
1 of 21

CPA 2016
Communicating Generators in JavaScript

Kurt Micallef (kurtmica@live.com)
Kevin Vella (kevin.vella@um.edu.mt)

Department of Computer Science

University of Malta



2 of 21

Problems and Opportunities

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



2 of 21

Problems and Opportunities

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



3 of 21

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next().value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network



3 of 21

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next().value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network



3 of 21

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next().value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network



3 of 21

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next()

.value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network



3 of 21

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next().value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network



3 of 21

JavaScript Generators

Generators are functions which can be exited and later
re-entered. Their context (variable bindings) will be
saved across re-entrances.1

1 var generatorFunction = function* (){

2 var ret = yield 1;

3 return ret;

4 };

5

6 var generator = generatorFunction ();

7 var x = generator.next().value; // x = 1

8 var y = generator.next (2).value; // y = 2

1Mozilla Developer Network



4 of 21

Generators

1 var delegate = function* (){

2 yield 1;

3 };

4

5 var generator = (function* (){

6 yield* delegate ();

7 }());

8

9 var x = generator.next().value; // x = 1



4 of 21

Generators

1 var delegate = function* (){

2 yield 1;

3 };

4

5 var generator = (function* (){

6 yield* delegate ();

7 }());

8

9 var x = generator.next().value; // x = 1



4 of 21

Generators

1 var delegate = function* (){

2 yield 1;

3 };

4

5 var generator = (function* (){

6 yield* delegate ();

7 }());

8

9 var x = generator.next().value; // x = 1



5 of 21

Problems and Opportunities (revisited)

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



5 of 21

Problems and Opportunities (revisited)

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



5 of 21

Problems and Opportunities (revisited)

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



6 of 21

The CSP Environment and Dispatcher

• Generators are initialised in a CSP environment, and execute
together as co-generators.

• These are contained within a function scope, the dispatcher.

Dispatcher

 

g1

g0

gn

Figure: Execution flow of co-generators.

• All API functions2 must be:
• Called within a CSP environment.
• Prefixed with a yield.

• yield on its own is effectively a part of the API.

2Except CSP environment creation and channel creation.



6 of 21

The CSP Environment and Dispatcher

• Generators are initialised in a CSP environment, and execute
together as co-generators.

• These are contained within a function scope, the dispatcher.

Dispatcher

 

g1

g0

gn

Figure: Execution flow of co-generators.

• All API functions2 must be:
• Called within a CSP environment.
• Prefixed with a yield.

• yield on its own is effectively a part of the API.

2Except CSP environment creation and channel creation.



6 of 21

The CSP Environment and Dispatcher

• Generators are initialised in a CSP environment, and execute
together as co-generators.

• These are contained within a function scope, the dispatcher.

Dispatcher

 

g1

g0

gn

Figure: Execution flow of co-generators.

• All API functions2 must be:
• Called within a CSP environment.
• Prefixed with a yield.

• yield on its own is effectively a part of the API.

2Except CSP environment creation and channel creation.



6 of 21

The CSP Environment and Dispatcher

• Generators are initialised in a CSP environment, and execute
together as co-generators.

• These are contained within a function scope, the dispatcher.

Dispatcher

 

g1

g0

gn

Figure: Execution flow of co-generators.

• All API functions2 must be:
• Called within a CSP environment.
• Prefixed with a yield.

• yield on its own is effectively a part of the API.
2Except CSP environment creation and channel creation.



7 of 21

API functions: process creation

1 csp.csp(

2 function* (){ },

3 // ...

4 function* (){ }

5 );

Similar to occam’s top-level PAR.

1 csp.csp(function* (){

2 yield csp.fork(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

1 csp.csp(function* (){

2 yield csp.co(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

Similar to occam’s PAR.



7 of 21

API functions: process creation

1 csp.csp(

2 function* (){ },

3 // ...

4 function* (){ }

5 );

Similar to occam’s top-level PAR.

1 csp.csp(function* (){

2 yield csp.fork(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

1 csp.csp(function* (){

2 yield csp.co(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

Similar to occam’s PAR.



7 of 21

API functions: process creation

1 csp.csp(

2 function* (){ },

3 // ...

4 function* (){ }

5 );

Similar to occam’s top-level PAR.

1 csp.csp(function* (){

2 yield csp.fork(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

1 csp.csp(function* (){

2 yield csp.co(

3 function* (){ },

4 // ...

5 function* (){ }

6 );

7 });

Similar to occam’s PAR.



8 of 21

API functions: Channel communication

Syntactic and semantic equivalence across channels over all types
of communication mechanisms!

1 var channel = new csp.Channel ();

2

3 csp.csp(function* (){

4 var x = yield channel.recv(); // x = 1

5 }, function* (){

6 yield channel.send (1);

7 });



9 of 21

API functions: Timeouts

1 csp.csp(function* (){

2 // ...

