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¡ Introduction: Motivation to conceive the π-Calculus for SoS
§ Need of  formal description techniques to model SoS architectures
§ Limitations of  current formal description techniques

¡ Problematics
§ Needs for a novel process calculus for SoS

¡ Formal Approach for Conceiving the π-Calculus for SoS
§ Novel process calculus meeting SoS needs: The π-Calculus for SoS

¡ Formal Definition of  the π-Calculus for SoS
§ Formal transition system defining the π-Calculus for SoS

¡ Validating the Formal Operational Semantics of  the                  
π-Calculus for SoS

¡ Conclusion
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¡ Software-intensive Systems-of-Systems (SoS)
§ Systems are independently developed, operated, managed, evolved 

and eventually retired
§ Increasingly, networks make communication and cooperation possible 

among these independent systems
§ These networked systems evolved to form Systems-of-Systems
§ Systems-of-Systems are evolutionary developed from independent 

systems to achieve missions not possible by a constituent system alone
▪ SoS creates emergent behavior

§ Systems-of-Systems have                                                                                          
evolutionary architectures
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¡ Software-intensive Systems
§ were simple and became complicated: needs engineering

§ are becoming complex as SoS: needs architecture

▪ complexity poses the need for separation of  concerns 
between architecture and engineering

▪ architecture: focus on reasoning about interactions of  
parts and their emergent properties

¡ Issues:
§ Do the process calculi constituting the formal foundations of  ADLs 

for single systems provide enough expressive power for modeling 
SoS architectures?

§ Beyond the process calculi underlying single system ADLs, are 
there other process calculi that would be suitable for describing 
SoS architectures?
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¡ Software Architecture Description Language (ADL)
§ Subject of  intensive research in the last 20 years 

§ Proposal of  several ADLs for formally describing Software 
Architecture (see IFIP/IEEE ICSA, ECSA, QoSA…; IEEE TSE, ACM 
TOSEM, JSS, FGCS, IEEE Software...)

¡ ADLs for Single Systems
§ None of  those ADLs has the expressive power to describe the 

Software Architecture of  a Software-intensive SoS
▪ Formal foundations of  these ADLs are too limited to describe SoS

Architectures
¡ A novel formal foundation is needed for representing, 

analyzing and evolving SoS Architectures
§ Need of  a novel formal foundation to describe SoS Architectures
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¡ Formal foundations for describing the Architecture of  Single 
Systems are mostly based on Process Calculi
§ FSP: the formal foundation of  Darwin ADL

§ CSP: the formal foundation of  Wright ADL

§ π-Calculus: the formal foundation of  π-ADL
¡ Process Calculi

§ Mathematical theory for formally modeling concurrent 
communicating systems
▪ provide a formalism for the description of  communicating processes
▪ provide algebraic laws that allow process descriptions to be 

manipulated and analyzed
▪ enable formal reasoning about equivalences between processes

§ The Process Calculus of  reference
▪ The π-Calculus (ACM Turing Award for Robin Milner in 1991)
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¡ π-Calculus

§ Basic concepts
▪ Processes (single and composite processes)
▪ Channels (interaction points) – channels support the binding of  

interaction points in concurrent processes
▪ Names (including channel names)
▪ Mobility (channels are used to send and receive names that may be 

channels)
¡ π-Calculus has shown to be a suitable formal foundation for 

describing and analyzing the architecture of  software-
intensive single systems

¡ However, π-Calculus as well as other process calculi, e.g. 
FSP/CSP, are too limited to cope with SoS architecture needs
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¡ Different process calculi were applied for formally describing 
the architecture of  single software-intensive systems
§ Including different variants of  the π-Calculus

¡ Bindings in all these process calculi for the architecture 
description of  single software-intensive systems are:
§ endogenously decided at design-time
§ extensionally declared at design-time
§ unconstrained by local environments
§ unmediated between constituents

¡ Expressive power of  these process calculi based on design-
time decisions do not cope with SoS defining characteristics

¡ Research question: 
§ How to enhance the π-Calculus for formally describing SoS

architectures?
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¡ None of  the existing π-Calculi provides a suitable basis for 
formally describing and analyzing SoS architectures

