
VHDL generation from Python Synchronous
Message Exchange Networks

Truls Asheim <truls@asheim.dk>
August 23, 2016

University of Copenhagen, Niels Bohr Institute



Outline

1. Introduction and motivation
2. Synchronous Message Exchange recap
3. Translating Python to VHDL
4. An example and test benches
5. Implementation
6. Sumary and future work

1



Introduction and Motivation



Motivation

Specialized hardware (FPGAs, ASICs) is more complicated to
develop thant software.

Reduced power consumption, and parallel processing

Hardware development has a high barrier of entry and
common Hardware Description Languages (HDLs) are hard to
work with.

Particularly for test code

2



What we have

A transpiler (source-to-source compiler) capable of translating
Python SME networks implemented using the PySME library to
functionally equivalent VHDL code.

Automatic test bench generation! — Makes it easy to
perpetually verify the correctness of the generated VHDL code.

Generated code can be simulated using VHDL simulators
and/or synthesizers such as GHDL and Xilinx Vivado.

Proof of concept, but shows the potential of the SME model.

3



Synchronous Message Exchange Recap

SME is a globally synchronous message passing model, with an
equivalence in CSP, mimicking signal propagation in hardware.

Single broadcasting channel type, called a bus by hardware
analogy.

Conceived after an attempt to generate Vivado C and VHDL
from PyCSP models showed that enforcing globally
synchronous message propagation in pure CSP caused an
explosion of complexity.

First presented at CPA 2014, with revised version at CPA 2015

4



It’s not High Level Synthesis (HLS)

HLS relies on auto-paralellizing sequential code.

• Efficiency of generated code can be an issue.
• Generated code difficult to understand
• Opaque translation process.
• Level of abstraction decreasing

Converting SME to VHDL is different

• SME makes it easy to program using hardware-like
synchronous data propagation

• SME models already parallel
• Structural mapping to VHDL is trivial
• Level of abstraction mostly the same
• Close correlation between input and output

5



Why Python?

Using a general purpose programming language for hardware
design means that:

• Increased accessibility for software developers.
• Nicer to work with than VHDL
• Easier testing/simulation:

• Full ecosystem available
• Existing code can be reused
• Common and established libraries still available

Python is particularly well suited for rapid prototyping due to
its high productivity nature.

6



Why not Python?

• Highly dynamic language, while hardware is inherently
static.

• Only a subset of Python can be translated to VHDL.
• Type information required in VHDL — not provided by
Python.

These are the main challenges of the translation.

7



Translating Python to VHDL



Translatable subset

Obviously, the complete Python language cannot simply be
translated to VHDL. Only a restricted subset:

• Only conditionals and variables assignments (but almost
full expressions)

• No loops (yet)
• No lists (yet). This is fairly limiting.

And some additional restrictions:

• SME process variables must be declared class-globally

8



Process Types

Two types of processes. Functions and Externals

Externals Functions

Only used for simulation Implements hardware tar-
geted processes

Any Python code Restricted (static) subset of
Python

Only structure is translated Translated completely
class Process(External):

def setup(self):
pass

def clock(self):
pass

class Process(Function):
def setup(self):
pass

def clock(self):
pass

Functions and Externals are identical when simulating
PySME — only different when translating to VHDL.

9



PySME to VHDL Overview

Mappings from PySME to VHDL

PySME VHDL

Variable VHDL variable or constant
Function parameter Generic
Bus definition VHDL ports and signals
External process File containing skeleton translation
Function process File containing complete transla-

tion
Network definition File containing top-level entity

10



Types

Python is dynamically typed, while VHDL statically typed and
require explicit type information.

Thus, we need to add type information

For variables, solved through a combination of “typing on first
assign” (e.g. self.n = 4 — n is a 32-bit signed integer) and
optional annotations.

Annotations currently mandatory for bus channels.

Not a lot of types. Only signed and unsigned integers and
booleans

11



But it not just types!

Number widths crucial for efficiency of implemented hardware
since each bit of a number corresponds to a “wire” in the
hardware implementation.

So we need to decide, not just types, but integer widths as well.