3 yield csp.timeout(csp.clock() + 1000);

4 // continue after current time + 1 second

5 });

Similar behaviour to occam’s TIMERs.

1 csp.csp(function* (){

2 // ...

3 yield csp.sleep (1000);

4 // continue after current time + 1 second

5 });

Similar to popular programming languages’ Thread.sleep().



9 of 21

API functions: Timeouts

1 csp.csp(function* (){

2 // ...

3 yield csp.timeout(csp.clock() + 1000);

4 // continue after current time + 1 second

5 });

Similar behaviour to occam’s TIMERs.

1 csp.csp(function* (){

2 // ...

3 yield csp.sleep (1000);

4 // continue after current time + 1 second

5 });

Similar to popular programming languages’ Thread.sleep().



10 of 21

API functions: Choice

1 var channel = new csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.choice ({

5 recv: channel ,

6 action: function* (x) { /* ... */ }

7 }, {

8 timeout: 1000,

9 action: function* () { /* ... */ }

10 }, {

11 boolean: true ,

12 action: function* () { /* ... */ }

13 });

14 });

Similar to occam’s ALT.



11 of 21

Problems and Opportunities (re-revisited)

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



11 of 21

Problems and Opportunities (re-revisited)

1 Single-threaded, event-driven JavaScript limits the scope for
concurrency.

• However JavaScript generators enable the dynamic execution
of a function.

• These can be repurposed as co-generators to provide
co-operative multitasking in a CSP demeanour.

2 JavaScript is a ubiquitous computing technology, running in
browsers, server runtimes (Node.js) and worker contexts.

• CSP environments can be distributed over several distinct
JavaScript instances to achieve parallel execution.



12 of 21

External Channels

• External channels extend across JavaScript instances by
overlying various communication mechanisms.

JavaScriptJavaScript

CSP environment CSP environment

External Channel

generator

c
o
m

m
u
n
ic

atio
n
 

o
b

jec
t generator

c
o
m

m
u
n
ic

at
io

n
 

o
b

je
c
t

• JavaScript environments investigated: browsers, Node.js, and
workers.

• Transport mechanisms used: socket.io (over WebSockets),
Web Workers, and Cluster Workers.



12 of 21

External Channels

• External channels extend across JavaScript instances by
overlying various communication mechanisms.

JavaScriptJavaScript

CSP environment CSP environment

External Channel

generator

c
o
m

m
u
n
ic

atio
n
 

o
b

jec
t generator

c
o
m

m
u
n
ic

at
io

n
 

o
b

je
c
t

• JavaScript environments investigated: browsers, Node.js, and
workers.

• Transport mechanisms used: socket.io (over WebSockets),
Web Workers, and Cluster Workers.



13 of 21

External Channels – DistributedChannel

External channel implementation over socket.io (WebSocket).

1 http.createServer ().listen (8000);

2 io.on("connection", function (s){

3 var channel = new csp.DistributedChannel(s,"id");

4

5 csp.csp(function* (){

6 var x = yield channel.recv();

7 });

8 });

1 var s = io.connect("http :// serverhost :8000/");

2 var channel = new csp.DistributedChannel(s,"id");

3

4 csp.csp(function* (){

5 yield channel.send (1);

6 });

Listing: Channel communication between distributed co-generators.



14 of 21

External Channels – WorkerChannel

External Channel implementation over workers: Web Workers and
Node.js Cluster Workers.

1 var worker = new Worker("worker.js");

2 var channel = new csp.WorkerChannel(worker);

3

4 csp.csp(function* (){

5 var x = yield channel.recv();

6 });

1 var channel = new csp.WorkerChannel(self);

2

3 csp.csp(function* (){

4 yield channel.send (1);

5 });

Listing: Channel communication between co-generators across Web
Workers.



15 of 21

Recall Channels

Syntactic and semantic equivalence across channels over all types
of communication mechanisms!

1 var channel = new csp.Channel ();

2

3 csp.csp(function* (){

4 var x = yield channel.recv(); // x = 1

5 }, function* (){

6 yield channel.send (1);

7 });



16 of 21

External Channels – communication protocol

• Synchronize-then-communicate protocol used to alleviate any
race conditions.

co-generator performed local communication

synchronized

co-generator arrived on channel

co-generator arrived on channel

synchronizing

synchronizing

&

waiting for co-

generator

waiting for co-

generator
communicating

distributed communication done

&

no longer in sync

synchronized

• This protocol allows further external channel implementations!



16 of 21

External Channels – communication protocol

• Synchronize-then-communicate protocol used to alleviate any
race conditions.

co-generator performed local communication

synchronized

co-generator arrived on channel

co-generator arrived on channel

synchronizing

synchronizing

&

waiting for co-

generator

waiting for co-

generator
communicating

distributed communication done

&

no longer in sync

synchronized

• This protocol allows further external channel implementations!