¡ Needs related to SoS Architecture Description
§ Representing systems as processes
§ Representing mediators between communicating processes via 

inferred channel bindings

▪ In SoS, the binding between channels must be exogenous

▪ Problem: In the π-Calculus binding is endogenous

▪ In SoS, the binding must be constrained by local contexts

▪ Problem: In the π-Calculus binding is unconstrained
▪ In SoS, the binding between channels must be intentional

▪ Problem: In the π-Calculus binding is extensional

▪ In SoS, the binding between channels must be mediated

▪ Problem: In the π-Calculus binding is unmediated
9
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π-Calculus for SoS

Inferred 
Bindings

Concurrent 
Constraints

π-Calculus
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¡ Design decisions for the π-Calculus for SoS
§ Generalization of  the π-Calculus with mediated constraints
▪ Subsuming the original π-Calculus
▪ Coping with uncertainty
▪ In SoS, partial information 

contributes to uncertainty, in addition 
to the uncertainty of  emergent behavior

§ Definition of  an enhanced π-Calculus 
based on
▪ Concurrent interacting processes
▪ Concurrent constraints on interactions
▪ Inferred bindings from concurrent processes 

and constraints: exogenous, constrained, intentional, mediated

§ Emergent behavior
▪ Drawn from constrained interactions



¡ The π-Calculus for SoS: meeting the needs of  SoS
architecture description
§ the π-Calculus for SoS generalizes the π-Calculus with the 

notion of  computing with partial information based on 
concurrent constraints
▪ A constraint represents partial information on the state of  the 

environment as perceived by mediated constituent systems
▪ During the computation, the current state of  the environment is 

specified by a set of  told constraints
▪ Processes can change the state of  the environment by telling 

information
▪ tell new constraints or untell existing constraints

▪ Processes can synchronize by entailing information from the 
environment
▪ ask whether a given constraint can be inferred from the told 

constraints in the environment
11
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¡ The formal definition of  the 
π-Calculus for SoS
encompasses its formal 
abstract syntax and formal 
semantics
§ formal operational semantics 

of  π-Calculus for SoS is defined 
by means of  a formal transition 
system, expressed by labelled 
transition rules
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     Transition rule:  
P1    α1    

⎯ →⎯⎯⎯⎯⎯⎯⎯  P1' ... Pn    αn    
⎯ →⎯⎯⎯⎯⎯⎯⎯  Pn' 

C    α     
⎯ →⎯⎯⎯⎯⎯⎯⎯  C'  

where side conditions

 

Abstract syntax of π-Calculus for SoS 
constrainedBehavior ::=  behavior1 

  |  restriction1 . constrainedBehavior1 -- Constrained Behavior 

  |  behavior name1 ( value0 …, valuen ) is { behavior1 }   -- Definition 
  |  constraint name1 is { constraint1 } -- Constraint Definition 
  |  compose { constrainedBehavior0 … and constrainedBehaviorn  } 

behavior ::= baseBehavior1  
  |  restriction1 . behavior1   -- Unconstrained Behavior 

  | repeat { behavior1 }  -- Repeat 
  |  apply name1 ( value0 …, valuen )  -- Application 
  | compose { behavior0 … and behaviorn }  -- Composition 

baseBehavior ::=  action1 . behavior1 -- Sequence 
  | choose { action0 . baseBehavior0  -- Choice 
  or  action1 . baseBehavior1 … or   actionn . baseBehaviorn } 
  | if constraint1 then { baseBehavior1 } else { baseBehavior2 } 
  | done   -- Termination 

action ::= baseAction1 

  | tell constraint1  -- Tell 
  | untell constraint1  -- Unsaid 

  | check constraint1  -- Check 

  | ask constraint1  -- Ask 

baseAction ::=  via connection1 send value0  -- Output 
  | via connection1 receive name0 : type0 -- Input 
  | unobservable  -- Unobservable 

connection ::= connection name1 
restriction ::= value name1 = value0  |  connection1 
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Actions:
§ send value via 

connection

§ receive value via 
connection

§ unobservable
internal actions

§ tell constraint to 
local environment

§ untell constraint 
from local 
environment

§ check if  
constraint is 
consistent with 
local environment

§ ask if  constraint 
can be entailed 
from local 
environment
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Formal semantics of π-Calculus for SoS: labeled transition rules for actions 
Output:

compose
constraint0..n
and (via connection1  send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  via connection1  send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  compose constraint0..n and behavior1{ }

