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Introduction - Context

I Cyber-Physical Systems (CPS) co-design: why challenging?
I Combine multiple different engineering disciplines/domains
I Seamless interaction with physical environments
I Concurrency is intrinsically presented in CPS
I Most CPS are safety-critical
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Introduction - Related Work

I Design CPS using Model-Driven Design (MDD)
I Models can be formalized and checked
I Modelled systems can be tested and simulated off-line
I Ease tedious and error-prone concurrent software development
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Introduction - Problem Statements and Motivation

I Iterative and incremental design and development in MDD
I Sufficient verification and/or validation of models are required

I MDD in CPS: different domain models are involved
I Discrete-Event and Continuous-Time domains

I Co-simulation is needed to support co-design
I Current infrastructure: TERRA

I Does not provide sufficient simulation nor visualization facilities
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Design of Simulation - Obtain Executable Models

I Executable models
I Executability: depends more

on execution tools
I Execution tools: depend on

assessment requirements

I Required assessments in CPS
I Process execution order
I Results of algorithms

I Two strategies to obtain
executable models

I Model interpretation
I Code generation
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Design of Simulation - Analysis

I Model Interpretation
I Relies on the existence of a

Virtual Execution
Environment (VEE)

I Interpretation can be done
dynamically

I Code generation
I Uses M2T transformation to

generate lower-level system
representation

I Platform-dependent Model Interpretation
Strategy

Intermediate 
Representation

Virtual Execution
Environment

Execution 
(Simulation) 

Engine

conforms to
DSL meta-modelModel

DSL Lexical Analysis
DSL Syntactic Analysis

platform
specification

static
libraries

shared
libraries

Source Code
Compiler

Source
Code

Real Execution
Environment

Code Generation
Strategy

Machine Code
(Assemble, 

Java Bytecode...)

[ Z. Lu ] 7/18



Design of Simulation - Analysis

I From a practical perspective: code generation is preferred
I Control algorithms generated from 20-sim must be taken into

account
I TERRA is able to generate C++ code
I Model interpretation will just be simulation without code

implementation
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Design of Simulation - Analysis

I Coupling strategies
I Loose-Coupling Execution

I Generate source code from different models
I Generate APIs for interacting purpose
I Execution coordinator

I Tight-Coupling Execution
I Integrate different models by using M2M transformations
I Generate code from an integrated model
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Design of Simulation - A hybrid simulation approach

I Tight-Coupling Execution
I Integrate 20-sim controller model into TERRA
I Generate code from the integrated model
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Design of Simulation - A hybrid simulation approach

I Loose-Coupling Execution
I Generate code from C/P models
I Generate APIs from TERRA FMI interface model
I FMI wrapper as coordinator
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Design of Simulation - A hybrid simulation approach

I Visualizing simulation results
I Process execution order
I Results of algorithms

I Iterative and incremental design and development
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Visualizing Simulation Results

I Five states for CSP constructs and processes
I Activate, Activating other processes, Waiting, Running, Done
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I Logging facilities were designed to capture state changes
I Registration phase
I States recording phase
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Visualizing Simulation Results

I Overall structure of the visualization
I Execute models
I Logged data will be stored as CSV files
I Mapping model elements
I Parsing logged data
I Publishing states to a graphical view
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Results

I Loop control model for testing

PARALLEL*

Controller PlantStep

SEQUENTIAL_Step

!XXStepModel

C++

v_output

SEQUENTIAL_Controller

INS

?

?

XXControllerModel

C++

!
v_output

v_SP

v_MV

SEQUENTIAL_Plant

?

XXLinearSystemModel

C++

!
v_y

v_u

[ Z. Lu ] 15/18



Results

I Simulation Comparison
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Results

I One snapshot of logged process states
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Conclusions and Recommendations

I Conclusions
I The simulation provides comparable results as the ground truth
I The animation can sufficiently indicate process execution order
I Opportunity to implement a rapid prototyping system
I Opportunity to obtain an executable and deployable binary

which can be right-first-time

I Recommendations
I Signal values are not automatically visualized as state changes
I Options to include or exclude processes/states from animations
I Timing analysis need to be implemented
I FMI interfacing and wrapping facilities
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Thanks!
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Results

I Tree structure of the example model
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