16 of 21

External Channels – communication protocol

• Synchronize-then-communicate protocol used to alleviate any
race conditions.

co-generator performed local communication

synchronized

co-generator arrived on channel

co-generator arrived on channel

synchronizing

synchronizing

&

waiting for co-

generator

waiting for co-

generator
communicating

distributed communication done

&

no longer in sync

synchronized

• This protocol allows further external channel implementations!



17 of 21

Performance: Co-generator Execution

0 2 000 4 000 6 000 8 000 10 000
0

20

40

60

80

100

Number of Generators

C
o-

ge
n

er
at

or
E

xe
cu

ti
on

T
im

e
/µ

s

Node.js
Chrome
Firefox

Figure: Scaling up co-generators in a CSP environment.



18 of 21

Performance: Message Transmission

0 50 000 100 000 150 000 200 000
0

5

10

15

20

Message Size /bytes

M
es

sa
ge

T
ra

n
sm

is
si

on
T

im
e

/m
s

Node.js
Chrome
Firefox

Figure: Scaling up message size over distributed channels.



19 of 21

Use Cases – Synchronous JavaScript

1 var promise = new Promise(function (resolve ,reject)

{

2 setTimeout(function callback (){

3 resolve("csp");

4 }, 1000);

5 });

6

7 promise.then(function (x){

8 console.log(x); // "csp"

9 });

1 var channel = csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.sleep (1000);

5 yield channel.send("csp");

6 }, function* (){

7 var x = yield channel.recv(); // "csp"

8 });



19 of 21

Use Cases – Synchronous JavaScript

1 var promise = new Promise(function (resolve ,reject)

{

2 setTimeout(function callback (){

3 resolve("csp");

4 }, 1000);

5 });

6

7 promise.then(function (x){

8 console.log(x); // "csp"

9 });

1 var channel = csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.sleep (1000);

5 yield channel.send("csp");

6 }, function* (){

7 var x = yield channel.recv(); // "csp"

8 });



19 of 21

Use Cases – Synchronous JavaScript

1 var promise = new Promise(function (resolve ,reject)

{

2 setTimeout(function callback (){

3 resolve("csp");

4 }, 1000);

5 });

6

7 promise.then(function (x){

8 console.log(x); // "csp"

9 });

1 var channel = csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.sleep (1000);

5 yield channel.send("csp");

6 }

, function* (){

7 var x = yield channel.recv(); // "csp"

8 });



19 of 21

Use Cases – Synchronous JavaScript

1 var promise = new Promise(function (resolve ,reject)

{

2 setTimeout(function callback (){

3 resolve("csp");

4 }, 1000);

5 });

6

7 promise.then(function (x){

8 console.log(x); // "csp"

9 });

1 var channel = csp.Channel ();

2

3 csp.csp(function* (){

4 yield csp.sleep (1000);

5 yield channel.send("csp");

6 }, function* (){

7 var x = yield channel.recv(); // "csp"

8 });



20 of 21

Use Cases – Parallel Computing

same code base

external
channel

external
channel

external
channel

external
channel

local
channel

local
channel

Figure: Concurrent code is reused in different distributed configurations.



20 of 21

Use Cases – Parallel Computing

0 2 4 6 8
0

2

4

6

8

Number of Workers

S
p

ee
d

-u
p

computation only

w/ data harvesting

Figure: Mandelbrot set computation speed-up.



21 of 21

Conclusions

• A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers’ design.

• Extending the implementation with external channels is useful
because:

• The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

• JavaScript’s parallel computing capabilities can be harnessed
at a higher level of abstraction.

• By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

• Distributed failures: how best to handle them in CSP-like
systems?



21 of 21

Conclusions

• A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers’ design.

• Extending the implementation with external channels is useful
because:

• The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

• JavaScript’s parallel computing capabilities can be harnessed
at a higher level of abstraction.

• By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

• Distributed failures: how best to handle them in CSP-like
systems?



21 of 21

Conclusions

• A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers’ design.

• Extending the implementation with external channels is useful
because:

• The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

• JavaScript’s parallel computing capabilities can be harnessed
at a higher level of abstraction.

• By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

• Distributed failures: how best to handle them in CSP-like
systems?



21 of 21

Conclusions

• A straightforward CSP library implementation in JavaScript
was achieved by following the occam language and the
‘Networks, Routers, and Transputers’ design.

• Extending the implementation with external channels is useful
because:

• The transport mechanism is abstracted away, alleviating the
need to tailor code to its location.

• JavaScript’s parallel computing capabilities can be harnessed
at a higher level of abstraction.

• By using eval(), simple run-time code mobility can be
achieved since co-generators already use transport-agnostic
channels.

• Distributed failures: how best to handle them in CSP-like
systems?


	Evaluation