 
Input:

compose
constraint0..n

and (via connection1  receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  via connection1  receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  compose

constraint0..n

and (value = value1) 
and behavior1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together  
with constraint0..n

 

Unobservable: 
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯  compose constraint0..n and behavior1{ }

 

Tell: 

compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯  compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

 

Untell: 

compose constraint0..n and (untell constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

 

Check: 
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯  compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

 

Ask: compose constraint0..m and (ask constraintn . behavior1 ){ } τ⎯ →⎯  compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m
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Behaviors:
§ restriction of  value to 

local behavior

§ communication of  
value via connection 
between behaviors
▪ synchronization 

between send and 
receive

▪ equality constraint

§ extrusion of  value to 
another behavior 
(open restriction & 
close communication)

§ nondeterministic 
choice among 
behaviors

§ conditional choice 
between behaviors

§ repetition of  behavior
§ composition of  

concurrent behaviors Fo
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Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors 
Restriction: 

constrainedBehavior1     action1     ⎯ →⎯⎯⎯⎯    constrainedBehavior1'

value value1  . constrainedBehavior1     action1     ⎯ →⎯⎯⎯⎯  value value1  . constrainedBehavior1 '
 

where value1  ∉ names(action1), i.e. value1  is not among the names used in action1

 

Communication: 
behavior1  via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   behavior1'                                behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  behavior2'

compose
constraint0..n  
and  (connection1  = connection2)
and  behavior1  and  behavior2 

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯   compose 

constraint0..n 
and (connection1  = connection2) 
and  (value = value1) and behavior1'  and behavior2' 

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or  unification

 

Restriction-Open: 

constrainedBehavior1      via connection1  send  value1      ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯    constrainedBehavior1'

value value1  . constrainedBehavior1     via connection1  send  value1    ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  constrainedBehavior1 '
 

where value1  ≠ connection1, i.e. value1 cannot be used for  connection as it is restricted

 

Communication-Close: 

behavior1  value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   behavior1'            behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  behavior2'

compose 
constraint0..n 
and (connection1=connection2)
and  behavior1  and  behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯  value connection . compose 

constraint0..n

and  (connection1=connection2)
and (value = connection)
and behavior1'  and  behavior2'  

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉  free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1  
 

Choice: 
constraint0..n and (actioni . behaviori' ) actioni  ⎯ →⎯⎯⎯  constraint0..n' and behaviori'

compose 
constraint0..n

and  choose action0 . behavior0' ... or  actionm . behaviorm'{ }
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni⎯ →⎯⎯⎯ compose 

constraint0..n'  
and  behaviori'

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 0..m, i.e. only one of  the actions action0..m is performed

 

Conditional-Then: 

behavior1 action1⎯ →⎯⎯⎯  behavior1'                                          constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1  ⎯ →⎯⎯⎯  compose constraint0..n and  behavior1'{ }
 

Conditional-Else: 

behavior2 action2⎯ →⎯⎯⎯  behavior2'                                        constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1  ⎯ →⎯⎯⎯  compose constraint0..n and behavior2'{ }
 

Repetition: 

behavior1 action1   ⎯ →⎯⎯⎯  behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯  behavior1 '  .  repeat behavior1{ }
where behavior1'  .  behavior1  is a sequential composition, i.e. behavior1' must be performed before behavior1 

 

Composition: 

constrainedBehaviori actioni   ⎯ →⎯⎯⎯  constrainedBehaviori'

compose
constrainedBehavior0  ... 
and  constrainedBehaviori
and  constrainedBehaviorn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 actioni ⎯ →⎯⎯⎯  compose

constrainedBehavior0  ...  
and  constrainedBehaviori''  
and  constrainedBehaviorn  

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where i ∈ 1..n and bound(actioni) ∩  free(constrainedBehavior0..n - i) =  ∅, 
i.e. restricted names in actioni are not restricted elsewhere

 

 

 



§ Communication
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Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors 
Restriction: 

constrainedBehavior1     action1     ⎯ →⎯⎯⎯⎯    constrainedBehavior1'

value value1  . constrainedBehavior1     action1     ⎯ →⎯⎯⎯⎯  value value1  . constrainedBehavior1 '
 

where value1  ∉ names(action1), i.e. value1  is not among the names used in action1

