CSPs as variables may be located at
distinct constituents.

A solution to a CSP is an assignment of every variable by some value in its domain
such that every constraint is satisfied. Therefore, each assignment of a value to a variable
must be consistent (it must not violate any of the constraints). In the π-Calculus for SoS, the
domain of variables are possible systems and possible mediators (knowing that the SoS can
create mediators, but not systems). There can be multiple solutions (or none). The solution
minimizing the number of mediators is currently preferred.

The solver takes the set of constraints of a coalition specification and finds
architectural coalitions that satisfy them based on selected constituent systems. Coming
back to our scenario, the solver created five mediators (shown in Figure 12) for connecting
each of the sensors with another one (or the gateway) constituting paths that directly or
transitively achieves the gateway.

It is important to highlight that the CSP mechanism used is incremental and scalable.
In particular, it supports the exploration of alternative concrete architectures that could be
selected according to utility functions in its initial configuration as well as incremental
evolutions. For instance, if sensors[4] has a shortage of energy to continue to operate, the
SoS will incrementally search for an incremental evolution of the initial configuration to
continue to achieve emergent behavior (in this example having all sensors feeding the
gateway). The evolved SoS architecture could be a reconfiguration where the transmitter
between sensors[1] and sensors[4] is rerouted to sensors[2] and both sensors[4] and
transmitters[4] are excluded.

Note thereby that the deployed concrete SoS architecture will evolve itself to
continuously cope with the declared abstract SoS architecture.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 217

4. Implementation and Validation of the π-Calculus for SoS

A major impetus behind developing formal foundations for SoS architecture description is
that formality renders them suitable to be manipulated by software tools. The usefulness of
providing the π-Calculus for SoS underlying SosADL is thereby directly related to the tools
it provides to support architecture modeling, but also analysis and evolution, in particular in
the case of SoSs. We have developed an SoS Architecture Development Environment for
supporting architecture-centric formal development of SoSs based on the π-Calculus for
SoS.

4.1 The SoS Architecture Development Environment

We have developed an SoS Architecture Development Environment (ADE) for supporting
architecture-centric formal development of SoSs based on the π-Calculus for SoS. This
toolset, called SosADE, is constructed as plugins in Eclipse Mars (http://eclipse.org/mars/).
It provides a model-driven architecture development environment where:

• the meta-model of the π-Calculus for SoS is defined in EMF/Ecore
(http://eclipse.org/modeling/emf/);

• the textual concrete syntax provided by SosADL is expressed in Xtext
(http://eclipse.org/Xtext/);

• the graphical concrete syntax is developed in Sirius (http://eclipse.org/sirius/);
• the type checker is implemented in Xtend (http://www.eclipse.org/xtend/), after

having being proved using the Coq proof assistant (http://coq.inria.fr/);
• transformations to input languages of different analysis tools supports validation

and verification, including UPPAAL (http://www.uppaal.org/) for model
checking, DEVS (http://www.ms4systems.com/) for simulation, and PLASMA
(http://project.inria.fr/plasma-lab/) for statistical model checking [10][33].

The constraint solving mechanism implemented to support the tell, ask, untell, and
check constraint handling constructs are based on the Kodkod SAT-solver
(http://alloy.mit.edu/kodkod/). How these different tools were used for validating the π-
Calculus for SoS as the formal foundation of SosADL is described in the next subsection.

4.2 Validating the π-Calculus for SoS in a Field Study (in vivo) of a real SoS

The π-Calculus for SoS, supported by its toolset, has been applied in different case studies
and pilot projects for modeling SoS architectures. In particular, it has been applied for
architecting the novel Flood Monitoring and Emergency Response SoS partially presented
in this paper. Deployed in the Monjolinho river crossing the City of Sao Carlos, Brazil, it
provided a real set for validating the π-Calculus for SoS as the formal foundation of
SosADL and assessing its toolset.

