Asynchronous Readers and Asynchronous Writers

Antoon H. Boodea,b,1, and Jan F. Broeninka

aRobotics and Mechatronics, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, the Netherlands

bInHolland University of Applied Science, the Netherlands

Abstract. Reading and writing is modelled in CSP using actions containing the symbols ? and !. These reading actions and writing actions are synchronous, and there is a one-to-one relationship between occurrences of pairs of these actions. In the CPA conference 2016, we introduced the half-synchronous alphabetised parallel operator \(X \downarrow Y \), which disconnects the writing to and reading from a channel in time. We introduce in this paper an extension of \(X \downarrow Y \), where the definition of \(X \downarrow Y \) is relaxed; the reading processes are divided into sets which are set-wise asynchronous, but intra-set-wise synchronous, giving full flexibility to the asynchronous writes and reads. Furthermore, we allow multiple writers to the same channel and we study the impact on a Vertex Removing Synchronised Product. The advantages we accomplish are that the extension of \(X \downarrow Y \) gives more flexibility by indexing the reading actions and allowing multiple write actions to the same channel. Furthermore, the extension of \(X \downarrow Y \) reduces the end-to-end processing time of the processor or coprocessor in a distributed computing system. We show the effects of these advantages in a case study describing a Controlled Emergency Stop for a processor-coprocessor combination.

Keywords. CSP, Half-Synchronous Alphabetised Parallel Operator, Asynchronous Write Actions, Asynchronous Read Actions, Asynchronous Write-Read Actions, Vertex Removing Synchronised Product

Introduction

Periodic Hard Real-Time Control Systems (PHRCs) modelled using process algebras comprise many short processes, which leads to fine-grained concurrency. To let the PHRCs perform its task as required by the specification, the processes synchronise over actions, asserting a certain order of the actions of the processes.\footnote{Corresponding Author: Ton Boode, Robotics and Mechatronics, CTIT Institute, Faculty EEMCS, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands. Tel.: +31 631 006 734; E-mail: a.h.boode@utwente.nl.}

Due to the fine-grained concurrency and the related synchronisation of the involved processes, a significant part of the execution time (up to 20\%) is consumed by context switches. The performance of such PHRCs can be improved by reducing the number of context switches of the threads representing these processes.

The logic controlling the behaviour of these processes can be implemented by Finite State Machines (FSMs). These FSMs are in essence finite, directed, acyclic, labelled
multi-graphs. To reduce the number of context switches, we introduced in [1] and [2] a Vertex-Removing Synchronised Product (VRSP) that combines processes by multiplication of the graphs representing the behaviour of these processes. The algebraic characteristics of VRSP are described in [3].

In process algebra, information is communicated in a synchronous manner. In Communicating Sequential Processes (CSP) the ! and ? symbols can be used to transfer data from one process to another. For example, $c!x:T$ in one process and $c?x:T$ in another process proceed synchronously as if both were written as $c.x$ [4].

As we have shown in [5], disconnecting the writing and reading in time eases the task of a designer if such disconnections are required from the perspective of performance of the application. For this reason, we have introduced in [5] for CSP a half-synchronous alphabetised parallel operator $\alpha \upharpoonright \beta$ with alphabets α, β, together with half-synchronous actions $c!x:T$ and $c?x:T$, that lie in between synchronous and asynchronous writing to enable asynchronicity between reading and writing. We have given the syntax and the semantics of the half-synchronous alphabetised parallel operator, together with a case study which shows the advantage of the half-synchronous alphabetised parallel operator with respect to memory occupation and performance. Furthermore, we have studied the impact of the half-synchronous alphabetised parallel operator on the VRSP which has led to the Dot Vertex-Removing Synchronised Product (DVRSP) ([5]).

Although reading actions and writing actions are asynchronous for the half-synchronous alphabetised parallel operator, the readers are still synchronising their reading actions. Therefore, we extend in this paper the half-synchronous alphabetised parallel operator such that the readers are allowed to read asynchronously. To achieve this asynchronous reading by readers, we add an index to the \hat{i} symbols such that read actions with the same index read synchronously and read actions with a different index read asynchronously. For example, $c!x:T \in P_1$, $c\hat{i}_i!x:T \in P_2$ and $c\hat{i}_j!x:T \in P_3$ becomes $c!x:T \in P_1$, $c\hat{i}_i!x:T \in P_2$ and $c\hat{i}_j!x:T \in P_3$. Furthermore, we allow more than one process to write to the same channel. Allowing only one process to write to a channel is a restriction from the early versions of CSP [7], but, for example, lifted to any-to-any channel in [8].