 

Communication: 

behavior1  via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   behavior1'                                behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  behavior2'

compose
constraint0..n  and  (connection1  = connection2)
and  behavior1  and  behavior2 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 τ⎯ →⎯   compose constraint0..n and (connection1  = connection2) 

and  (value = value1) and behavior1'  and behavior2' 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or  unification

 

Restriction-Open: 

constrainedBehavior1      via connection1  send  value1      ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯    constrainedBehavior1'

value value1  . constrainedBehavior1     via connection1  send  value1    ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  constrainedBehavior1 '
 

where value1  ≠ connection1, i.e. value1 cannot be used for  connection as it is restricted

 

Communication-Close: 

behavior1  value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   behavior1'                     behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  behavior2'

compose 
constraint0..n 
and (connection1=connection2)
and  behavior1  and  behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯  value connection . compose 

constraint0..n

and  (connection1=connection2)
and (value = connection)
and behavior1'  and  behavior2'  

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉  free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1  

 

Choice:

constraint0..n and (actioni . behaviori' ) actioni  ⎯ →⎯⎯⎯  constraint0..n' and behaviori'
compose constraint0..n and  choose action0 . behavior0' ... or  actionm . behaviorm'{ }{ } actioni⎯ →⎯⎯⎯ compose constraint0..n'  and  behaviori'{ }
where i ∈ 0..m, i.e. only one of  the actions action0..m is performed

 

Conditional-Then: 

behavior1 action1⎯ →⎯⎯⎯  behavior1'                                          constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1  ⎯ →⎯⎯⎯  compose constraint0..n and  behavior1'{ }
 

Conditional-Else: 

behavior2 action2⎯ →⎯⎯⎯  behavior2'                                        constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1  ⎯ →⎯⎯⎯  compose constraint0..n and behavior2'{ }
 

Repetition: 

behavior1 action1   ⎯ →⎯⎯⎯  behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯  behavior1 '  .  repeat behavior1{ }
where behavior1'  .  behavior1  is a sequential composition, i.e. behavior1' must be performed before behavior1 

 

Composition: 

constrainedBehaviori actioni   ⎯ →⎯⎯⎯  constrainedBehaviori'

compose
constrainedBehavior0  ... and  constrainedBehaviori
and  constrainedBehaviorn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni ⎯ →⎯⎯⎯  compose constrainedBehavior0  ...  and  constrainedBehaviori''  

and  constrainedBehaviorn  

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 1..n and bound(actioni) ∩  free(constrainedBehavior0..n - i) =  ∅, i.e. restricted names in actioni are not restricted elsewhere

 

 

 

Formal semantics of π-Calculus for SoS: labeled transition rules for actions 
Output:

compose
constraint0..n
and (via connection1  send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  via connection1  send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  compose constraint0..n and behavior1{ }

 

Input: compose constraint0..n

and (via connection1  receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  via connection1  receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  compose

constraint0..n and (value = value1) 
and behavior1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together  with constraint0..n

 

Unobservable: 
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯  compose constraint0..n and behavior1{ }

 

Tell: 
compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯  compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

 

Unsaid: compose constraint0..n and (unsaid constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

 

Check: 
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯  compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

 

Ask: compose constraint0..m and (ask constraintn . behavior1 ){ } τ⎯ →⎯  compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m

 

 
 

 Sensors[1] : system Sensor(lps=Coordinate::(10,10)) is { … 
 behavior sensing is {    
  value sensorcoordinate is Coordinate = lps 
  tell sensorlocation is {sensorcoordinate = lps} 
  via location::coordinate send sensorcoordinate 
  via energy::threshold receive powerthreshold 
  repeat { 
   via energy::power receive powerlevel 
     if (powerlevel > powerthreshold) then {    

   tell powering is {powerlevel > powerthreshold}     
       choose{  
       via measurement::sense receive data 

        via measurement::measure send  
     tuple{coordinate=lps,depth=data::convert()} 

         } or { 
          via measurement::pass receive data 
          via measurement::measure send data  
          } 
       } 
     } 
 } 
 }  
 

