
CTIT

Connecting Two Robot-Software
Communication Architectures: ROS and LUNA

W. Mathijs van der Werff, Jan F. Broenink
University of Twente

CTIT institute, Robotics & Mechatronics

Enschede, Netherlands

Communicating Process Architectures 2016, Copenhagen, DK

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Introduction — Motivation
• Two trends in robotics — Conflicting!
• More complex algorithms

- Computer vision, area mapping, planning
• More light weight, energy efficiency

- Mobile robots, unmanned aerial vehicles (drones)
• Possible Solution
• Offloading algorithms to base station

- Development of algorithms easier
- More resources, like computer power
- Easier upgradable

• Connection between two environments needed
- Algorithms

- Robotic Operating System – ROS
- Loop Controllers, i.e. hard-real time code

- LUNA Universal Network Architecture -- LUNA

2

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Introduction — Some Background
• Hard real time
• Controlling robots, i.e. fast mechanics

• LUNA run-time framework
• Hard real-time execution, precompiled
• Design Flow

- Graphically designed CSP processes in TERRA, and verified
- Code generated, linked to LUNA lib

• ROS – Robot Operating System
• Open source / large community
• Publisher - Subscriber pattern: nodes and messages
• Design Flow

- Design algorithms and message types
- Connect nodes via message exchange
- (re) compile

3

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Introduction — Prototype, earlier made
• Prototype ROS-LUNA bridge made
• Algorithms in ROS and hard real-time controllers in LUNA
• Problem: ros :: Publisher pub = n. advertise <template T>(”topic”, 10);

- so source-code level in ROS to be connected to precompiled library in LUNA
• Bezemer et al. at ETFA 2015

• Prototype
• Based on ShapeShifter class
• Integer LUNA → ROS
• Limited support messagetypes

- only basic datatypes

4

is that the required execution time can be calculated, which can
be used to determine the maximum possible control frequency
of the software loop-control implementation for any computing
platform.

LUNA-based software is typically developed using MDD
techniques, provided by the TERRA tool-suite, making use
of the CSP execution engine. As a result, data-flows in LUNA
applications are implemented using CSP rendez-vous channels.
These channels require both ends to be actively present in order
to communicate the data.

III. DESIGN OF THE ROS TO LUNA BRIDGE

Together ROS and LUNA fulfill all requirements to design
the software for a complex robotic system, as described
in the previous section. Therefore, integration between both
frameworks is required, which is provided by a so-called luna-
bridge ROS node. The LUNA application connects to this ROS
node and is able via this node to communicate with the ROS
network. The system overview is shown in Figure 2. The work
that is described in this paper, is emphasised in this figure. The
design choices for the luna-bridge node and the requirements
of the LUNA application are discussed in the remainder of this
section.

As mentioned earlier, communication in LUNA CSP appli-
cations is typically implemented using rendez-vous channels.
It is required for the integration between LUNA and ROS to
provide means to connect these rendez-vous channels to the
luna-bridge node. ROS does not have rendez-vous communi-
cation, so the connection between ROS and LUNA must deal
with the mismatch between regular or periodic communication
and rendez-vous communication.

The integration between both framework must be as flexi-
ble as possible. This implies the following requirements:

• Any primitive data type needs to be supported, so the
users are not limited in their designs by a (small) set
of data types.

• Complex data types should be build using these primi-
tive data types, further expanding the support different
data types.

• Conversion between LUNA rendez-vous channels and
ROS topics must be available, since both are the native
means for communication.

• Naming conversion must be provided to connect a
LUNA channel to a ROS topic field, as their names
are not the same by default.

The LUNA application is located on the embedded plat-
form, whereas the luna-bridge is located on a resource-rich
platform, as depicted in Figure 2. The resource-rich platform
has access to plentiful resources and computing power. Con-
necting these platforms requires support to communicate. Us-
ing existing networking hardware is the most straightforward
way to connect the platforms to a robotic network. Nowadays
all computing platforms have access to networking hardware,
via a regular LAN port or a WiFi adapter. The latter is
suitable for mobile robotic platforms that cannot have a cabled
connection to the robotic network. An advantage of using

raw msgs lib co
m

m
m

grluna-bridge
node

ROS core

Algorithm
node

LUNA
app

PIDco
m

m
m

gr Actuators

Sensors

Environment
Sensors

Hard Real-Timeparameter
topics

setpoint
topics

TCP/IP

Resource-rich Platform Embedded Platform Plant

Fig. 2. Architectural overview of the interconnected software platforms.

existing network hardware is that other components can make
use of this infrastructure as well. For example a video camera
can send its video stream over the same network, being able
to reach all computing platforms as well.

A. Robotic Network Design

The robotic network, depicted in Figure 2, spans multiple
computing platforms. Two of these computing platforms are
shown in the figure, connected by a TCP/IP link to depict
the physical network topology. This is the minimally required
network setup. Of course it is possible to add more platforms
to the network if desired.

The resource-rich platform contains the ROS network, to
which two nodes are connected. The algorithm node uses the
environment-sensor data to perform its complex calculations.
In practice it is common to separate complex calculations
over multiple nodes, each with their own sub-task to execute.
Besides algorithm-related nodes, the ROS network typically
contains task-planning related nodes as well, to determine
and schedule the short and long running tasks of the robotic
system, depending on the purpose of the system and its
current environment. The final results of the algorithms, in this
situation ‘setpoints’, are provided via their topics. The luna-
bridge node is subscribed to such topics in order to be able to
send the results to the embedded platform. Additionally, the
luna-bridge node can send parameter values to the algorithm
node to properly configure it, depending on the needs of the
embedded loop-controllers for example.

The embedded platform contains the hard real-time, em-
bedded loop-controllers. These controllers calculate the steer-
ing signals using the results provided by the luna-bridge node
and the sensors. Again, only one controller (application) is
depicted in the figure, but in practice multiple controllers are
typically present, each requiring one or more signals from
the luna-bridge node. The example application consists of a
simple PID controller, but any other hard real-time controller
implementation can be used, depending on the requirements
of the actuators and the complexity of the movements of the
robotic system.