Whenever confusion can arise in the use of the term processes in the case of process algebra, and the term processes in the case of a process executing on some operating system, we use process to indicate a process-algebraic process, and we use thread when we mean a process or thread that executes on some operating system.

We start with a description of the terminology in Section 1. In Section 2 we introduce the extension of the half-synchronous operator with asynchronous readers, the extended half-synchronous alphabetised parallel operator $X \upharpoonright Y$, and describe the semantics of the $Y_i \upharpoonright Y_j$. Furthermore, we describe the impact of $Y_i \upharpoonright Y_j$ on the VRSP and the DVRSP, which leads to the definition of the Extended Dot Vertex-Removing Synchronised Product (EVRSP). We finish with a case study of the $Y_i \upharpoonright Y_j$, the Controlled Emergency Stop, showing the advantages of the newly introduced $Y_i \upharpoonright Y_j$ in Section 3.

1. Terminology

We use Bondy and Murty [9], Hammack et al. [10], Hell and Nešetřil [11], Milner [12], Schneider [4], Hoare [7] and Roscoe [13] for terminology and notation on graphs and

1. The half-synchronous alphabetised parallel operator $X \upharpoonright Y$ is based on the optional parallel operator of Gruner et al. [6]
processes not defined here. We consider finite, deterministic, directed, acyclic, labelled multi-graphs based on acyclic, deterministic processes written in the formal specification language CSP [7] only.

For convenience, we give definitions related to the half-synchronous operator given in [3] and [5], together with new definitions related to the new half-synchronous operator.

1.1. Process-Algebraic Aspects

We repeat from Boode and Broenink [5] the following notions which were necessary to describe the semantics of our new operator.

Let $\alpha(\cdots)$ denote a trace which contains a as an action. Let $\alpha(\cdots)$ denote the alphabet containing the actions in \cdots. Furthermore, the CSP semantics of an action apply.

The alphabets of the processes $P_1, \ldots, P_n, Q_1, \ldots, Q_m, R$ are denoted as X_1, \ldots, X_n, Y_1, \ldots, Y_m, Z respectively. Furthermore, for alphabets A_1, A_2, \ldots, A_n we define $A_1 \cap A_2 \cdots \cap A_n = (A_1 \cdot A_2 \cdots A_n)$ and $A_1 \cup A_2 \cdots \cup A_n = (A_1, A_2, \ldots, A_n)$.

Two actions are related if and only if
- one action contains the i precisely once and does not contain the l_n, and the other action contains the l_n precisely once and does not contain the i,
- the prefix of the labels of both actions with respect to the i and l_n is identical and
- the postfix of the labels of both actions with respect to the i and l_n is identical.

1.2. Graph-Theoretical Aspects

The graphs we consider consist of a vertex set V, an arc set A, a set of label pairs L, and two mappings. The first mapping $\mu : A \rightarrow V \times V$ is an incidence function that identifies the tail and head of each arc $a \in A$, so $\mu(a) = (v_i, v_j)$ means that the arc a is directed from $v_i \in V$ to $v_j \in V$, where $\text{tail}(a) = v_i$ and $\text{head}(a) = v_j$. The second mapping $\lambda : A \rightarrow L$ assigns a label pair $\lambda(a) = (l(a), t(a))$ to each arc $a \in A$, where $l(a)$ is a string representing the (name of an) action and $t(a)$ is the weight of the arc a. This weight $t(a)$ is a real positive number representing the worst case execution time of the action represented by $l(a)$.

A sequence of distinct vertices $v_0v_1 \ldots v_k$ and arcs $a_1a_2 \ldots a_k$ of G is a (directed) path in G if $\mu(a_i) = (v_{i-1}, v_i)$ for $i = 1, 2, \ldots, k$. We denote such a path by $P = v_0a_1v_1a_2 \ldots a_kv_k$.

An arc $a \in A(G)$ is called an in-flowing arc of $v \in V(G)$ if $\text{head}(a) = v$; the in-degree of v, denoted by $d^-(v)$ is the number of distinct in-flowing arcs.

Similarly, $a \in A(G)$ is an out-flowing arc of $v \in V(G)$ if $\text{tail}(a) = v$; the out-degree of v, denoted by $d^+(v)$ is the number of distinct out-flowing arcs.

The subset of V consisting of vertices v with $d^-_G(v) = 0$ is called the source of G, denoted as S'_G.

The subset of V consisting of vertices v with $d^+_G(v) = 0$ is called the sink of G, denoted as S''_G.