 

transmitters[1] : mediator    
  Transmitter(distancebetweengates:Distance) is { … 
 behavior transmitting is { 
  via location::fromCoordinate receive sendercoordinate  
  via location::toCoordinate receive receivercoordinate 
     ask sendercoordinate::distance(receivercoordinate)  
   < distancebetweengates 
  repeat { 
    via transmit::fromSensors receive measure 
    via transmit::towardsGateway send measure 
  } 
 } 
 } 
 

 
 

  
constraint {sensors[1]::location::coordinate = transmitters[1]::location::fromCoordinate}  
 

§ Equality from coalition
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§ Communication
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Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors 
Restriction: 

constrainedBehavior1     action1     ⎯ →⎯⎯⎯⎯    constrainedBehavior1'

value value1  . constrainedBehavior1     action1     ⎯ →⎯⎯⎯⎯  value value1  . constrainedBehavior1 '
 

where value1  ∉ names(action1), i.e. value1  is not among the names used in action1

 

Communication: 

behavior1  via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   behavior1'                                behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  behavior2'

compose
constraint0..n  and  (connection1  = connection2)
and  behavior1  and  behavior2 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 τ⎯ →⎯   compose constraint0..n and (connection1  = connection2) 

and  (value = value1) and behavior1'  and behavior2' 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or  unification

 

Restriction-Open: 

constrainedBehavior1      via connection1  send  value1      ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯    constrainedBehavior1'

value value1  . constrainedBehavior1     via connection1  send  value1    ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  constrainedBehavior1 '
 

where value1  ≠ connection1, i.e. value1 cannot be used for  connection as it is restricted

 

Communication-Close: 

behavior1  value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   behavior1'                     behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  behavior2'

compose 
constraint0..n 
and (connection1=connection2)
and  behavior1  and  behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯  value connection . compose 

constraint0..n

and  (connection1=connection2)
and (value = connection)
and behavior1'  and  behavior2'  

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉  free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1  

 

Choice:

constraint0..n and (actioni . behaviori' ) actioni  ⎯ →⎯⎯⎯  constraint0..n' and behaviori'
compose constraint0..n and  choose action0 . behavior0' ... or  actionm . behaviorm'{ }{ } actioni⎯ →⎯⎯⎯ compose constraint0..n'  and  behaviori'{ }
where i ∈ 0..m, i.e. only one of  the actions action0..m is performed

 

Conditional-Then: 

behavior1 action1⎯ →⎯⎯⎯  behavior1'                                          constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1  ⎯ →⎯⎯⎯  compose constraint0..n and  behavior1'{ }
 

Conditional-Else: 

behavior2 action2⎯ →⎯⎯⎯  behavior2'                                        constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1  ⎯ →⎯⎯⎯  compose constraint0..n and behavior2'{ }
 

Repetition: 

behavior1 action1   ⎯ →⎯⎯⎯  behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯  behavior1 '  .  repeat behavior1{ }
where behavior1'  .  behavior1  is a sequential composition, i.e. behavior1' must be performed before behavior1 

 

Composition: 

constrainedBehaviori actioni   ⎯ →⎯⎯⎯  constrainedBehaviori'

compose
constrainedBehavior0  ... and  constrainedBehaviori
and  constrainedBehaviorn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni ⎯ →⎯⎯⎯  compose constrainedBehavior0  ...  and  constrainedBehaviori''  

and  constrainedBehaviorn  

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 1..n and bound(actioni) ∩  free(constrainedBehavior0..n - i) =  ∅, i.e. restricted names in actioni are not restricted elsewhere

 

 

 

Formal semantics of π-Calculus for SoS: labeled transition rules for actions 
Output:

compose
constraint0..n
and (via connection1  send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  via connection1  send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  compose constraint0..n and behavior1{ }

 

Input: compose constraint0..n

and (via connection1  receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  via connection1  receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  compose

constraint0..n and (value = value1) 
and behavior1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together  with constraint0..n

 

Unobservable: 
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯  compose constraint0..n and behavior1{ }

 

Tell: 
compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯  compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

 

Unsaid: compose constraint0..n and (unsaid constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

 

Check: 
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯  compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

 

Ask: compose constraint0..m and (ask constraintn . behavior1 ){ } τ⎯ →⎯  compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m

 

 
 

