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Problems and Opportunities

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.
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JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next().value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network
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Generators

1 var delegate = function* (){

2 yield 1;

3 };

4

5 var generator = (function* (){

6 yield* delegate ();

7 }());

8

9 var x = generator.next().value; // x = 1



4 of 21

Generators

1 var delegate = function* (){

2 yield 1;

3 };

4

5 var generator = (function* (){

6 yield* delegate ();

7 }());

8

9 var x = generator.next().value; // x = 1



4 of 21

Generators

1 var delegate = function* (){

2 yield 1;

3 };

4

5 var generator = (function* (){

6 yield* delegate ();

7 }());

8

9 var x = generator.next().value; // x = 1



5 of 21

Problems and Opportunities (revisited)

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.
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The CSP Environment and Dispatcher

• Generators are initialised in a CSP environment, and execute
together as co-generators.

• These are contained within a function scope, the dispatcher.

Dispatcher

 

g1

g0

gn

Figure: Execution flow of co-generators.

• All API functions2 must be:
• Called within a CSP environment.
• Prefixed with a yield.

• yield on its own is effectively a part of the API.

2Except CSP environment creation and channel creation.
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API functions: process creation

1 csp.csp(

2 function* (){ },

3 // ...

4 function* (){ }

5 );

Similar to occam’s top-level PAR.

1 csp.csp(function* (){

2 yield csp.fork(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

1 csp.csp(function* (){

2 yield csp.co(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

Similar to occam’s PAR.
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API functions: Channel communication

Syntactic and semantic equivalence across channels over all types
of communication mechanisms!

1 var channel = new csp.Channel ();

2

3 csp.csp(function* (){

4 var x = yield channel.recv(); // x = 1

5 }, function* (){

6 yield channel.send (1);

7 });
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API functions: Timeouts

1 csp.csp(function* (){

2 // ...

3 yield csp.timeout(csp.clock() + 1000);

4 // continue after current time + 1 second

5 });

Similar behaviour to occam’s TIMERs.

1 csp.csp(function* (){

2 // ...

3 yield csp.sleep (1000);

4 // continue after current time + 1 second

5 });

Similar to popular programming languages’ Thread.sleep().
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API functions: Choice

1 var channel = new csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.choice ({

5 recv: channel ,

6 action: function* (x) { /* ... */ }

7 }, {

8 timeout: 1000,

9 action: function* () { /* ... */ }

10 }, {

11 boolean: true ,

12 action: function* () { /* ... */ }

13 });

14 });

Similar to occam’s ALT.
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External Channels

• External channels extend across JavaScript instances by
overlying various communication mechanisms.

JavaScriptJavaScript
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• JavaScript environments investigated: browsers, Node.js, and
workers.

• Transport mechanisms used: socket.io (over WebSockets),
Web Workers, and Cluster Workers.
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External Channels – DistributedChannel

External channel implementation over socket.io (WebSocket).

1 http.createServer ().listen (8000);

2 io.on("connection", function (s){

3 var channel = new csp.DistributedChannel(s,"id");

4

5 csp.csp(function* (){

6 var x = yield channel.recv();

7 });

8 });

1 var s = io.connect("http :// serverhost :8000/");

2 var channel = new csp.DistributedChannel(s,"id");

3

4 csp.csp(function* (){

5 yield channel.send (1);

6 });

Listing: Channel communication between distributed co-generators.
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External Channels – WorkerChannel

External Channel implementation over workers: Web Workers and
Node.js Cluster Workers.

1 var worker = new Worker("worker.js");

2 var channel = new csp.WorkerChannel(worker);

3

4 csp.csp(function* (){

5 var x = yield channel.recv();

6 });

1 var channel = new csp.WorkerChannel(self);

2

3 csp.csp(function* (){

4 yield channel.send (1);

5 });

Listing: Channel communication between co-generators across Web
Workers.
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Recall Channels

Syntactic and semantic equivalence across channels over all types
of communication mechanisms!

1 var channel = new csp.Channel ();

2

3 csp.csp(function* (){

4 var x = yield channel.recv(); // x = 1

5 }, function* (){

6 yield channel.send (1);

7 });
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External Channels – communication protocol

• Synchronize-then-communicate protocol used to alleviate any
race conditions.

co-generator performed local communication

synchronized

co-generator arrived on channel

co-generator arrived on channel

synchronizing

synchronizing

&

waiting for co-

generator

waiting for co-

generator
communicating

distributed communication done

&

no longer in sync

synchronized

• This protocol allows further external channel implementations!
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Performance: Co-generator Execution
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Figure: Scaling up co-generators in a CSP environment.
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Performance: Message Transmission
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Figure: Scaling up message size over distributed channels.
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Use Cases – Synchronous JavaScript

1 var promise = new Promise(function (resolve ,reject)

{

2 setTimeout(function callback (){

3 resolve("csp");

4 }, 1000);

5 });

6

7 promise.then(function (x){

8 console.log(x); // "csp"

9 });

1 var channel = csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.sleep (1000);

5 yield channel.send("csp");

6 }, function* (){

7 var x = yield channel.recv(); // "csp"

8 });
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Use Cases – Parallel Computing
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Figure: Concurrent code is reused in different distributed configurations.
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Use Cases – Parallel Computing
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Figure: Mandelbrot set computation speed-up.
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Conclusions

• A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers’ design.

• Extending the implementation with external channels is useful
because:

• The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

• JavaScript’s parallel computing capabilities can be harnessed
at a higher level of abstraction.

• By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

• Distributed failures: how best to handle them in CSP-like
systems?
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