Annotations of signedness and bitwidths:
Variables self.n = 0 # type: t.u12 The

variable n is a 12-bit unsigned integer
Bus channels Bus("ValueBus", [t.i24("val")])

The channel val of the bus Value-
Bus is a 24-bit signed integer

Better solution: Augment annotations with optimal width
inference! (this is future work)

12



Constants

No constants in Python, but correct variable constness is
important in VHDL!

So we designate variables that are never assigned to as
constants in the VHDL code.

13



Names

The VHDL code we generate, should be easily recognizable and
comprehensible by SME model implementer.

Preservation of process, variable, bus channel names
important in ensuring this.

14



A Small Example



A small example (AddNNet)

Gen

AddN

Printer

The AddN network:
Three processes:
• Gen emits a parameter
value

• AddN accumulates a value,
added to value from Gen,
a constant and a
parameter value.

• Printer prints value from
AddN

15



AddNNet Source Code (1/2)

1 from sme import Network, Function,
2 External, Bus, SME,
3 Types
4 t = Types()
5
6 class Gen(Function):
7 def setup(self, ins, outs, n):
8 self.map_outs(outs, "out")
9 self.n = n # type: t.u3

10
11 def run(self):
12 self.out["val"] = self.n
13
14 class AddN(Function):
15 def setup(self, ins, outs, n):
16 self.map_ins(ins, "num")

17 self.map_outs(outs, "res")
18 self.n = n
19 self.c = 4 # type: t.u3
20 self.accum = 0 # type: t.u10
21
22 def run(self):
23 self.accum += self.n + self.c +
24 self.num["val"]
25 self.res["val"] = self.accum
26
27 class Printer(External):
28 def setup(self, ins, outs):
29 self.map_ins(ins, "res")
30
31 def run(self):
32 print(self.res["val"])

16



AddNNet Source Code (2/2)

33 class AddNNet(Network):
34 def wire(self):
35 bus1 = Bus("ValueBus",
36 [t.u2("val")])
37 bus1["val"] = 0
38 self.tell(bus1)
39
40 bus2 = Bus("InputBus",
41 [t.u10("val")])
42 bus2["val"] = 0
43 self.tell(bus2)
44
45 gen_param = 2
46 gen = Gen("Gen", [], [bus1],
47 gen_param)
48 self.tell(gen)

49
50 addn_param = 4
51 addn = AddN("AddN", [bus1],
52 [bus2], addn_param)
53 self.tell(addn)
54
55 p = Printer("Printer", [bus2], [])
56 self.tell(p)
57
58 def main():
59 sme = SME()
60 sme.network = AddNNet("AddNet")
61 sme.network.clock(100)
62
63 if __name__ == "__main__":
64 main()

17



AddN process

-- Library includes snipped
entity AddN is
generic (n: integer);
port (res_val: out u10_t;

num_val: in u2_t;
rst: in std_logic;
clk: in std_logic
);

end AddN;
architecture RTL of AddN is
begin
process (clk, rst)
constant c: u3_t := std_logic_vector(to_unsigned(4, u3_t'length));
variable accum: u10_t := std_logic_vector(to_unsigned(0, u10_t'length));

begin
if rst = '1' then

res_val <= std_logic_vector(to_unsigned(0, u10_t'length));
accum := std_logic_vector(to_unsigned(0, u10_t'length));

elsif rising_edge(clk) then
accum := std_logic_vector(unsigned(accum) + to_unsigned(n, u10_t'length) +

unsigned(c) + unsigned(num_val));
res_val <= std_logic_vector(unsigned(accum));

end if;
end process;

end architecture;

18



Top-level entity

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 use ieee.numeric_std.all;
5
6 library sme_types;
7 use work.sme_types.all;
8
9 entity AddNNet is

10 port (AddNNet_ValueBus_val:
11 inout u2_t;
12 AddNNet_InputBus_val:
13 inout u10_t;
14 rst: in std_logic;
15 clk: in std_logic
16 );
17 end AddNNet;
18 architecture RTL of AddNNet is

19 -- signals
20 begin
21 AddN: entity work.AddN
22 generic map (n => 4)
23 port map (num_val => AddNNet_ValueBus_val,
24 res_val => AddNNet_InputBus_val,
25 rst => rst,
26 clk => clk);
27 Gen: entity work.Gen
28 generic map (n => 2)
29 port map (out_val => AddNNet_ValueBus_val,
30 rst => rst,
31 clk => clk);
32 Printer: entity work.Printer
33 port map (res_val => AddNNet_InputBus_val,
34 rst => rst,
35 clk => clk);
36 end architecture;

19



Test Benches

20



Test Benches

A test bench is used for testing and verifying hardware
descriptions.