 Sensors[1] : system Sensor(lps=Coordinate::(10,10)) is { … 
 behavior sensing is {    
  value sensorcoordinate is Coordinate = lps 
  tell sensorlocation is {sensorcoordinate = lps} 
  via location::coordinate send sensorcoordinate 
  via energy::threshold receive powerthreshold 
  repeat { 
   via energy::power receive powerlevel 
     if (powerlevel > powerthreshold) then {    

   tell powering is {powerlevel > powerthreshold}     
       choose{  
       via measurement::sense receive data 

        via measurement::measure send  
     tuple{coordinate=lps,depth=data::convert()} 

         } or { 
          via measurement::pass receive data 
          via measurement::measure send data  
          } 
       } 
     } 
 } 
 }  
 

 

transmitters[1] : mediator    
  Transmitter(distancebetweengates:Distance) is { … 
 behavior transmitting is { 
  via location::fromCoordinate receive sendercoordinate  
  via location::toCoordinate receive receivercoordinate 
     ask sendercoordinate::distance(receivercoordinate)  
   < distancebetweengates 
  repeat { 
    via transmit::fromSensors receive measure 
    via transmit::towardsGateway send measure 
  } 
 } 
 } 
 

 
 

  
constraint {sensors[1]::location::coordinate = transmitters[1]::location::fromCoordinate}  
 

§ Equality from coalition

 
 

  
constraint {transmitters[1]::sendercoordinate = Coordinate::(10,10)}  
 

§ Equality from communication
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le¡ Monjolinho river crossing the city of  Sao Carlos

¡ The Urban River Monitoring SoS is 
based on two kinds of  constituent 
systems: 
§ wireless river sensors (for measuring river 

level depth via pressure physical sensing) 
§ a gateway base station (for analyzing 

variations of  river level depths and warning 
on the risk of  flash flood)



¡ Sensor motes are operated by different City Councils in the 
Urban area

¡ Operational independence of  constituent systems
§ Each sensor mote operates in a way that is independent of  other sensor 

motes (which may belong to different organizations and have different 
missions, e.g. pollution control, water supply, …)

¡ Managerial independence of  constituent systems
§ Each sensor mote has its own strategy for transmission vs. energy 

consumption
¡ Geographical distribution of  constituent systems

§ Sensor motes are geographically distributed along the river
¡ Evolutionary development of  system-of-systems

§ New sensor motes may be installed, existing sensor motes may be 
changed or uninstalled without any control from the SoS

¡ Emergent behavior of  system-of-systems
§ Sensor motes together, with the gateway, will make                                       

emerge the behavior of  flood detection 18
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 system Sensor(lps: Coordinate) is { … 
 behavior sensing is {    
  value sensorcoordinate is Coordinate = lps 
  tell sensorlocation is {sensorcoordinate = lps} 
  via location::coordinate send sensorcoordinate 
  via energy::threshold receive powerthreshold 
  repeat { 
   via energy::power receive powerlevel 
     if (powerlevel > powerthreshold) then {    

   tell powering is {powerlevel > powerthreshold}     
       choose{  
       via measurement::sense receive data 

        via measurement::measure send  
     tuple{coordinate=lps,depth=data::convert()} 

         } or { 
          via measurement::pass receive data 
          via measurement::measure send data  
          } 
       } 
     } 
 } 
 }  
 Flavio Oquendo – IRISA – http://people.irisa.fr/Flavio.Oquendo/
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 mediator Transmitter(distancebetweengates:Distance) is { … 
 behavior transmitting is { 
  via location::fromCoordinate receive sendercoordinate  
  via location::toCoordinate receive receivercoordinate 
     ask sendercoordinate::distance(receivercoordinate)  
   < distancebetweengates 
  repeat { 
    via transmit::fromSensors receive measure 
    via transmit::towardsGateway send measure 
  } 
 } 
 } 
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¡ Urban River Monitoring SoS
§ Monjolinho river crossing the city of  Sao Carlos
▪ XBee motes, ZigBee transmissions, Solar panels…

¡ Flood Monitoring and Emergency Response SoS
§ Wireless River Sensors
§ Telecommunication Gateways
§ Unmanned Aerial Vehicles (UAVs)
§ Vehicular Ad Hoc Networks (VANETs)
§ Meteorological Centers
§ Fire and Rescue Services
§ Hospital Centers
§ Police Departments
§ Short Message Service Centers
§ Social Networks

 Wireless Sensor Networks for Flood Monitoring in Brazil 
 

Proceedings of the 10th International ISCRAM Conference – Baden-Baden, Germany, May 2013 
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and L. Yang, eds. 

