CPA 2016
Communicating Generators in JavaScript

Kurt Micallef (kurtmica@live.com)
Kevin Vella (kevin.vella@um.edu.mt)

Department of Computer Science

University of Malta

Problems and Opportunities

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

Problems and Opportunities

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

@® JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.!

'Mozilla Developer Network

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.!

1 var generatorFunction = functionx* (){
2 var ret = yield 1;

3 return ret;
4

};

'Mozilla Developer Network

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.!

1 var generatorFunction = functionx* (){
2 var ret = yield 1;

3 return ret;

4}
5
6

var generator = generatorFunction();

'Mozilla Developer Network

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.!

var generatorFunction = functionx* (){
var ret = yield 1;
return ret;

var generator = generatorFunction();

1
2
3
4}
5
6
7 var x = generator.next ()

'Mozilla Developer Network

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.!

var generatorFunction = functionx* (){
var ret = yield 1;
return ret;

var generator = generatorFunction();

1
2
3
4}
5
6
7 var x = generator.next().value; // x = 1

'Mozilla Developer Network

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.!

var generatorFunction = functionx* (){
var ret = yield 1;
return ret;

};

var generator = generatorFunction();
var x = generator.next().value; // x = 1
var y = generator.next(2).value; // y = 2

"Mozilla Developer Network

Generators

1 var delegate = functionx* (){
2 yield 1;
3 };

Generators

1 var delegate = functionx* (){

2 yield 1;

3 };

4

5 var generator = (function* (){
6 yield* delegate();

730);

Generators

© O N o O B~ W N R

var delegate = functionx*x (){
yield 1;

3

var generator = (function* (){
yield* delegate();

Y0 ;

var x = generator.next().value;

// x

1

Problems and Opportunities (revisited)

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

@® JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

Problems and Opportunities (revisited)

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

e However JavaScript generators enable the dynamic execution
of a function.

@® JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

Problems and Opportunities (revisited)

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

e However JavaScript generators enable the dynamic execution
of a function.

e These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

@® JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

The CSP Environment and Dispatcher

e Generators are initialised in a CSP environment, and execute
together as co-generators.

e These are contained within a function scope, the dispatcher.

2Except CSP environment creation and channel creation.

The CSP Environment and Dispatcher

e Generators are initialised in a CSP environment, and execute
together as co-generators.

e These are contained within a function scope, the dispatcher.

Dispatcher - - -

Figure: Execution flow of co-generators.

2Except CSP environment creation and channel creation.

The CSP Environment and Dispatcher

e Generators are initialised in a CSP environment, and execute
together as co-generators.

e These are contained within a function scope, the dispatcher.

Dispatcher - - -

Figure: Execution flow of co-generators.

o All API functions? must be:

e Called within a CSP environment.
o Prefixed with a yield.

2Except CSP environment creation and channel creation.

The CSP Environment and Dispatcher

e Generators are initialised in a CSP environment, and execute
together as co-generators.

e These are contained within a function scope, the dispatcher.

Dispatcher - - -

Figure: Execution flow of co-generators.

o All API functions? must be:

e Called within a CSP environment.
o Prefixed with a yield.
e yield on its own is effectively a part of the API.

2Except CSP environment creation and channel creation.

API functions: process creation

1 csp.csp(

2 function* (){ },
3 //

4 function* (O{ }
5

)

Similar to occam's top-level PAR.

API functions: process creation

1 csp.csp(

2 function* (){ },
3 //

4 function* (O){ }
5

)

Similar to occam's top-level PAR.

1 csp.csp(function* (){
2 yield csp.fork(

3 function* (){ 1},
4 /...

5 function* (){ }
6)3

73

API functions: process creation

1 csp.csp(
function* (){ 1,

2

3
4
5

Similar to occam's top-level PAR.

