

Computational Challenges for Climate Modelling

Markus Jochum Niels Bohr Institute, Copenhagen

with

R. Nuterman and TeamOceanB. Vinter and e-ScienceM. Vertenstein and CSEG at NCAR/Colorado

Outline

Danish N Research

Found

300 years of atmospheric CO2 concentration

- the climate challenge
- ocean turbulence
- long time scales
- how can you help?

NCAR supercomputing, 2012: Yellowstone, IBM iDataPlex 72,000 cores, 145 TB memory Computing: 5 MW Cooling: 3 MW Danish National Research Foundatio

time

Carbon dioxide, and deuterium/hydrogen ratio from the Vostok Ice core; and global ice volume from sediment cores (inverted). (Sigman & Boyle, 2000)

The Global Carbon Cycle

anish National ssearch Founda

Leading Hypotheses to explain the observed variations in Atmospheric carbon dioxide:

- temperature dependent solubility
- changes in Southern Ocean winds
- dust driven iron fertilization of phytoplankton
- change of biologically productive shelf area
- coral reef driven change of calcium-carbonate concentration
- change in ocean stratification
- interaction between icesheets and volcanism

SeaWifS satellite

Danish National Research Foundati

Physical Oceanography

Danish National Research Foundati

Probing the Unknown

Walter Munk, 1917-

100 yrs of water catching

Henry Stommel, 1920-1992

USS San Francisco after crushing into seamount

Real Ocean, Real Men

Research **Danish Nationa**

Foundatio

Danish National Research Foundatic

A Mathematician's Ocean

Stommel & Howards

Danish National Research Foundatio

The Golden Age – one big happy family

Luyten et al. '83

Research **Danish Nationa**

Founda

Danish National Research Foundat

The Case against Observations II

The single realization problem

SAT Linear Trends DJF 1979-2012

Deser et al.'14

- order of magnitude faster and energy efficient chips
- more intuitive software, plug & publish
- better data managment

Example: The Southern Ocean Hypothesis

Observed Eddy Kinetic Energy

Danish N Research

Found

Nationa

One integration ...

Rese

4 million grid points, 1000 years with 1 hour time steps

- -18 months ... faster (x10) chips ... less energy
- reproducible = no OS or compiler changes
- several months coding and testing

Danish Resear

lation

Ocean-Ice configuration of CESM (Small et al. 2014): 1/10 degree, 62 vertical layers, CORE forcing.

3-day means, 1 Tb/day, 0.1 yrs/day on 4096 cores at FSZ Juelich

A month per picture!

Control x 1.5 33.0 Time-mean isopycnal MOC Time-mean isopycnal MOC ₩ 33.0 8 33.5 1 34.0 2 34.5 37.5 33.5 37.5 28.5 34.0 28.5 19.5 🏹 19.5 34.5 10.5 10.5 (35.0 35.5 36.0 36.5 10.5 <u>1</u>155 -10.5 tods -19.5 tods 115 35.5 -10.5 -19.5 -28.5^{36.0} -28.5 ซี่ 37.0 เรี 37.5 -37.5 37.0 -37.5 37.5 70S 405 70S 60S 50S 60S 50S 405 Steady isopycnal MOC Steady isopycnal MOC ₩ 33.0 8 33.5 33.0 37.5 33.5 37.5 28.5 34.0 33.5 4.0 2 34.5 28.5 19.5 10.5 34.5 [Sv] 19.5 10.5 (35.0 35.5 36.0 36.5 35.0 10.5 11.5 -10.5 2 1155 35.5 -10.5 -19.5 -19.5 -28.5 -19.5 2 -28.5 -37.5 37.0 eg 37.θ -37.5 37.5-70-65-60-55-50-45-40 5 37.5 6**0**S 50S 40S 70S Transient MOC Transient MOC ₩ 33.0 ₩ 33.5 33.0 37.5 33.5 37.5 33.5 134.0 234.5 28.5 34.0 28.5 10.5 34.5 19.5 10.5 10.5 11.5 -10.5 -19.5 -28.5 (235.0 (2000) (1000) (10.5 35.0 11.5 35.5 -10.5-10.5-19.5-28.536.0-28.5B 37.0 -37.5 37.0 37.5 -37.5 405 405 60S 50S 705 60S 50S Standing MOC Standing MOC ≣ 33.0 × 33.5 = 34.0 × 34.5 33.0 37.5 33.5 37.5 28.5 34.0 28.5 19.5 [Sv] 19.5 34.5 10.5 10.5 (35.0 35.5 36.0 36.5 35.0 10.5 <u>1</u>155 -10.5 to -19.5 to -19.5 to 1155 35.5 -10.5 -10.5 -19.5 -28.5 -28.5 -28.5 -37.5 37.0 -37.5 37.5 705 5 37.5 60S 50S 705 60S 50S 405 4**0**S 33.0 Zonal- and time-mean MOC Zonal- and time-mean MOC ₩ 33.0 8 33.5 37.5 33.5 37.5 " 34.0 " 34.5 28.5 34.0 28.5 19.5 10.5 34.5 [Sv] 19.5 10.5 (35.0 35.5 36.0 36.5 10.5 11.5 -10.5 sc -10. 35.0 115 35.5 -10.5 -10.5 -19.5 -28.5 -28.5 -19.5 2 -28.5 -37.5 37.0 B 37.0 -37.5 37.5 10M 40S 705 60S 50S 405 70S 60S 505 Latitude Latitude

Residual Overturning

Steady

Transient

Standing

Eulerian

big data

Time Slabs

to

Time Series

ABCDEF T5 ABCDEF T4 ABCDEF T3 ABCDEF T2 ABCDEF T1

120 x 10 x 100 GB \rightarrow

- better storage strategies
- parallel post-processing and visualization software

A1 A2 A3 A4 A5 ... B1 B2 B3 B4 B5 ...

50 x 2TB

To address the climate challenge, we do not need bigger computers, but we do need:

- a science/ python/ fortran interface
- faster chips
- better data management