For each graph G, we define $S^0(G)$ to denote the set of vertices with in-degree 0 (the source of G) in G, $S^1(G)$ the set of vertices with in-degree 0 in the remaining graph obtained from G by deleting the vertices of $S^0(G)$ and all arcs with tails in $S^0(G)$, and so on, until the final set S'^I_G contains the remaining vertices with in-degree 0 and out-degree 0 in the remaining graph. This ordering implies that arcs of G can only exist from a vertex in S'^0_G to a vertex in S'^1_G if $j_1 < j_2$. If a vertex $v \in V$ is in the set S'^j_G in the above ordering, we also say that v is at level j in G.
We require that the following property holds for all the graphs we consider: any two distinct arcs \(a \in A\) and \(b \in A\) with \(\mu(a) = \mu(b)\) have \(I(a) \neq I(b)\).

For each pair \((v_i, v_j) \in V \times V\), we denote by \(A(v_i, v_j)\) all \(a \in A\) with \(\mu(a) = (v_i, v_j)\).

A graph \(G\) is called deterministic\(^2\) if all arcs in \(G\) have the following property: If \(\lambda(a) = \lambda(b)\) for two arcs \(a \in A\) and \(b \in A\) with \(head(a) \neq head(b)\), then \(tail(a) \neq tail(b)\).

Let \(a \in A(G)\) with \(\mu(a) = (u, v)\). By contracting \(a\) we mean replacing \(u\) and \(v\) by a new vertex \(\overline{uv}\), deleting all arcs \(b \in A(G)\) with \(\mu(b) = (u, v)\) or \(\mu(b) = (v, u)\), and replacing each pair of arcs \(c \in A(G)\) and \(d \in A(G)\) with \(\mu(c) = (u, x)\), \(\mu(d) = (v, x)\) and \(\lambda(c) = \lambda(d)\) by one arc \(e\) with \(\mu(e) = (\overline{uv}, x)\) and \(\lambda(e) = \lambda(c)\), and, similarly replacing each pair of arcs \(c \in A(G)\) and \(d \in A(G)\) with \(\mu(c) = (x, u)\), \(\mu(d) = (x, v)\) and \(\lambda(c) = \lambda(d)\) by one arc \(e\) with \(\mu(e) = (x, \overline{uv})\) and \(\lambda(e) = \lambda(c)\).

Let \(T\) be the set of asynchronous arcs in \(G_1 \boxtimes G_2\) that correspond to arcs in \(G_1\). Then the contraction of \(G_1 \boxtimes G_2\) with respect to \(G_1\), denoted by \(\rho_{G_1}(G_1 \boxtimes G_2)\), is defined as the graph obtained from \(G_1 \boxtimes G_2\) by successively contracting each arc \(a \in T\). Likewise, the contraction of \(G_1 \boxtimes G_2\) with respect to \(G_2\), denoted by \(\rho_{G_2}(G_1 \boxtimes G_2)\), is the graph obtained from \(G_1 \boxtimes G_2\) by successively contracting all asynchronous arcs of \(G_1 \boxtimes G_2\) that correspond to arcs in \(G_2\).

The Cartesian product \(G_i \square G_j\) of \(G_i\) and \(G_j\) is defined as the labelled multi-graph on vertex set \(V_{i,j} = V_i \times V_j\), with two types of labelled arcs. For each arc \(a \in A_i\) with \(\mu(a) = (v_i, w_i)\), an arc of type \(i\) is introduced between \(v_i, v_j \in V_{i,j}\) and \(w_i, w_j \in V_{i,j}\) whenever \(v_j = w_j\); such an arc receives the label \(\lambda(a)\). This implicitly defines parts of the mappings \(\mu\) and \(\lambda\) for \(G_i \square G_j\). Similarly, for each arc \(a \in A_j\) with \(\mu(a) = (v_j, w_j)\), an arc of type \(j\) is introduced between \(v_i, v_j \in V_{i,j}\) and \(w_i, w_j \in V_{i,j}\) whenever \(v_i = w_i\); such an arc receives the label \(\lambda(a)\). This completes the definition of the mappings \(\mu\) and \(\lambda\) for \(G_i \square G_j\). So, arcs of type \(i\) and \(j\) correspond to arcs of \(G_i\) and \(G_j\), respectively, and have the associated labels. For \(k \geq 3\), the Cartesian product \(G_1 \square G_2 \square \cdots \square G_k\) is defined recursively as \(((G_1 \square G_2) \square \cdots) \square G_k\).

Since we are particularly interested in synchronising arcs, we modify the Cartesian product \(G_i \square G_j\) according to the existence of synchronising arcs, i.e., pairs of arcs with the same label pair, with one arc in \(G_i\) and one arc in \(G_j\).