B. Connection Management

As mentioned in the previous section, it is likely that mul-
tiple controllers are present on an embedded platform and/or

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Design and Implementation
• Essential Requirements
• Versatile / Reusable
• Compiled program
• SRT - HRT connection

- Asynchronous data connection

• Overview
• Communication
• LUNA
• ROS

5

6 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

duinos) to the ROS network. Runtime binding is performed through the ShapeShifter class,
or using rospy, a Python implementation of ROS. The embedded side needs to be informed
about the setup of ROS (regarding the message structure) before compilation. This is achieved
by including a special set of libraries, which are generated by a script. This increases the
overhead, which is a problem in systems with sparse resources [14]. Furthermore, each time
a message definition is added or modified, the conversion needs to be redone, which causes
the program depending on them to be recompiled. Since LUNA is a provided to the end user
a a pre-compiled library, it is therefore not possible to use ROSSerial.

2. Design of the ROS - LUNA bridge

The new version of the ROS-LUNA bridge needs to connect the CSP environment of LUNA
to the topics of ROS: allowing CSP-channel constructs (Writer/Readers) to send/receive data
from an external source located in a ROS topic. Connecting CSP channels to fields in Sub-
scribers and Publishers in ROS should be reusable, to allow easy integration into the TERRA
tool suite. Furthermore, support for flexible (re)configuration and versatile data types should
be present, allowing reuse of the bridge in future projects.

ROS
Complex algorithms

LU
N

A
br

id
ge

LUNA application
Loop controllers/ CSPRO

S-
C

ha
nn

el
M

an
ag

er Actuators

Sensors

TCP/IP

ROS network
(User configured)

ROS-LUNA bridge LUNA application
(User configured)

Robotic setup

Base station Embedded system

Figure 4. Global overview of the ROS-LUNA bridge.

As depicted in Figure 4, the design of the ROS-LUNA bridge is spread out over
three subsystems: an implementation in ROS (LUNA bridge), an implementation in LUNA
(ROSChannelManager), and a link over a TCP/IP network specified by a communication
protocol.

2.1. Connection management and Communication protocol

The communication protocol specifies how data is sent between ROS and LUNA. A straight
forward approach is to make a TCP link between the two sides of the system for each variable,
and send each new value in a separate packet as soon as it becomes available.

This would lead to too large overhead however: TCP connections were designed to be
reused, and the maximum size of a TCP packet (theoretically: 216 bytes, but is limited by the
Maximum Transfer Unit [15]. The MTU for Fast Ethernet is 1500 bytes, and upto 9000 bytes
in Gigabit Ethernet) allows combining of variable values in one packet. The communication
protocol defines how multiple variables are serialized into one packet, and how their values
are retrieved during deserialization. Although widespread serialization methods, like JSON4

could be used, it would also increase overhead and dependency on third party implementa-

4http://www.json.org/

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

ROS-LUNA Bridge Architecture
• Overview
• Communication
• LUNA
• ROS

6

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-
ing Publisher

RO
S

ne
tw

or
k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

RO
SC

ha
nn

el
M

an
ag

er

LU
N

A
ap

pl
ic

at
io

n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

RO
SC

ha
nn

el
s

(C
SP

)

(W
ire

le
ss

)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Implementation — Communication
• Communication Protocol
• Serialise, Deserialise

- to fill up TCP/IP packets
- use bandwidth effectively

- tailored solution
- reduce overhead

• Extendible
• ROS channels

- >>

7

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-
ing Publisher

RO
S

ne
tw

or
k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

RO
SC

ha
nn

el
M

an
ag

er

LU
N

A
ap

pl
ic

at
io

n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

RO
SC

ha
nn

el
s

(C
SP

)

(W
ire

le
ss

)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-
ing Publisher

RO
S

ne
tw

or
k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

RO
SC

ha
nn

el
M

an
ag

er

LU
N

A
ap

pl
ic

at
io

n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

RO
SC

ha
nn

el
s

(C
SP

)

(W
ire

le
ss

)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Implementation — specific channels in LUNA
• LUNA — ROS channels
• Allows modeling in TERRA
• Channel modifications
• non-blocking write to ROS

- from HRT to SRT
- 2 data buffers

• blocking read from ROS
- synchronisation…

• Non-blocking read
• using ALT: ROSread [] SKIP

8

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-
ing Publisher

RO
S

ne
tw

or
k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

RO
SC

ha
nn

el
M

an
ag

er

LU
N

A
ap

pl
ic

at
io

n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

RO
SC

ha
nn

el
s

(C
SP

)

(W
ire

le
ss

)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 7

tions. A tailored solution is preferred, which reduces overhead by specifically supporting just
the communication type of this bridge.

Variables are serialized by placing the type, name length and data length represented by
one byte each in a buffer. In a secondary buffer the name of the variable is added, followed by
the variable value represented as byte array. Once the packet needs to be sent, both buffers are
copied into the payload of an actual TCP packet. The payload is preceded with an additional
header with a predefined layout. This header identifies the type of packet, and the sizes of
both buffers. These sizes are used in deserialization: allowing to extract the two buffers from
a stream of bytes. With the 3 bytes per variable in the first buffer, the name and data are
extracted from the second buffer. Using the name, earlier registered callbacks are called,
which will copy the byte array into an actual variable using the size of the received data.

2.2. LUNA-side

Sending to, and receiving data from ROS needs to be usable with CSP constructs offered in
LUNA: this allows better integration in TERRA, allowing the end user to use the graphical
design environment to design his application. Furthermore, the way how data is sent and
received is important: writing to ROS might be performed from a hard real-time task in
LUNA, and needs to be handled quickly and without locking. Reading data from ROS should
block however: it is of no use to read data when it is not yet available. Integration is possible
by using custom code blocks, managing the sending and receiving of data, inside the model
in TERRA. Although this would have reduced the changed needed in LUNA and TERRA, it
would have been less user friendly, since the user has to copy these code blocks and re-derive
the accompanying CSP structure when new models are designed.

Since sending and receiving data has similarities with the CSP writer and reader, a cus-
tom channel type (a ROSChannel) was derived to support communication to ROS. This chan-
nel is implemented as a templated class, making it possible to define the variable type of the
channel based on its connected reader or writer. Writing to the network is an unpredictable
task, since the hardware may not be available as it is a shared resource. To make write oper-
ations non blocking, two buffers are added. One buffer is marked to be accessible for write
operations. After an user specified period, the filled buffer will be made available to a soft
real time process responsible for actually sending the data over the network. In the mean
time, the second buffer is marked to be accessible for the write operations.