1 csp.csp(function* (){

2
3
4
5
6
7

)

b

/7

funcéion* O4{ 7}

yield csp.fork(

)

>

function* (){ },
/] ...
function*x (){ }

1

2
3
4
5
6
7

csp.csp(function* (){
yield csp.co(
function* (){ 1,
//
function* (){ }
)5
B

Similar to occam’s PAR.

API functions: Channel communication

var channel = new csp.Channel();

1
2
3 csp.csp(function* (){

4 var x = yield channel.recv(); // x = 1
5 }, functionx (){

6 yield channel.send(1);

7 1)

API functions: Timeouts

1 csp.csp(function* (){

2 //

3 yield csp.timeout(csp.clock() + 1000);

4 // continue after current time + 1 second
5 1)

Similar behaviour to occam’s TIMERs.

API functions: Timeouts

1 csp.csp(function* (){

2 //

3 yield csp.timeout(csp.clock() + 1000);

4 // continue after current time + 1 second
5 1)

Similar behaviour to occam’s TIMERs.

1 csp.csp(function* (){

2 //

3 yield csp.sleep(1000);

4 // continue after current time + 1 second
5 1) ;

Similar to popular programming languages’ Thread.sleep().

API functions: Choice

1 var channel = new csp.Channel();
2

3 csp.csp(function* (){

4 yield csp.choice ({

5 recv: channel,

6 action: function* (x) { /*
7 }, {

8 timeout: 1000,

9 action: functionx* () { /=*
10 }, A

11 boolean: true,

12 action: functionx* () { /*
13 »;

1 });

Similar to occam's ALT.

*/

*/

*/

}

}

}

Problems and Opportunities (re-revisited)

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

@® JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

Problems and Opportunities (re-revisited)

@ Single-threaded, event-driven JavaScript limits the scope for
concurrency.

@® JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.
e CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.

External Channels

e External channels extend across JavaScript instances by
overlying various communication mechanisms.

JavaScript = ——— —|— —I— _— JavaScript
: External Channel :
| |

o c .

CSP environment : S =] : CSP environment
8 .
v e 28T
enerator I[85 238l generator

g 1| & IS
1| S 8 |1
| |

External Channels

e External channels extend across JavaScript instances by
overlying various communication mechanisms.

JavaScript = ——— —|— —I— _— JavaScript
: External Channel :
| |

o c .

CSP environment : S =] : CSP environment
8 .
v e 28T
enerator I[85 238l generator

g 1| & IS
1| S 8 |1
| |

e JavaScript environments investigated: browsers, Node.js, and
workers.

e Transport mechanisms used: socket.io (over WebSockets),
Web Workers, and Cluster Workers.

External Channels — DistributedChannel

External channel implementation over socket.io (WebSocket).

http.createServer () .listen (8000) ;
io.on("connection", function (s){
var channel = new csp.DistributedChannel(s,"id");

1

2

3

4

5 csp.csp(function* (){

6 var x = yield channel.recv();

7 1)

8 1)

var s = io.connect("http://serverhost:8000/");
var channel = new csp.DistributedChannel(s,"id");

csp.csp(function*x (){
yield channel.send (1) ;
IO

[B N N N

Listing: Channel communication between distributed co-generators.

External Channels — WorkerChannel

External Channel implementation over workers: Web Workers and
Node.js Cluster Workers.

var worker = new Worker ("worker.js");
var channel = new csp.WorkerChannel (worker);

var x = yield channel.recv();

B

1
2

3

4 csp.csp(functionx (){

5

6

var channel = new csp.WorkerChannel (self);
csp.csp(function* (){

yield channel.send(1);
)M

[N N

Listing: Channel communication between co-generators across Web
Workers.

Recall Channels

Syntactic and semantic equivalence across channels over all types
of communication mechanisms!

var channel = new csp.Channel();

1
2
3 csp.csp(function* (){

4 var x = yield channel.recv(); // x = 1
5 }, functionx (){

6 yield channel.send(1);

7 1)

External Channels — communication protocol

e Synchronize-then-communicate protocol used to alleviate any
race conditions.