(a) Description of the field (in vivo) study

Let us now briefly present the carried out field (in vivo) study of the Flood Monitoring and
Emergency Response SoS in Table 1.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

218 F. Oquendo / The π-Calculus for SoS

Field Study for Architecting a Flood Monitoring and Emergency Response SoS
Purpose The aim of this field study related to the development of a Flood Monitoring and

Emergency Response SoS was to assess the fitness for purpose and the usefulness
of the π-Calculus for SoS as formal foundation of SosADL to support the
architectural design of real-scale SoSs.

Stakeholders The SoS stakeholder is DAEE (Sao Paulo’s Water and Electricity Department), a
government organization of the State of Sao Paulo, responsible for managing water
resources, including flood monitoring of urban rivers. This SoS also involves as
stakeholders the different city councils crossed by the Monjolinho river, the policy
and fire departments of the city of Sao Carlos that own the UAVs and have cars
equipped with VANETs. Also involved are the hospitals of the city of Sao Carlos
(they also have ambulances equipped with VANETs). The population, by
downloading an App from the DAEE department, is also involved as target of the
alert actions. They may also register for getting alert messages by SMS.

Mission The mission of this SoS is to monitor potential floods and to handle related
emergencies: detection of imminent floods and warning of citizens in risky areas.

Problem statement In this field study, the wireless sensor network for urban river monitoring was
enhanced with aerial and terrestrial vehicles: Unmanned Aerial Vehicles (UAVs)
and Vehicular Ad-hoc Networks (VANETs). UAVs (microcopters with eight
propellers and a camera) have as mission to enforce the resilience of the
monitoring SoS, i.e. to maintain an acceptable level of service in the face of
failures and problems to normal operation, by serving as router or serving as
sensor data mule. They may also transmit images in real time for reducing the risks
of false positives. In addition, the UAVs may provide data dissemination to
VANETs embedded in vehicles crossing the risky area, thereby ensuring that
vehicles driving towards a possible flood area can be warned to avoid certain
roads.

Constituents Constituent systems are: sensor nodes and a gateway in a Wireless Sensor Network
(WSN); Unmanned Aerial Vehicles (UAVs); Vehicular Ad-hoc Networks
(VANETs); SMS multicasting; DAEE Apps in Smartphones. Note that transmitter
mediators are dynamically created to maintain the connectivity of the WSN.

Emergent behaviors In order to fulfill its mission, this SoS needs to create and maintain an emergent
behavior where sensor nodes (each including a sensor mote and an analog depth
sensor) and microcopters (each including communication devices) will coordinate
to enable an effective monitoring of the critical areas of the river and whenever a
risk of flood is detected, to prepare the emergency response for vehicles
approaching the flood area and inhabitants that live in potential flooding zones.

SoS architecture The SoS architecture was described in SosADL (having the π-Calculus for SoS as
its formal foundation) as a collaborative SoS: the architecture self-organize itself
based on mediators for connecting sensors and forming multihop ad-hoc networks,
using UAVs when needed, as well as always being ready to send flood alert
messages towards VANETs or inhabitants.

Table 1. Field study of SosADL and the π-Calculus for SoS as its formal foundation.

(b) Reporting and lessons learned

As stated in Table 1, the aim of this field study was to assess the fitness for purpose and the
usefulness of SosADL as textual notation and the π-Calculus for SoS as formal foundation
to support the architectural modeling of real SoSs. The designed SoS abstract architecture
for this case:

• was described in SosADL based on the π-Calculus for SoS;
• was edited using the SoS architecture editor (note that the excepts of the SoS

architecture description in this paper are screen captures of the editor, depicted in
Figure 13);

• was validated using the SoS architecture validator (by simulation in DEVS);
• had its assume-guarantee properties verified using the SoS architecture verifier

(by model checking in UPPAAL);

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 219

• had analysis of extreme cases due to the uncertainties of the river environment
and actual availability of the constituent systems carried out using the SoS
architecture analyzer (by statistical model checking in PLASMA).