ROSChannelManager LUNA application

Decode
structure

Decode
next field

Find
callback

Call callback
Wait new

TCP packet

Read buffer

Block
context

Callback

Copy data Activate next
component

Received
TCP packet

ROSChannel’s
reader activation

Dataleft

Dataleft

Buffer empty

Buffer empty

Figure 5. Schematic representation of receiving network data combined with CSP read operations.

A block diagram of the blocking read is depicted in Figure 5. The read operations consist
either of directly copying data when it is available, or by placing a callback and blocking the

8 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

context of the reader. When data is received, the callback is called, unblocking the reader and
allowing the data to be copied. Finally, the next (CSP) component could be activated. Since

Figure 6. Example of unguarded alternative structure used to perform a non-blocking read on the ROSChannel.

in some cases it is desirable to do a non-blocking read (e.g. reuse an old value when no new
value is present), it is possible to compose the reader in an unguarded alternative structure,
as depicted in Figure 6. This allows the sequential process to continue when the reader is
blocked, by executing an empty model instead. Since multiple ROSchannels could be present
in a LUNA application, a single component (called ROSChannelManager, implemented as
singleton object) is added to implement the buffers, register and call the callbacks, handle the
actual TCP connection and use the defined communication protocol.

2.3. ROS-side

Sending to, and receiving data from a LUNA application needs to be combined with the com-
munication structure in ROS: during runtime, publishers and subscribers need to be made.
The message type of these publishers and subscribers need to be configured from the LUNA
application: the same bridge could be used in multiple projects with different LUNA appli-
cations. A method is needed to bind publishers and subscribers to a messagetype during run-
time: normally this is done during compile time, by instantiating the publisher or subscriber
object with the message type’s class.

One way to perform this runtime binding, is to use a code generation tool to make a
large switch structure, which combines the name of a messagetype, to the instantiation of
an actual object. The tool also need to generate get and set functions, since a message could
exist of multiple fields. Using this type of code generation results in a large code file and
program, since all possible messages are coded inside it. Also, using code generation adds
another step in the design process: each time message definitions change in ROS, the code
generation need to be rerun and the compile process of ROS restarted. Another way is to
use an interpreted language, like Python. Since the implementation is then also interpreted,
it is able to load new classes during runtime and generate objects based on the name of the
message type. This reduces performance however: interpreted languages are generically 4 -
5 times slower compared to compiled programs. The reduced performance is not ideal in a
forward path.

The ShapeShifter class in ROS provides a method to publish and subscribe data without
a predefined messagetype. It requires however a custom implementation of the serialization
and deserialization of the message’s variables, and the checksums and message definition
need to be set by the user: these are normally specified in the generated header files of the
message type. Two classes were derived, performing these actions during runtime. For the
publisher, the RuntimeBindingPublisher was derived; for the subscriber the TopicListener
was extended. The RuntimeBindingPublisher (RBP) calls a ROSservice in Python when a
new message type is desired during runtime: this service is able to load the definition and
checksum of this type, and replies it to the RBP. The RBP stores the definition, and the

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Implementation — ROS topic listeners…
• ROS — Topic Listeners
• topic = data to transport
• run-time topic binding

- specific Publisher
• specific configuration

- through the network

• Implementation
• ShapeShifter class

- publish & subscribe
- without specifying data type

• Needs specific
- serialiser, deserialiser
- RuntimeBindingPublisher
- extended TopicListener

9

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-
ing Publisher

RO
S

ne
tw

or
k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

RO
SC

ha
nn

el
M

an
ag

er

LU
N

A
ap

pl
ic

at
io

n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

RO
SC

ha
nn

el
s

(C
SP

)

(W
ire

le
ss

)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

checksum. Furthermore, the message definition is analysed, and added field for field into
a map. Using recursion, nested message types are also added. Since this only needs to be
done when new message types are used, the latency introduced by using Python will only
occur during runtime. When a new publisher is made, the retrieved data is used to configure
a shapeshifter into the right format. The mapped structure of the message is used to store
received data from LUNA, and allow when all data for one message is received to serialize
the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consist
of raw data (an array of bytes), containing all the data of the message. Furthermore, the
definition of the message is also received. The TopicListener implements recursive methods
to analyse this message structure, allowing the correct bytes to be selected from the raw data.
The methods determine whether a field in the structure is of basic data type (e.g. int, bool,
string etc.). When it is not a basic data type, a nested message is found, and recursion is called
on the definition of this nested message. This is repeated, until only basic types are found, or
the desired field is retrieved. From all the preceding fields, the data type is used to determine
the location in the raw message. This allows to select the correct bytes, which are then copied
and made available to be sent to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-
ing Publisher

RO
S

ne
tw

or
k

Runtime Binding
Helper Service

LUNA bridge

Topic Listener

RO
SC

ha
nn

el
M

an
ag

er

LU
N

A
ap

pl
ic

at
io

n

Publisher
...

Publisher

Subscriber
...

Subscriber
...

...

RO
SC

ha
nn

el
s

(C
SP

)

(W
ire

le
ss

)
ne

tw
or

k
co

nn
ec

tio
n

ROS network
(User configured)

ROS-LUNA bridge
ROS-side

Network ROS-LUNA bridge
LUNA-side

LUNA application
(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this
design. The ROS side adds a series of needed publishers and subscribers during runtime, al-
lowing communication to the ROS network. A Runtime Binding Helper Service is connected
as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The
LUNA side of the bridge has a series of incomming and outgoing ports, represented by white
and black squares in the ROSChannelManager. These ports connect to the LUNA application
through ROSChannels.

Since the bridge is fully configured during runtime by the LUNA application, hard coded
configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for
different LUNA applications. The implementation allows the bridge to be almost invisible
to the user: the LUNA application is configured to connect to specific ROS nodes, and the
bridge handles this. This results in a clear connection between the algorithms the user uses in
ROS, and the CSP structures used in the LUNA application.

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Testing
• Initial Tests
• on bandwidth
• packet loss

• Verification, Performance
• RBP - RuntimeBindingPublisher
• Performance

- Publishers
- Subscribers

• Demonstration
• timing
• robotic system

10

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Initial Tests
• Packet loss
• to mimic WiFi

• Additional traffic
• network sharing

11

APPENDIX A. APPENDIX 37

Figure A.10: Image of the JIWY setup (left) connected to a RaMstix board(right).

collides with the packet of another sender. To simulate the behaviour of (wireless) networks,
and analyse the effects on the response, two tests where done.

