
Simulation and Visualization
Tool Design for Robot Software

Zhou Lu, Tjalling Ran and Jan Broenink

Robotics and Mechatronics,
University of Twente

August 22, 2016

Outline

I Introduction

I Design of Simulation

I Visualizing Simulation Results

I Results

I Conclusions and Recommendations

[Z. Lu] 2/18

Introduction - Context

I Cyber-Physical Systems (CPS) co-design: why challenging?
I Combine multiple different engineering disciplines/domains
I Seamless interaction with physical environments
I Concurrency is intrinsically presented in CPS
I Most CPS are safety-critical

[Z. Lu] 3/18

Introduction - Related Work

I Design CPS using Model-Driven Design (MDD)
I Models can be formalized and checked
I Modelled systems can be tested and simulated off-line
I Ease tedious and error-prone concurrent software development

3bPlant model
(RT sim)

Real plant 4

Target
execution platform

Target
execution platform

I/O

I/O
stub

Legend

Plant dynamics 1

Time Triggered &
Discrete Event software 3a

Plant dynamics 2Control laws
(Loop control,CT)

(G)UI, Supervisory,
Sequence, Safety

Software design Controller design Mechanics designElectronics design

Plant dynamics
& 3D animation

ECS software
architecture

a) b)

c)

d) e)

20-sim

(co) simulation

Simulation time
Real-time

TERRA

[Z. Lu] 4/18

Introduction - Problem Statements and Motivation

I Iterative and incremental design and development in MDD
I Sufficient verification and/or validation of models are required

I MDD in CPS: different domain models are involved
I Discrete-Event and Continuous-Time domains

I Co-simulation is needed to support co-design
I Current infrastructure: TERRA

I Does not provide sufficient simulation nor visualization facilities

[Z. Lu] 5/18

Design of Simulation - Obtain Executable Models

I Executable models
I Executability: depends more

on execution tools
I Execution tools: depend on

assessment requirements

I Required assessments in CPS
I Process execution order
I Results of algorithms

I Two strategies to obtain
executable models

I Model interpretation
I Code generation

Model Interpretation
Strategy

Intermediate
Representation

Virtual Execution
Environment

Execution
(Simulation)

Engine

conforms to
DSL meta-modelModel

DSL Lexical Analysis
DSL Syntactic Analysis

platform
specification

static
libraries

shared
libraries

Source Code
Compiler

Source
Code

Real Execution
Environment

Code Generation
Strategy

Machine Code
(Assemble,

Java Bytecode...)

[Z. Lu] 6/18

Design of Simulation - Obtain Executable Models

I Executable models
I Executability: depends more

on execution tools
I Execution tools: depend on

assessment requirements

I Required assessments in CPS
I Process execution order
I Results of algorithms

I Two strategies to obtain
executable models

I Model interpretation
I Code generation

Model Interpretation
Strategy

Intermediate
Representation

Virtual Execution
Environment

Execution
(Simulation)

Engine

conforms to
DSL meta-modelModel

DSL Lexical Analysis
DSL Syntactic Analysis

platform
specification

static
libraries

shared
libraries

Source Code
Compiler

Source
Code

Real Execution
Environment

Code Generation
Strategy

Machine Code
(Assemble,

Java Bytecode...)

[Z. Lu] 6/18

Design of Simulation - Analysis

I Model Interpretation
I Relies on the existence of a

Virtual Execution
Environment (VEE)

I Interpretation can be done
dynamically

I Code generation
I Uses M2T transformation to

generate lower-level system
representation

I Platform-dependent Model Interpretation
Strategy

Intermediate
Representation

Virtual Execution
Environment

Execution
(Simulation)

Engine

conforms to
DSL meta-modelModel

DSL Lexical Analysis
DSL Syntactic Analysis

platform
specification

static
libraries

shared
libraries

Source Code
Compiler

Source
Code

Real Execution
Environment

Code Generation
Strategy

Machine Code
(Assemble,

Java Bytecode...)

[Z. Lu] 7/18

Design of Simulation - Analysis

I From a practical perspective: code generation is preferred
I Control algorithms generated from 20-sim must be taken into

account
I TERRA is able to generate C++ code
I Model interpretation will just be simulation without code

implementation

[Z. Lu] 8/18

Design of Simulation - Analysis

I Coupling strategies
I Loose-Coupling Execution

I Generate source code from different models
I Generate APIs for interacting purpose
I Execution coordinator

I Tight-Coupling Execution
I Integrate different models by using M2M transformations
I Generate code from an integrated model

[Z. Lu] 9/18

Design of Simulation - A hybrid simulation approach

I Tight-Coupling Execution
I Integrate 20-sim controller model into TERRA
I Generate code from the integrated model