The concretization of the SoS abstract architecture for the concrete case of the
Monjolinho river was based on the actual installed sensors and gateway station. It was
performed using the SoS architecture constructor (based on the Kodkod SAT-solver).
Using the architecture-based synthesizer, we generated a concrete implementation of the
SoS. Finally, the SoS architecture-based evolver (also based on the Kodkod SAT-solver)
has been applied to assess the support for the evolutionary development of this SoS.

The result of this field study shows that the π-Calculus for SoS met the requirements
for modeling SoS architectures and its emergent behaviors. As expected, using a formal
ADL compels the SoS architects to study different architectural alternatives and take key
architectural decisions based on SoS architecture analyses.

Learning the π-Calculus for SoS in its basic form was quite straightforward; however,
using the advanced features of the process calculus needed interactions with the expert
group. The SoS architecture editor and the validator were in practice the key tools in the
learning and use of the π-Calculus for SoS and the verifier and analyzer were the key tools
to show the added value of formally describing SoS architectures.

In fact, a key identified benefit of using the π-Calculus for SoS was the ability to
validate and verify the studied SoS architectures very early in the application lifecycle with
respect to the SoS correctness properties, in particular for studying the extreme conditions
in which emergent behaviors were not able to satisfy the SoS mission.

Figure 13: SoS Architecture Development Environment (editor).

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

220 F. Oquendo / The π-Calculus for SoS

5. Conclusion and Future Work

This paper presented the π-Calculus for SoS, a π-Calculus with concurrent constraints and
inferred channel bindings, specially designed for describing SoS architectures. It focused
first on the needs of process calculi for modeling SoS architectures as formal foundation of
ADLs, second on the approach for coping with these needs and third on the formal
definition of the π-Calculus for SoS.

The significant difference between process calculi for single systems (i.e. FSP/Darwin,
CSP/Wright, and π-Calculus/π-ADL) and the π-Calculus for SoS is in its treatment of
exogenous, intentional, constrained and mediated channel bindings subject to uncertainty
while enabling achievement of emergent behavior by the evolutionary interplay of the
structure and behavior of concurrent systems in SoSs.

Its main contribution beyond the state-of-the-art in SoS is thereby to be the first
process calculus having the expressiveness to address the challenge of modeling
architectures of software-intensive SoSs from the architectural perspective. By its formal
semantics, the π-Calculus for SoS supports automated verification of correctness properties
of SoS architectures and supports validation through executable specifications.

The π-Calculus for SoS provides the formal foundation of a novel ADL for SoS, i.e.
SosADL [26], exhibiting an architect-friendly notation, which has been applied in several
case studies and pilots where the suitability of the formal system, the language and the
supporting toolset have been validated.

Ongoing and future work is mainly related to the application of the π-Calculus for SoS
based on its SosADL notation in industrial-scale projects. These include joint work
applying the π-Calculus for SoS to the architectural modeling of naval SoSs in
collaboration with DCNS, to the architectural modeling of SoS smart-farms in cooperative
settings with IBM, and to architectural modeling in the transport domain with SEGULA.

Acknowledgement

The author would like to thank the four anonymous reviewers (in particular the second and
fourth ones) for their careful reading, insightful comments and constructive suggestions that
greatly helped to improve this paper.

References

[1] Allen, R.; Garlan, D.: “A Formal Basis for Architectural Connection”, ACM Transactions on Software
Engineering and Methodology (TOSEM), 6 (3), Jul. 1997, pp. 213-249.

[2] Aceto, L.; Fokkink, W. (Eds.): “Structural Operational Semantics”, The Journal of Logic & Algebraic
Programming, Jul.-Dec. 2004, pp. 1-464.

[3] Arnold, A; Boyer, B; Legay, A.: “Contracts and Behavioral Patterns for SoS: The EU IP DANSE
approach”, Proc. of the ETAPS Workshop on Advances in Systems-of-Systems (AiSoS), Mar. 2013, pp.
47-66.

[4] Bengtson, J. et al.: “Psi-Calculi: Mobile Processes, Nominal Data, and Logic”, Proc. of the 24th IEEE
Symposium on Logic in Computer Science (LICS), Aug. 2009, pp. 39-48.