PC PC104 PC Switch PC104

PC

Data Data

Additional traffic

Figure A.11: Simulating the influence of packetloss (left side) and additional traffic (right side) on the
response time of the initial version of the ROS-LUNA bridge.

Simulating packetloss

The first test is used to analyse the influence of packetloss, emulating a wireless network. The
test setup is depicted in the left side of Figure A.11: a connection is made between a PC (running
ROS and a luna_bridge 4 node) and a PC104 (running a LUNA application) through a 100Mbit/s
ethernet network. Data is send from the PC to the PC104. Packetloss is simulated by issuing a
command on the PC, which ill-configures the networking card, instructing it to drop packets
with a certain change. This change is configured in a range from 0% to 50 %. Command used
on the PC to configure the change of packetloss:⌥ ⌅

$: sudo tc qdisc change dev eth0 root netem l o s s 1%⌃ ⇧
The PC104 runs a LUNA application, which connects to the PC using the ROS-LUNA bridge.
It sends a value to ROS, and waits for a reply. The time interval between sending and receiv-
ing is measured: this gives the response time of the complete system. One part of this response
time is the delay introduced by the network, another part of the measured delay is the response
time of the ROS-LUNA bridge’s software. Keeping the software the same throughout the test,
and only sweeping the change of packetloss, allows to see the influence of just the packetloss

4The version of Bezemer and Broenink (2015) with slight modification was used

Robotics and Mechatronics W.M. van der Werff

38 Connecting ROS to the LUNA embedded real-time framework

in the network on the total response-time. Refer to the left side of Figure A.11. Sending data is
repeated 200 times for each configuration of packetloss. The first response time is discarded:
in this case, the ROS-LUNA configuration also needs to initialize objects and the connections,
increasing the response time. The average of the response time is printed by the PC104: nor-
mally during development, the SSH connection provided by the QNX momentics toolsuite is
used for visualization of the terminal of the PC104. Since this SSH connection also connects
through the ethernet, it is also subjected to the ill configuration of the network card. Therefore,
a separate monitor connected to the PC104 is used for visualization.

Simulating additional traffic in network

The second test is used to analyse the influence of additional traffic over the network: the test
setup is depicted in Figure A.11. The setup simulates the network being shared with another
datastream, for example streaming video. The same basic setup is used as in the first test: the
PC is still connected to a PC104. On the PC a program generating (invalid) TCP packets (called
mausezahn 5) at a configurable rate is running in parallel with the LUNA-bridge. Handling
incorrect datapackets occupies hardware resources: therefore, the additional traffic generated
is sent to a second PC. To let the first PC connect to both the PC104 and second PC, a switch is
used. Mausezahn is capable to send packets at a certain interval: to measure the actual used
bandwidth on the network, bmon is used after the Mausezahn application is started with the
desired configuration. Next, the same application as in the first test is used to measure the
response time.

The command used to start mausezahn⌥ ⌅
$: sudo mz eth0 °B 192.168.1.30 °c 0 °t tcp "dp=1°1023, f l a g s =syn" °P "PAYLOAD" °d

INTERVAL⌃ ⇧
Where PAYLOAD contains a sequence of characters and INTERVAL the value at which rate the
packets should be send. This will result, together with some overhead in Mausezahn, in the
measured additional traffic.

Test results

0 10 20 30 40 50
0

200

400

600

Loss(%)

R
es

p
on

se
ti

m
e

(m
s)

Average

0 5 10
0

5

10

15

20

Additional traffic (MiB)

R
es

p
on

se
ti

m
e

(m
s)

Average

Figure A.12: Response time of the ROS-LUNA bridge versus configured change of packet loss (left graph)
and additional traffic (right graph).

5http://man7.org/linux/man-pages/man8/mausezahn.8.html

W.M. van der Werff University of Twente

38 Connecting ROS to the LUNA embedded real-time framework

in the network on the total response-time. Refer to the left side of Figure A.11. Sending data is
repeated 200 times for each configuration of packetloss. The first response time is discarded:
in this case, the ROS-LUNA configuration also needs to initialize objects and the connections,
increasing the response time. The average of the response time is printed by the PC104: nor-
mally during development, the SSH connection provided by the QNX momentics toolsuite is
used for visualization of the terminal of the PC104. Since this SSH connection also connects
through the ethernet, it is also subjected to the ill configuration of the network card. Therefore,
a separate monitor connected to the PC104 is used for visualization.

Simulating additional traffic in network

The second test is used to analyse the influence of additional traffic over the network: the test
setup is depicted in Figure A.11. The setup simulates the network being shared with another
datastream, for example streaming video. The same basic setup is used as in the first test: the
PC is still connected to a PC104. On the PC a program generating (invalid) TCP packets (called
mausezahn 5) at a configurable rate is running in parallel with the LUNA-bridge. Handling
incorrect datapackets occupies hardware resources: therefore, the additional traffic generated
is sent to a second PC. To let the first PC connect to both the PC104 and second PC, a switch is
used. Mausezahn is capable to send packets at a certain interval: to measure the actual used
bandwidth on the network, bmon is used after the Mausezahn application is started with the
desired configuration. Next, the same application as in the first test is used to measure the
response time.

The command used to start mausezahn⌥ ⌅
$: sudo mz eth0 °B 192.168.1.30 °c 0 °t tcp "dp=1°1023, f l a g s =syn" °P "PAYLOAD" °d

INTERVAL⌃ ⇧
Where PAYLOAD contains a sequence of characters and INTERVAL the value at which rate the
packets should be send. This will result, together with some overhead in Mausezahn, in the
measured additional traffic.

Test results

0 10 20 30 40 50
0

200

400

600

Loss(%)

R
es

p
on

se
ti

m
e

(m
s)

Average

0 5 10
0

5

10

15

20

Additional traffic (MiB)

R
es

p
on

se
ti

m
e

(m
s)

Average

Figure A.12: Response time of the ROS-LUNA bridge versus configured change of packet loss (left graph)
and additional traffic (right graph).

5http://man7.org/linux/man-pages/man8/mausezahn.8.html

W.M. van der Werff University of Twente

(MiB/s)

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Verification tests
• Verify RuntimeBindingPublisher
• correct serializing / deserializing

• auto-generated ROS structure of test
• time stamp test:

12

12 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Figure 9. ROS graph of test setup measuring the delays the different types of subscribers impose.