External Channels — communication protocol
e Synchronize-then-communicate protocol used to alleviate any

race conditions.

co-generator performed local communication

synchronizing
&

waiting for co-

generator

co-generator arrived on channel

synchronized synchronized

distributed communication done
&

no longer in sync

waiting for co-
generator

communicating

co-generator arrived on channel

External Channels — communication protocol
e Synchronize-then-communicate protocol used to alleviate any

race conditions.

co-generator performed local communication

synchronizing
&

waiting for co-

generator

co-generator arrived on channel

synchronized synchronized

distributed communication done
&

no longer in sync

waiting for co-
generator

communicating

co-generator arrived on channel

e This protocol allows further external channel implementations!

Performance: Co-generator Execution

—_
S
=)

Qo
[en}
T

(=)
o
T

W
(@)
T

[\
o
T

Co-generator Execution Time /us

T T T T T -]

—e— Node.js
—m— Chrome
—e— Firefox

0

| | | | |
2000 4000 6000 8000 10000
Number of Generators

Figure: Scaling up co-generators in a CSP environment.

Performance: Message Transmission

T T T T

—e— Node.js
—m— Chrome | |
—e— Firefox

<
20

15

10

Message Transmission Time /ms

| | | |
00 50000 100000 150000 200000
Message Size /bytes

Figure: Scaling up message size over distributed channels.

Use Cases — Synchronous JavaScript

1 var promise = new Promise(function (resolve,reject)
{

2 setTimeout (function callback(){

3 resolve("csp");

4 }, 1000);

5 1)

Use Cases — Synchronous JavaScript

1 var promise = new Promise(function (resolve,reject)
{

2 setTimeout (function callback(){

3 resolve("csp");

4 }, 1000);

5 1)

6

7 promise.then(function (x){

8

9

console.log(x); // "csp"
b

Use Cases — Synchronous JavaScript

1 var promise = new Promise(function (resolve,reject)
{
setTimeout (function callback(){
resolve("csp");
}, 1000);
I

promise.then(function (x){
console.log(x); // "csp"
1M

© ® N o O B W N

var channel = csp.Channel();

csp.csp(function*x (){
yield csp.sleep(1000);
yield channel.send("csp");

[R B N N

}

Use Cases — Synchronous JavaScript

1 var promise = new Promise(function (resolve,reject)
{
setTimeout (function callback(){
resolve("csp");
}, 1000);
I

promise.then(function (x){
console.log(x); // "csp"
1M

© ® N o O B W N

var channel = csp.Channel();

csp.csp(function* (){
yield csp.sleep(1000);
yield channel.send("csp");
}, function* (){
var x = yield channel.recv(); // "csp"

)

® N o A W N R

Use Cases — Parallel Computing

JavaScript

CSP environment

external

JavaScript chefing
\: JavaScript

CSP environment

JavaScript
v P CSP environment

extemal

channeist|

| "“'e‘—[same code base JavaScript

chany

[1 CSP environment

L
FF—channel

> 4

JavaScript) P’/

channel

CSP environment

Figure: Concurrent code is reused in different distributed configurations.

Use Cases — Parallel Computing

| | —®— computation only

—m—w/ data harvesting

8
6,
o
>
-
]
o 4
(p]
2,
0
0

Figure

Number of Workers

: Mandelbrot set computation speed-up.

Conclusions

o A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers' design.

Conclusions

o A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers' design.

e Extending the implementation with external channels is useful
because:

e The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

e JavaScript's parallel computing capabilities can be harnessed
at a higher level of abstraction.

Conclusions

o A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers' design.

e Extending the implementation with external channels is useful
because:

e The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

e JavaScript's parallel computing capabilities can be harnessed
at a higher level of abstraction.

e By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

Conclusions

A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers' design.
Extending the implementation with external channels is useful
because:
e The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.
e JavaScript's parallel computing capabilities can be harnessed
at a higher level of abstraction.
By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

Distributed failures: how best to handle them in CSP-like
systems?

	Evaluation