Controller
Model

Plant
Dynamics

20-sim

TERRA

TERRA
CSP

TERRA
CSP

TERRA
CSP

LUNA Lib

Execution
Enviroment

Visualization

Lo
g

g
e
rS

e
rv

e
r

Animation
Plug-ins

SimCon
Plug-ins

LogInterpretor
Plug-ins

Edit Models (Co) Simulation

Platform
Specific

Executable

Step1 Step2

FM
I W

ra
p
p
e
r

FMU

Step3

[Z. Lu] 10/18

Design of Simulation - A hybrid simulation approach

I Loose-Coupling Execution
I Generate code from C/P models
I Generate APIs from TERRA FMI interface model
I FMI wrapper as coordinator

Controller
Model

Plant
Dynamics

20-sim

TERRA

TERRA
CSP

TERRA
CSP

TERRA
CSP

LUNA Lib

Execution
Enviroment

Visualization

Lo
g

g
e
rS

e
rv

e
r

Animation
Plug-ins

SimCon
Plug-ins

LogInterpretor
Plug-ins

Edit Models (Co) Simulation

Platform
Specific

Executable

Step1 Step2

FM
I W

ra
p
p
e
r

FMU

Step3

[Z. Lu] 11/18

Design of Simulation - A hybrid simulation approach

I Visualizing simulation results
I Process execution order
I Results of algorithms

I Iterative and incremental design and development

Controller
Model

Plant
Dynamics

20-sim

TERRA

TERRA
CSP

TERRA
CSP

TERRA
CSP

LUNA Lib

Execution
Enviroment

Visualization

Lo
g

g
e
rS

e
rv

e
r

Animation
Plug-ins

SimCon
Plug-ins

LogInterpretor
Plug-ins

Edit Models (Co) Simulation

Platform
Specific

Executable

Step1 Step2

FM
I W

ra
p
p
e
r

FMU

Step3

[Z. Lu] 12/18

Visualizing Simulation Results

I Five states for CSP constructs and processes
I Activate, Activating other processes, Waiting, Running, Done

Activating
other processesActivateDone

Waiting

P ; Q

Activating
other processesActivateDone

Waiting

P || Q
P [] Q

WaitingActivateDone

Running

writer !<variable>
reader ?<variable>

I Logging facilities were designed to capture state changes
I Registration phase
I States recording phase

time stamp State
Index 1

State
Index 2

State
Index 3

Process ID:1 Process ID:2 Process ID:3

State
Index n-1

State
Index n

Process ID:nProcess ID:n-1

............

[Z. Lu] 13/18

Visualizing Simulation Results

I Overall structure of the visualization
I Execute models
I Logged data will be stored as CSV files
I Mapping model elements
I Parsing logged data
I Publishing states to a graphical view

Execution
Enviroment

LUNA
Executable

loggerlog receiver

Development
Platform

TERRA Tool Suite

ConsoleTERRA
TERRA
CSP

View

TERRA
CSP

Target
Platform

Tree
Structure

State
Changes

Signal
ValuesAnimation

Mapping
Parsing

Publishing

[Z. Lu] 14/18

Results

I Loop control model for testing

PARALLEL*

Controller PlantStep

SEQUENTIAL_Step

!XXStepModel

C++

v_output

SEQUENTIAL_Controller

INS

?

?

XXControllerModel

C++

!
v_output

v_SP

v_MV

SEQUENTIAL_Plant

?

XXLinearSystemModel

C++

!
v_y

v_u

[Z. Lu] 15/18

Results

I Simulation Comparison

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

Simulation Comparison
TERRA-LUNA-sim vs 20-sim

Step-output
20sim-step-output

Controller-output
20sim-controller-output

Plant-y
20sim-plant-y

Simulation Time (s)

V
al

ue
s

Minor differences

1.95 2 2.05 2.1 2.15 2.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

[Z. Lu] 16/18

Results

I One snapshot of logged process states

0.230 1

Process ID

time stamp

1 1 1 0 0 3 0 0 0 1 0 2 4 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Using different colors to represent process states

PARALLEL*

Controller PlantStep

[Z. Lu] 17/18

Conclusions and Recommendations

I Conclusions
I The simulation provides comparable results as the ground truth
I The animation can sufficiently indicate process execution order
I Opportunity to implement a rapid prototyping system
I Opportunity to obtain an executable and deployable binary

which can be right-first-time

I Recommendations
I Signal values are not automatically visualized as state changes
I Options to include or exclude processes/states from animations
I Timing analysis need to be implemented
I FMI interfacing and wrapping facilities

[Z. Lu] 18/18

Thanks!

[Z. Lu] 18/18

Results

I Tree structure of the example model

MainModel
ID: 15

PARALLEL
ID: 14

PAR

Controller
ID: 4 Plant

ID: 7

Step
ID: 11

XXController
Model
ID: 5

XXStepModel
ID: 12

w_output
ID: 13

r_u
ID: 10

w_y
ID: 8 XXLinear

SystemModel
ID: 9

w_output
ID: 6

r_SP
ID: 2

r_MV
ID: 3

INS
ID: 1
PAR

SEQ

SEQUENTIAL
_Controller

SEQ

SEQUENTIAL
_Plant

SEQ

SEQUENTIAL
_Step

[Z. Lu] 18/18