0

1

2

3

4

5

6

7

8

6.
89

5.
82

3.
19

3.
26

Ti
m

e(
m

s)

Initialization

0

100

200

300

400

500

26
7.
88

34
8.
39

30
0.
96

30
5.
03

Ti
m

e(
us

)

Message delay

Normal
C++

RB
C++

Normal
Python

RB
Python

Figure 10. Performance comparison between different Subscriber types.

the description fields to find the correct data that it is listening to. The Python implementa-
tions are faster compared to the runtime binding implementation, probably due to optimiza-
tions. It is expected, when actual processing is done on the received data, the total execution
time of a Python node will be higher, compared to a node in C++.

No large difference is present between both implementations in Python: the runtime
binding is rather basic, adding almost no additional delays in the interpreter. Furthermore,
Python is already an interpreted environment, allowing easy runtime binding add just a small
increase in overhead.

3.2. Test 2: complete system

To test a setup closely related to a real world application, a test setup demonstrating vision
in the loop was devised. Refer to Figure 11. It consists of a camera combined with image
processing, which will provide feedback about the state of the plant to the controller. Data
from the controller is sent to a visualization node (e.g. using rqt plot) to inform the user about
the state of the system. Using the physical location of a node and whether it is real-time or
not, a mapping is performed, dividing the system over ROS and the embedded system.

The same notebook mentioned in test 1 is used as resource-rich platform. As embed-
ded system, a board (called RaMstix) containing a Gumstix Overo Fire5 module with Linux

5https://www.gumstix.com/

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Performance Tests - Publishers
• Five different implementations of ROS publishers
• generic ROS Publisher in C++
• generic ROS Publisher in Python
• RuntimeBindingPublisher with prior msg info
• RuntimeBindingPublisher without prior msg info
• simplified RuntimeBindingPublisher in Python

• Tests
• average of 100 tests
• per test 50 x init and publishing of 100 samples
• 10 tests in 1 run

- 100 tests in 1 run makes ROS core crash
• On intel i5@2.53 GHz, 4 GB RAM, Ubuntu 15.10, ROS Jade

13

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Publishers
• Initialisation
• RBPc++ slowest

- due to external Python helper node
- RBPc++2:

- not needed as used from previous call
• Python slower than C++

- RBPPython slower than Python
- additional fu calls needed

• Runtime
• RBPs are comparable

- only initialisation is different
• RBP slower than C++

- due to additional var name look ups
• Python slowest

14

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 11

0

1

2

3

4

1.
58

3.
21

1.
61

2.
45

2.
25

Ti
m

e(
m

s)

Initialization

0

30

60

90

17
.5
1 29

.9
1

30
.4
7

81
.8
2

83
.6
6

Ti
m

e(
us

)

Publish

Generic
C++

RBP
C++

RBP
C++,2

RBP
Python

Generic
Python

Figure 8. Performance comparison between different Publisher types.

be determined that the Publish function of RBP is between 70-74% slower compared to its
implementation in C++, but is roughly 64% faster compared to both Python implementations.

As third test four different implementations of Subscribers are tested: normal Subscribers
implemented in C++ and Python, the implementation using the TopicListener and a sim-
ple implementation of a runtime binding subscriber in Python. All subscribers use the same
message type, a custom type containing a header and two float64 fields. The test initial-
izes each type of Subscriber 100 times, and measures the average time needed for initial-
ization. A secondary test is started, which publishes 6,000 messages at a rate of 200 Hz,
containing the current time stamp in one of the float64 fields (refer to Figure 9). Publishing
is done distributed over 4 topics (/sub test 1 to /sub test 4), these topics are connected to
two nodes, implemented in either C++ (/sub test cpp) or Python (/sub test python), where
both a runtime binding and a normal subscriber are present and connect to one of these
topics. When a message is received, the timestamp is extracted, and compared to the cur-
rent timestamp. This difference is published on an additional topic (/res cpp N, /res cpp RB,
/res pyt N, /res pyt RB). The messages on these topics are received by an analysis node
(/analysis), where they are stored in a CSV file for further analysis. The measured delays
consist of the delay imposed by the publisher present in the time stamp generation node
(/timestamp generation), the delay in the network, and the delay the subscriber types has.
The measured delay consist, besides the delay introduced by the type of subscriber, also of
delays imposed by the network and the publishers. Since the network and publisher will have
the same delay on average over all the tests, the difference in measured delays could be used
to compare the performance of the subscribers. The results of both tests are presented in Fig-
ure 10. In initialization both Python implementations seem fastest, followed by the runtime
binding implementation in C++. The normal C++ subscriber initializes slowest. It is expected
that RBC ++ and both implementations in Python perform some of the tasks performed dur-
ing initialization of the normal C++ subscriber during runtime: for example, registering the
callback of the subscriber is based on a template in the normal C++ implementation, while
the other implementations have a generic callback, and have to perform an additional check
whether the messagetype is correct.

This results in faster initialization, but reduced performance in during runtime. Further-
more, Python seems to be able to use optimizations, since the test is repeated multiple times,
definitions are already loaded in the interpreter.

The runtime binding C++ implementation is slowest during runtime: it has to iterate over

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 11

0

1

2

3

4

1.
58

3.
21

1.
61

2.
45

2.
25

Ti
m

e(
m

s)

Initialization

0

30

60

90

17
.5
1 29

.9
1

30
.4
7

81
.8
2

83
.6
6

Ti
m

e(
us

)

Publish

Generic
C++

RBP
C++

RBP
C++,2

RBP
Python

Generic
Python

Figure 8. Performance comparison between different Publisher types.

be determined that the Publish function of RBP is between 70-74% slower compared to its
implementation in C++, but is roughly 64% faster compared to both Python implementations.