• Test vectors generated by simulating a PySME model.
• Read by auto-generated VHDL test bench code.
• Values SME buses cycle-accurately mirrors the the values
of the VHDL signals that they are transformed into.

Manual modifications of the generated VHDL code can be
verified for correctness against the original Python
implementation.

21



Trace CSV file

AddNNet_InputBus_val,AddNNet_ValueBus_val
0,0
8,2
18,2
28,2
38,2
48,2
58,2
68,2
78,2
88,2
98,2
108,2
[...] 22



Test Bench Code

while not endfile(F) loop
readline(F, L);
wait until rising_edge(clock);
fieldno := 0;
read_csv_field(L, tmp);
if not are_strings_equal(tmp, "U") then
assert are_strings_equal(uint_image(AddNNet_InputBus_val), tmp)

report "Unexpected value of AddNNet_InputBus_val in cycle " &
integer'image(clockcycle) & ". Actual value was: " & uint_image(AddNNet_InputBus_val)
& " but expected " & truncate(tmp) severity Error;

end if;
fieldno := fieldno + 1;

read_csv_field(L, tmp);
if not are_strings_equal(tmp, "U") then
assert are_strings_equal(uint_image(AddNNet_ValueBus_val), tmp)

report "Unexpected value of AddNNet_ValueBus_val in cycle " &
integer'image(clockcycle) & ". Actual value was: " & uint_image(AddNNet_ValueBus_val)
& " but expected " & truncate(tmp) severity Error;

end if;
fieldno := fieldno + 1;

clockcycle := clockcycle + 1;
end loop;

23



Workflow overview

PySME

PySME file

Simulation

Translation to VHDL

Process trace

VHDL model
VHDL test bench

Simulation/
Verification

24



Running it

$ dist/build/almique/almique examples/addn.py
$ cd output
$ ls
AddN.vhdl AddNNet.vhdl AddNNet_tb.vhdl Gen.vhdl
Printer.vhdl csv_util.vhdl sme_types.vhdl
$ ghdl -a --ieee=synopsys --work=sme_types
sme_types.vhdl Gen.vhdl AddN.vhdl Printer.vhdl
csv_util.vhdl AddNNet.vhdl AddNNet_tb.vhdl

$ ghdl -e --ieee=synopsys --work=sme_types AddNNet_tb
$ python ../examples/addn.py -t trace.csv
$ ./addnnet_tb
AddNNet_tb.vhdl:91:5:@1us:(report note):
Completed after 100 clockcycles
$

25



Overall stats
63 lines of Python turns into 440 lines of VHDL

(including test benches)
So a 270% increase in code size

or 377 lines of code you didn’t have to write.

25



Implementation



The Transpiler

• Writen in Haskell
• 1883 SLOC (Including some inline VHDL)
• Python parsed using the language-python module
• VHDL generated using Text.Pretty pretty printing
combinators

• Code transformation through “classic” compiler pipeline

26



Compilation pipeline

Parsing

Analysis

Python AST

Intermediate 
Code Generation

Code 
generation

Extended SMEIL

Complete SMEIL

PySME source code file

Output directory containing the
generated VHDL files

SMEIL is the SME Intermediate Language

27



Summary

We have a translation system which

• Translates Python SME programs to VHDL
• Produces functionally equivalent VHDL code with similar
structure

• Close correlation between input and output code makes
transformations transparent

• Automatic test bench generation allows for “lifecycle”
verification of VHDL

28



Future work

So where do we go from here?

• Expanding supported Python subset (lists, loops,
functions)

• Avoid annotations in the “standard case”
• Optimal bitwidth inference
• Improved type inference

• Standard library
• Floating point
• More dynamic and “Pythonic” translations enabled by
improved abstract interpretation model

29



Thank you!
Complete transpiler source code:

https://github.com/truls/almique
PySME library source code:

https://github.com/truls/pysme
Questions?

29

https://github.com/truls/almique
https://github.com/truls/pysme

	Introduction and Motivation
	Translating Python to VHDL
	A Small Example
	Implementation