[5] Buscemi, M.G.; Montanari, U.: “CC-Pi: A Constraint-based Language for Specifying Service Level
Agreements”, Proc. of the 16th European Conference on Programming (ESOP), Mar. 2007, pp. 18-32.

[6] Cavalcante, E.; Batista, T.V.; Oquendo, F.: “Supporting Dynamic Software Architectures in π-ADL:
From Architectural Description to Implementation”, Proc. of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), May 2015, pp. 31-40.

[7] Cavalcante, E.; Quilbeuf, J.; Traonouez, L.M.; Oquendo, F.; Batista, T.V.; Legay, A.: “Statistical Model
Checking of Dynamic Software Architectures”, Proc. of the 10th European Conference on Software
Architecture (ECSA), LNCS, Springer, September 2016.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

 F. Oquendo / The π-Calculus for SoS 221

[8] Degrossi, L.C. et al.: “Using Wireless Sensor Networks in the Sensor Web for Flood Monitoring in
Brazil: Lessons Learned”, Proc. of the 10th International Conference on Information Systems for Crisis
Response and Management (ISCRAM), May 2013, pp. 1-5.

[9] Fernandez, A.J.; Hill, P.M.: “A Comparative Study of Eight Constraint Programming Languages over
the Boolean and Finite Domains”, International Journal on Constraints, Vol. 5, No. 3, July 2000, pp.
275-301.

[10] Gabbrielli, M.; Palamidessi, C.; Valencia, F.D.: “Concurrent and Reactive Constraint Programming”,
25-Year Perspective on Logic Programming, LNCS 6125, Springer, 2010, pp. 231-253.

[11] Guessi, M. et al.: “Characterizing Architecture Description Languages for Software-Intensive Systems-
of-Systems”, Proc. of the ACM/IEEE 3rd ICSE International Workshop on Software Engineering for
Systems-of-Systems (SESoS), Eds. F. Oquendo et al., May 2015, pp. 1-8.

[12] Guessi, M.; Nakagawa, E.Y.; Oquendo, F.: “A Systematic Literature Review on the Description of
Software Architectures for Systems-of-Systems”, Proc. of the 30th ACM Symposium on Applied
Computing (SAC), Apr. 2015, pp. 1-8.

[13] Guessi, M.; Oquendo, F.; Nakagawa, E.Y.: “Checking the Architectural Feasibility of Systems-of-
Systems using Formal Descriptions”, Proc. of the 11th System-of-Systems Engineering Conference
(SoSE), June 2016.

[14] Hoare, C. A. R.: Communicating Sequential Processes, Prentice Hall, 2004, 260 p.
[15] ISO/IEC/IEEE 42010:2011: Systems and Software Engineering – Architecture Description, ISO,

December 2011, 46 p.
[16] John, M. et al.: “The Attributed π-Calculus”. Computational Methods in Systems, Springer, 2008, pp.

83-102.
[17] Kramer, J.; Magee, J.; Uchitel, S.: “Software Architecture Modeling and Analysis: A Rigorous

Approach”, Formal Methods for Software Architectures, Springer, 2003, pp. 44-51.
[18] Klein, J.; van Vliet, H.: “A Systematic Review of System-of-Systems Architecture Research”, Proc. of

the 9th International Conference on Quality of Software architectures (QoSA), Jun. 2013, pp. 13-22.
[19] Maier, M. W.: “Architecting Principles for Systems-of-Systems”, Systems Engineering, 1 (4), 1998, pp.

267-284.
[20] Magee, J.; Kramer, J.: Concurrency: State Models and Java Programs, Wiley, 2006, 434 p.
[21] Malavolta I. et al.: “What Industry Needs from Architectural Languages: A Survey”, IEEE Transactions

on Software Engineering, 39 (6), Jun. 2013, pp. 869-891.
[22] Medvidovic N.; Taylor R.: “A Classification and Comparison Framework for Software Architecture

Description Languages”, IEEE Transactions on Software Engineering, 26 (1), Jan. 2000, pp. 70-93.
[23] Milner, R.: Communicating and Mobile Systems: The π-Pi-Calculus, Cambridge University Press, 1999.
[24] Olarte, C.; Rueda, C.; Valencia, F.D.: “Models and Emerging Trends of Concurrent Constraint

Programming”, International Journal on Constraints, 18 (4), Oct. 2013, pp. 535-578.
[25] Oquendo, F.: “π-ADL: An Architecture Description Language based on the Higher-Order Typed π-

Calculus for Specifying Dynamic and Mobile Software Architectures”, ACM Software Engineering, 29
(3), May 2004.