As third test four different implementations of Subscribers are tested: normal Subscribers
implemented in C++ and Python, the implementation using the TopicListener and a sim-
ple implementation of a runtime binding subscriber in Python. All subscribers use the same
message type, a custom type containing a header and two float64 fields. The test initial-
izes each type of Subscriber 100 times, and measures the average time needed for initial-
ization. A secondary test is started, which publishes 6,000 messages at a rate of 200 Hz,
containing the current time stamp in one of the float64 fields (refer to Figure 9). Publishing
is done distributed over 4 topics (/sub test 1 to /sub test 4), these topics are connected to
two nodes, implemented in either C++ (/sub test cpp) or Python (/sub test python), where
both a runtime binding and a normal subscriber are present and connect to one of these
topics. When a message is received, the timestamp is extracted, and compared to the cur-
rent timestamp. This difference is published on an additional topic (/res cpp N, /res cpp RB,
/res pyt N, /res pyt RB). The messages on these topics are received by an analysis node
(/analysis), where they are stored in a CSV file for further analysis. The measured delays
consist of the delay imposed by the publisher present in the time stamp generation node
(/timestamp generation), the delay in the network, and the delay the subscriber types has.
The measured delay consist, besides the delay introduced by the type of subscriber, also of
delays imposed by the network and the publishers. Since the network and publisher will have
the same delay on average over all the tests, the difference in measured delays could be used
to compare the performance of the subscribers. The results of both tests are presented in Fig-
ure 10. In initialization both Python implementations seem fastest, followed by the runtime
binding implementation in C++. The normal C++ subscriber initializes slowest. It is expected
that RBC ++ and both implementations in Python perform some of the tasks performed dur-
ing initialization of the normal C++ subscriber during runtime: for example, registering the
callback of the subscriber is based on a template in the normal C++ implementation, while
the other implementations have a generic callback, and have to perform an additional check
whether the messagetype is correct.

This results in faster initialization, but reduced performance in during runtime. Further-
more, Python seems to be able to use optimizations, since the test is repeated multiple times,
definitions are already loaded in the interpreter.

The runtime binding C++ implementation is slowest during runtime: it has to iterate over

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Performance Tests - Subscribers

12 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Figure 9. ROS graph of test setup measuring the delays the different types of subscribers impose.

0

1

2

3

4

5

6

7

8

6.
89

5.
82

3.
19

3.
26

Ti
m

e(
m

s)

Initialization

0

100

200

300

400

500

26
7.
88

34
8.
39

30
0.
96

30
5.
03

Ti
m

e(
us

)
Message delay

Normal
C++

RB
C++

Normal
Python

RB
Python

Figure 10. Performance comparison between different Subscriber types.

the description fields to find the correct data that it is listening to. The Python implementa-
tions are faster compared to the runtime binding implementation, probably due to optimiza-
tions. It is expected, when actual processing is done on the received data, the total execution
time of a Python node will be higher, compared to a node in C++.

No large difference is present between both implementations in Python: the runtime
binding is rather basic, adding almost no additional delays in the interpreter. Furthermore,
Python is already an interpreted environment, allowing easy runtime binding add just a small
increase in overhead.

3.2. Test 2: complete system

To test a setup closely related to a real world application, a test setup demonstrating vision
in the loop was devised. Refer to Figure 11. It consists of a camera combined with image
processing, which will provide feedback about the state of the plant to the controller. Data
from the controller is sent to a visualization node (e.g. using rqt plot) to inform the user about
the state of the system. Using the physical location of a node and whether it is real-time or
not, a mapping is performed, dividing the system over ROS and the embedded system.

The same notebook mentioned in test 1 is used as resource-rich platform. As embed-
ded system, a board (called RaMstix) containing a Gumstix Overo Fire5 module with Linux

5https://www.gumstix.com/

• Four different implementations of ROS subscribers
• normal subscribers in C++ / Python
• extended TopicListener in C++ / simple runtime binding in Python

• Tests
• custom type: header and 2 float64
• average of 100 test, for initialisation
• 6,000 msg @ 200 Hz:

- time stamp send as float64
- published over 4 topics, connected to 2 nodes

- 1 node C++, 1 node Python
- both have runtime binding and normal node code

- received data
- elapsed time is measured and put in 2nd float64

- analysed
- in analysis node

- delay: publisher + network + subscriber
- network delay can be subtracted as common factor

15

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Subscribers
• Initialisation
• C++ slowest

- due to tasks others do at runtime
- like registering the callback

• Python seems to optimize
- due to repeating of runs

• Runtime
• C++ slowest

- has to iterate over description fields
• Python faster than RBPc++

- due to optimizations

• Overall conclusion
• C++ faster than Python
• RBPc++ is in between

16

12 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Figure 9. ROS graph of test setup measuring the delays the different types of subscribers impose.

0

1

2

3

4

5

6

7

8

6.
89

5.
82

3.
19

3.
26

Ti
m

e(
m

s)

Initialization

0

100

200

300

400

500

26
7.
88

34
8.
39

30
0.
96

30
5.
03

Ti
m

e(
us

)

Message delay

Normal
C++

RB
C++

Normal
Python

RB
Python

Figure 10. Performance comparison between different Subscriber types.

the description fields to find the correct data that it is listening to. The Python implementa-
tions are faster compared to the runtime binding implementation, probably due to optimiza-
tions. It is expected, when actual processing is done on the received data, the total execution
time of a Python node will be higher, compared to a node in C++.

No large difference is present between both implementations in Python: the runtime
binding is rather basic, adding almost no additional delays in the interpreter. Furthermore,
Python is already an interpreted environment, allowing easy runtime binding add just a small
increase in overhead.

3.2. Test 2: complete system

To test a setup closely related to a real world application, a test setup demonstrating vision
in the loop was devised. Refer to Figure 11. It consists of a camera combined with image
processing, which will provide feedback about the state of the plant to the controller. Data
from the controller is sent to a visualization node (e.g. using rqt plot) to inform the user about
the state of the system. Using the physical location of a node and whether it is real-time or
not, a mapping is performed, dividing the system over ROS and the embedded system.

The same notebook mentioned in test 1 is used as resource-rich platform. As embed-
ded system, a board (called RaMstix) containing a Gumstix Overo Fire5 module with Linux

5https://www.gumstix.com/

12 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Figure 9. ROS graph of test setup measuring the delays the different types of subscribers impose.

0

1

2

3

4

5

6

7

8

6.
89

5.
82

3.
19

3.
26

Ti
m

e(
m

s)

Initialization

0

100

200

300

400

500

26
7.
88

34
8.
39

30
0.
96

30
5.
03

Ti
m

e(
us

)

Message delay

Normal
C++

RB
C++

Normal
Python

RB
Python

Figure 10. Performance comparison between different Subscriber types.

the description fields to find the correct data that it is listening to. The Python implementa-
tions are faster compared to the runtime binding implementation, probably due to optimiza-
tions. It is expected, when actual processing is done on the received data, the total execution
time of a Python node will be higher, compared to a node in C++.

No large difference is present between both implementations in Python: the runtime
binding is rather basic, adding almost no additional delays in the interpreter. Furthermore,
Python is already an interpreted environment, allowing easy runtime binding add just a small
increase in overhead.