 
 4 

 

 

Figure 1 - Prototype Interface. 

 

The objective of this study concerned mapping out the river levels in the town of São Carlos with the aim of 
determining the existence of flooding in critical regions. Among the challenges encountered, both in hardware 
and software development, the greatest challenge came from the wireless sensor network. Brazil has the 
characteristic of rivers of great length, thus hampering the use of some sensors. Initially, it was developed a 
prototype using Sunspot motes, however the prototype did not succeed to enable communication between a 
node (a mote located on the banks of the river) and base station, making the project unviable due to the 
characteristics of the Brazilian rivers.  

Another disadvantage found in the use of Sunspot motes was the high battery consumption. Thus, we proposed 
the use of a new sensor that has a greater range and yet a lower consumption battery. In order to prolong battery 
life, a solar panel was employed to replenish the backup battery that is located inside the airtight box prototype, 
being benefited by the Brazilian tropical climate conditions.  

The two sensor nodes installed in the city of São Carlos, are already collecting data regarding the water levels, 
which are being used by the developed application in an interoperable and flexible way, a characteristic that has 
been achieved by the reliance on the OGC standards.  

Performance tests were conducted to check the efficiency of the server and the feasibility of using the SOS web 
service which took into account the response time to the request. Simple requests, using the operation 
GetCapabilites from a public SOS service found at the Internet, were made. These tests sought information 
about the most recent values with regard to temperature and water levels, which were returned in an XML file. 

First of all, an observation was carried out involving the server of tests made available by terrestris GmbH & 
Co. KG (Terrestris, 2012), which disseminated data relative to the local temperature in all the towns and cities in 
Germany. It was verified that the average time for the reply to a test in a single observation was 697.75 
milliseconds. Following this test, new measurements were employed, this time using the SOS 52North server 
that we implemented locally, within our internal network. From these new tests, we obtained an average time of 
39.5 milliseconds for communication and 32.5 milliseconds for processing overhead.  

When these results are examined, it is not possible to make a direct comparison between the two services 
because we do not know the details of how the implementation was made available by terrestris GmbH & Co. 
KG. In the case of the local tests, both the 52North server and the spatial database (PostGIS) are hosted in the 
same computer/server, which greatly reduces the communications overheads. In any case, the tests conducted 
showed that the implemented server performance is acceptable and the overheads imposed by the use of XML 
schemas via web services pay off in face of the gains obtained in interoperability.  
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SosADL

(π-Calculus 
for SoS)

Architecture
Description 

Editor
(Xtext & Sirius)

Architecture 
Statistical 

Model Checker
(Plasma Lab)

Architecture 
Simulator

(DEVS)
Architecture 

Reconfigurator
(Alloy)

…
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¡ SosADE (SoS Architecture Development Environment) 
for supporting the application of  SosADL based on the 
π-Calculus for SoS for description and analysis of  SoS
Software Architectures
§ Plugins eclipse
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π-Calculus

Fusion-Calculus

πF-Calculus

CCπ-Calculus

π-Calculus for SoS
π-Calculus 
enhanced with 
Mediated 
Concurrent 
Constraints for 
SoS
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¡ π-Calculus for SoS
§ Enhances the expressiveness of  the π-Calculus with Mediated 

Concurrent Constraints for coping with SoS characteristics

▪ exogenous, intentional, constrained and mediated channel 
bindings subject to uncertainty 

§ Provides a novel π-Calculus as formal foundation for SosADL



¡ π-Calculus for SoS provides a formal foundation having the 
expressiveness to address the challenge of  describing 
architectures of  Software-intensive SoSs
§ The π-Calculus for SoS supports automated verification of  correctness 

properties of  SoS architectures 
§ The π-Calculus for SoS supports validation through executable 

specifications
▪ Including simulation to validate and discover emergent behaviors

¡ π-Calculus for SoS provided the formal foundation of  a novel 
ADL for SoS: SosADL

¡ It was applied for architecting a Flood Monitoring and 
Emergency Response SoS in the Monjolinho river crossing 
the City of  Sao Carlos

¡ Several new applications are on the way with DCNS, IBM, 
ICMC, SEGULA… for formal modeling SoS Architectures
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