Mapping CSP Models to Hardware using CLaSH

Frist Kuipers, Rinse Wester, Jan Kuper & Jan Broenink University of Twente, Enschede

2016, August 23

Contents

- Introduction
- * CLaSH
- CSP constructs
- Results
- Conclusions

Introduction

- Embedded system design more complicated
- * Increase in number of requirements
- * Model-Driven Design (MDD)

Introduction

CLaSH

- * Functional Hardware Description Language (Haskell)
- * Structural description of hardware
- * Components based on Mealy-machine

CLaSH

$$i \rightarrow f \rightarrow o$$

CLaSH

CSP constructs in CLaSH

- Components with trigger tokens
- Three basic CSP constructs
 - * Parallel
 - Sequential
 - Channels

Parallel construct

```
parallel' (te, ti1, ti2) (tei, tii1, tii2) =
((tei, ti1r, ti2r), (teo, tio1, tio2))
where
  -- Return token when both are received
  teo = ti1 && ti2
   -- Only consume token one when both received
  ti1r = ti1 && ti2
  ti2r = ti1 && ti2
  -- Return token to both structures in parallel
  tio1 = te
  tio2 = te
```


Sequential construct

Channels

Work flow

Results

- Two examples implemented
 - * Single reader and writer
 - * Double reader and writer

Double reader/writer

Double reader/writer

Hardware results

Example	Logic Elements
Producer consumer	23
Double producer consumer	37

Conclusion

- * Mapping for CSP to FPGA developed
- Feasibility illustrated using examples

Future work

- Integration in TERRA tool
- Support for alt construct

Questions?