3.2. Test 2: complete system

To test a setup closely related to a real world application, a test setup demonstrating vision
in the loop was devised. Refer to Figure 11. It consists of a camera combined with image
processing, which will provide feedback about the state of the plant to the controller. Data
from the controller is sent to a visualization node (e.g. using rqt plot) to inform the user about
the state of the system. Using the physical location of a node and whether it is real-time or
not, a mapping is performed, dividing the system over ROS and the embedded system.

The same notebook mentioned in test 1 is used as resource-rich platform. As embed-
ded system, a board (called RaMstix) containing a Gumstix Overo Fire5 module with Linux

5https://www.gumstix.com/

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Demonstration Tests
• Robotic setup: vison in the loop
• our favorite JIWY test setup

- pan-tilt gimball, DC-motor driven
• RaMstix embedded board:

- Gumstix over fire, Linux 3.2.21, Xenomai HRT patch 2.6.3
- FPGA for PWM pulse generation and encoder pulse counting

• Notebook for ROS
• Tests

- initialisation
- timing
- real action

17

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 13

PC / ROS Network Embedded system

Image
processing

(Soft real-time)

Visualization
(Soft real-time)

Controller
(Hard real-time) Plant

Camera

Visualization data

Video stream

Setpoint
data Actuation

Sensor data

Hard real-time
Soft real-time

Figure 11. Block diagram of a vision-in-the-loop system distributed over two systems.

3.2.21 and Xenomai patch 2.6.3 is used. A 100 MBit/s dedicated network is used in most
tests, where the notebook is configured both as DHCP server and NTP6 server, allowing
time-synchronization between the two platforms.

3.2.1. Initialization

The first part of the test is to determine whether the initialization is correct. ROS nodes are
started that will perform visualization (ROS monitor) and a node containing the image pro-
cessing (ROS imageprocessing). The ROS monitor node receives a message type containing
a Header and 3 float values. The ROS imageprocessing publishes a message type containing
a Header and two float values containing setpoints for the plant. Alongside these two nodes,
the luna bridge node is running accompanied by the rlb helper node, containing the helper
node to perform runtime binding. This setup results in the (simplified) graph depicted in left
in Figure 12. The LUNA application on the embedded system is configured to send initial-
ization instructions to let the luna bridge node connect to the two setpoint fields inside the
ROS imageprocessing node, and to make publishers for the ROS monitor node. When these
commands are received, it results in the structure depicted right in Figure 12: the nodes are
now connected.

Figure 12. ROS graphs showing node overview before (left) and after (right) the LUNA application connects.

3.2.2. Timing analysis

A second test is performed to analyse the timeliness in the different parts of the sys-
tem. To perform this, the LUNA application is configured to receive values from the
ROS imageprocessing, store these values and reply them in soft real-time. Parallel with this
task, a hard real-time task with higher frequency is performed, emulating the controller. Since

6http://www.ntp.org/

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Initialisation JIWY setup
• Initialisation
• of ROS nodes and topics
• via the ROS-LUNA bridge
• ROS topic / message graphs

- before, after LUNA app connects
• Tests
• as expected

18

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Timing tests JIWY setup

19

14 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Figure 13. Overview of the total system, drawn in TERRA. Implementation of the CSP-based application and
distribution over systems are added for clarity.

Inside this process, a timestamp is recorded, allowing to measure the frequency of the pro-
cess, and the observation of the deviation in start time (jitter). To make synchronization of
measurement data over multiple processes easier, also a unique value is written to the output
buffer using the HRT variable out variable. The period of this process is controlled through
the first writer, which is connected to a TimerChannel. This TimerChannel is activated after
its specified period, letting the writer at the start of the process wait until the period indicates
the process should start.

The second process (SRT SENDBUFFER) is the process which controls when data
should be written to ROS. It would be possible to make this write conditional (where a con-
dition checks whether a write is needed, e.g. when there are a certain amount of variables
present in the buffer), but for simplicity a TimedChannel is used again.

The third process (with lowest priority, SRT ROS READWRITE) asynchronously re-
ceives values from ROS using two readers. These readers are connected to ROS using the
ROSChannels, and receive the X and Y position from the image processing node. The read-
ers are placed in a Parallel composition, and the received values are stored in intermediate
variables. When both readers are finished, a code block copies these intermediate variables to
the actual variables. This assures synchronized update of variables originating from the same
ROS message.

After receiving these values, the time stamp is recorded, and the same values are written
back to ROS using writers connected to the ROS monitor node. This allows the measurement
of the round-trip time.

The timestamps at the ROS side of the setup are also recorded. The time stamp when the
X and Y position are published is recorded, and the time when the ROS monitor receives a
value is monitored. Using the values and order of the data in the messages, it is possible to
determine the delays in the system. Analysing the difference in start time (�T) between two
successive executions, allows to measure the jitter (J).

Since different frequencies are being observed, the jitter of different periods needs to be
compared relative to their period:

J = |�T ��T |

Jrelative = 100% ⇤ J

�T

In Table 1 the results are depicted of these jitter measurements.

• Only ROS-LUNA bridge over the network
• two tasks concurrently
• transporting images

- video file and camera images
• hard-real time task @ higher freq: 500 Hz

- writing packages to ROS @ 62.5 Hz
• In LUNA
• priority via PRI ALT

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Timing Tests Results
• Tests
• timestamps recorded
• variation (= jitter) calculated

• Results - Jitter
• at LUNA side

- HRT Jitter: 0.265 %
- SRT Jitter : 0.373 %
- both timed via timer channel

• on PC - ROS
- SRT notify: 18.3 %
- ROS monitor: 21.7 %

• Results - delays
• Round trip 31.5 ms, large variation

- ROS -> LUNA 15.5
- inside LUNA 13.4
- back to ROS 2.6

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2 ·10°2

4 ·10°2

6 ·10°2

8 ·10°2

0.1

Time (s)

D
el

ay
(s

)

ROS send -> LUNA receive LUNA receive -> LUNA send LUNA send -> ROS receive Total RTT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.0001

0.001

0.01

0.1

1

10

100

Time (s)

R
el

at
iv

e
jit

te
r

(%
)

HRT_task SRT_send_buffer SRT_received_notify ROS_image_processing ROS_monitor

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Complete Robotic system
• Controlling Robotic Setup
• controllers @ 100 Hz

• System
• overview
• architecture in TERRA

21

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 13

PC / ROS Network Embedded system

Image
processing

(Soft real-time)

Visualization
(Soft real-time)

Controller
(Hard real-time) Plant

Camera

Visualization data

Video stream

Setpoint
data Actuation

Sensor data

Hard real-time
Soft real-time

Figure 11. Block diagram of a vision-in-the-loop system distributed over two systems.