[26] Oquendo, F.: “Formally Describing the Software Architecture of Systems-of-Systems with SosADL”,
Proc. of the 11th System-of-Systems Engineering Conference (SoSE), June 2016.

[27] Oquendo, F.: “π-Calculus for SoS: A Foundation for Formally Describing Software-intensive Systems-
of-Systems”, Proc. of the 11th IEEE System-of-Systems Engineering Conference (SoSE), June 2016.

[28] Oquendo, F.: “Software Architecture Challenges and Emerging Research in Software-intensive
Systems-of-Systems”, Proc. of the 10th European Conference on Software Architecture (ECSA), LNCS,
Springer, September 2016.

[29] Oquendo, F.: “Case Study on Formally Describing the Architecture of a Software-intensive System-of-
Systems with SosADL”, Proc. of 15th IEEE International Conference on Systems, Man, and
Cybernetics (SMC), October 2016.

[30] Ozkaya M.; Kloukinas C.: “Are We There Yet? Analyzing Architecture Description Languages for
Formal Analysis, Usability, and Realizability”, Proc. of the 39th Euromicro Conference on Software
Engineering & Advanced Applications (SEAA), Sept. 2013, pp. 177-184.

[31] Parrow, J.; Victor, B.: “The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes”.
Proc. of the 13th IEEE Symposium on Logic in Computer Science (LICS), June 1998, pp. 176-185.

[32] Plotkin, G.: “A Calculus of Chemical Systems”. In Search of Elegance in the Theory and Practice of
Computation, Springer, 2013, pp.445-465.

[33] Quilbeuf, J.; Cavalcante, E.; Traonouez, L.M.; Oquendo, F.; Batista, T.V.; Legay, A.: “A Logic for
Statistical Model Checking of Dynamic Software Architectures”, Proc. of the 7th International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISOLA),

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

222 F. Oquendo / The π-Calculus for SoS

Springer, October 2016.
[34] Regev, A.; Shapiro, E.: “The π-Calculus as an Abstraction for Biomolecular Systems”. Modelling in

Molecular Biology, Springer, 2004, pp. 219-266.
[35] Ritson, C.G.; Welch, P.H.: “A Process-oriented Architecture for Complex System Modelling”,

Concurrency and Computation: Practice and Experience, 2010, Vol. 22, pp. 965-980.
[36] Silva E.; Batista, T.; Oquendo, F.: “A Mission-Oriented Approach for Designing System-of-Systems”,

Proc. of the 10th International Conference on System-of-Systems Engineering, May 2015, pp. 346-351.
[37] Stirling, C.: Modal and Temporal Properties of Processes. Springer, 2001.
[38] Welch, P.H.; Barnes, F.R.M.: “Communicating Mobile Processes”, Communicating Sequential

Processes: The First 25 Years, LNCS 3525, Springer, 2005, pp. 175-210.
[39] Wischik, L.; Gardner, Ph.: “Explicit Fusions”, Theoretical Computer Science, 340 (3), Aug. 2005, pp.

606-630.
[40] Woodcock, J. et al.: “Features of CML: A Formal Modelling Language for Systems-of-Systems”, Proc.

of the 7th International Conference on Systems-of-Systems Engineering (SoSE), Jul. 2012, pp. 1-6.
[41] Woodcock, J. et al: “The COMPASS Modelling Language: Timed Semantics in UTP”, Communicating

Process Architectures (CPA), Open Channel Publishing, 2014.

CPA 2016 preprint – the proceedings version may have other page numbers and may have minor differences.