3.2.21 and Xenomai patch 2.6.3 is used. A 100 MBit/s dedicated network is used in most
tests, where the notebook is configured both as DHCP server and NTP6 server, allowing
time-synchronization between the two platforms.

3.2.1. Initialization

The first part of the test is to determine whether the initialization is correct. ROS nodes are
started that will perform visualization (ROS monitor) and a node containing the image pro-
cessing (ROS imageprocessing). The ROS monitor node receives a message type containing
a Header and 3 float values. The ROS imageprocessing publishes a message type containing
a Header and two float values containing setpoints for the plant. Alongside these two nodes,
the luna bridge node is running accompanied by the rlb helper node, containing the helper
node to perform runtime binding. This setup results in the (simplified) graph depicted in left
in Figure 12. The LUNA application on the embedded system is configured to send initial-
ization instructions to let the luna bridge node connect to the two setpoint fields inside the
ROS imageprocessing node, and to make publishers for the ROS monitor node. When these
commands are received, it results in the structure depicted right in Figure 12: the nodes are
now connected.

Figure 12. ROS graphs showing node overview before (left) and after (right) the LUNA application connects.

3.2.2. Timing analysis

A second test is performed to analyse the timeliness in the different parts of the sys-
tem. To perform this, the LUNA application is configured to receive values from the
ROS imageprocessing, store these values and reply them in soft real-time. Parallel with this
task, a hard real-time task with higher frequency is performed, emulating the controller. Since

6http://www.ntp.org/

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Results, tracking a green blob

22

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Conclusions and Recommendations
• ROS - LUNA bridge runs
• SRT - HRT connection in a natural way
• Reusable / Flexible

- at the price of some more delay
• Demo application suffers from delay

• Recommendations
• Complete support in TERRA

- to avoid modifying generated code to use ROS-channels
• ROS runtime binding

- can be used in other HRT systems than LUNA

23

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA24

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Figure 15 Setpoint Receive Blok
• to read from Im Proc and produce setpoints

25

16 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

delay is present between receiving and returning the values inside LUNA. This occurs due to
the buffering: data is buffered for 0.016 s. When data arrives at the start of this period, it has
to wait for the whole period before it is sent back. The maximum delay in this test is 15.2 ms,
which is within this 16 ms period. Sending data back to ROS is faster than receiving: on
average 2.6 ms is needed to send data back. The delays have a large standard deviation. This
coincides with the measured jitter in the previous test: the deviations in the network make the
jitter increase inside the nodes.

3.2.3. Controlling a robotic setup

In the next test, the LUNA application from the previous test was modified. The hard real-
time task was replaced with a controller, and connected to a real robotic setup. This setup,
named JIWY, is a pan/tilt camera controlled by two motors. The LUNA application executes
the controller at a rate of 100 Hz, for which the control loops where derived. The architecture
is changed, to fit the new controllers (PanPositionController and TiltPositionController) and a
block to interface with the IO of the encoders and the PWM of the motors. Refer to Figure 14.
A block is added to send data to ROS after a specified time, and a block to generate setpoints

Figure 14. Architecture of setup to control a JIWY setup, drawn in TERRA

is added. Generating these setpoints is done at 100 Hz, and uses the last received setpoints
from ROS, allowing the system to easily update the setpoints, without the need to wait for
non real-time data from ROS (Figure 15). The last received setpoint values are updated in
var sync, assuring synchronized update of the pan and tilt setpoints. The controllers will wait
until these setpoints are placed on their channels, causing the controllers to also run at 100 Hz.

Figure 15. CSP diagram for generating setpoints and receiving new setpoints from ROS.

W. Mathĳs van der Werff, Jan F. Broenink Connecting ROS to LUNA

Figure 17: signals supporting the JIWY movie
•

26

18 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

0 2 4 6 8 10

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

Pa
n

(r
ad

)

Pan setpoint Pan encoder

0 2 4 6 8 10

�0.4

�0.2

0

0.2

0.4

Time

Ti
lt

(r
ad

)
Tilt setpoint Tilt encoder

Figure 17. Pan and tilt setpoint from image processing versus the encoder values.

which holds its stability even with uncertain delays: for example by adding passivity layers
and an energy balance for safety, as proposed in Franken et al. [17].

4. Conclusion

In this paper, a way two combine two different environments is proposed, implemented and
tested. The implementation allows to connect the Robotic Operating System with LUNA,
a real time CSP-execution framework. The implementation is made in such way that it is
reusable in future applications, by supporting a high degree of freedom through the support
of basic data types, and the runtime binding to arbitrary ROS message types during runtime.
Combining ROS and LUNA allows to use both systems in the area they perform well: ROS
has a lot of algorithms and a large community, while LUNA based applications are able run
in real time on an embedded system, and allow the execution of CSP. Furthermore, combing
these two environments allows to offload parts of the software of a robotic setup to a bases-
tation: this allows the processing inside the robotic setup to remain lightweight and more
energy efficient, while complex algorithms could still be used.

Tests show that the implemented runtime binding is slower compared to a generic C++
publisher: this is as expected, since additional steps needed to perform runtime binding were
added. The implementation is faster compared to the Python implementation, showing the
favour of using compiled code. When simple runtime binding subscribers are tested, it ap-
pears that the Python implementation is faster, compared the runtime binding subscriber. This
is probably caused by optimizations present in the Python implementation, allowing simple
data types to be received faster. When the implementation is combined with other parts into
a larger application, an compilable environment is preferred, as the other parts will benefit
from compilation. Verification tests shows correct serialization of the messages during run-
time, and allow to test whether a ROS environment contain message types that are not usable
yet.

A test setup closely related to a real world application, namely controlling a robotic setup
using vision, shows correct functioning and the usability of the bridge: a pan/tilt camera is
connected to an embedded system, which streams the camera data over a (wireless) network
to a resource rich platform running ROS. The image processing in ROS detects the location
of a green dot, and sends setpoints through the ROS-LUNA bridge back to the embedded
system, which uses these setpoints to update the setpoints in the controller. The controller