The first step in this modification consists of ignoring the synchronising arcs while forming arcs in the product, but additionally combining pairs of synchronising arcs of \(G_i\) and \(G_j\) into one arc, yielding the intermediate product which we denote by \(G_i \mathbin{\boxdot} G_j\). To be more precise, \(G_i \mathbin{\boxdot} G_j\) is obtained from \(G_i \square G_j\) by first ignoring all except for the so-called asynchronous arcs, i.e., by only maintaining all arcs \(a \in A_{i,j}\) for which \(\mu(a) = ((v_i, v_j), (w_i, w_j))\), whenever \(v_j = w_j\) and \(\lambda(a) \notin \Lambda_j\), as well as all arcs \(a \in A_{i,j}\) for which \(\mu(a) = ((v_i, v_j), (w_i, w_j))\), whenever \(v_i = w_i\) and \(\lambda(a) \notin \Lambda_i\). This set of arcs is denoted by \(A_{i,j}^a\). Additionally, we add arcs that replace synchronising pairs \(a_i \in A_i\) and \(a_j \in A_j\) with \(\lambda(a_i) = \lambda(a_j)\). If \(\mu(a_i) = (v_i, w_i)\) and \(\mu(a_j) = (v_j, w_j)\), such a pair is replaced by an arc \(a_{i,j}\) with \(\mu(a_{i,j}) = ((v_i, v_j), (w_i, w_j))\) and \(\lambda(a_{i,j}) = \lambda(a_i) = \lambda(a_j)\). The set of these so-called synchronising arcs of \(G_i \mathbin{\boxdot} G_j\) is denoted by \(A_{i,j}^s\).

The second step in this modification consists of removing (from \(G_i \mathbin{\boxdot} G_j\)) the vertices \((v_i, v_j) \in V_{i,j}\) and the arcs \(a\) with \(\text{tail}(a) = (v_i, v_j)\), whenever \((v_i, v_j)\) has level \(> 0\) in \(G_i \mathbin{\boxdot} G_j\) and \((v_i, v_j)\) has level \(0\) in \(G_i \mathbin{\boxdot} G_j\). This is then repeated in the newly obtained graph, and so on, until there are no more vertices at level \(0\) in the current graph that are at level \(> 0\) in \(G_i \mathbin{\boxdot} G_j\).

The resulting graph is called the Vertex Removing Synchronised Product (VRSP) of \(G_i\) and \(G_j\), denoted as \(G_i \mathbin{\boxtimes} G_j\).

\(^2\)This is equivalent to determinism in the set of processes that is represented by the graph \(G\).
For \(k \geq 3 \), the VRSP \(G_1 \square G_2 \square \cdots \square G_k \) is defined recursively as \((G_1 \square G_2) \square \cdots \square G_k \).

Graphs \(G_i \) and \(G_j \) are consistent, denoted as \(G_i \equiv G_j \), if and only if the following two requirements hold:

1. \(\rho_{G_i}(G_i \square G_j) \equiv G_j \) and \(\rho_{G_j}(G_i \square G_j) \equiv G_i \).
2. \(S'_{G_i \square G_j} = S'_{G_i} \times S'_{G_j} \) and \(S''_{G_i \square G_j} = S''_{G_i} \times S''_{G_j} \).

2. Extension of the Half-Synchronous Operator with Asynchronous Readers and Asynchronous Writers

In this section two extensions of the Half-Synchronous Operator are elaborated:

- Indexing of the \(\iota \)-action, allowing set-wise asynchronous reading and intra-set-wise synchronous reading. The semantics of \(\iota_i \iota_j \) is given in Section 2.1.
- Allowing more than one writer to write to the same channel. The DVRSP as defined in [5] and improved in Appendix A, inhibits two different writers to the same channel. The extension of the DVRSP, the Extended Dot Vertex-Removing Synchronised Product (EVRSP), is given in Section 2.2 on page 8.

Two or more writers to the same channel would be synchronous as the labels of the two actions are identical as, for example, in Listing 1. Because we want the writers to write asynchronously, the relational semantics of the half-synchronous alphabetised parallel operator has to be adapted. In the sequel, the \emph{extended half-synchronous alphabetised parallel operator} is called the \emph{extended half-synchronous operator} and is denoted as \(\iota_i \iota_j \). The EVRSP is denoted as \(\hat{\square} \).

Remark 1. Of course, we could index the asynchronous writes in a similar fashion as the asynchronous reads. We choose not to, because the writing at any point in time, when delivering identical objects to the readers, would lead to the passing of one object only, delaying all, but the last, threads that participate in the synchronisation. This is counter-intuitive to the idea that threads can write to a channel asynchronously, with the guarantee that their instance of an object is written to the channel at that point in time.

2.1. Semantics of the Extended Half-Synchronous Alphabetised Parallel Operator

Let \(P = \{P_1, \cdots, P_n\} \) be the set of processes containing asynchronous writes to the same channel, therefore \(c_{\iota_i : X_i} : T \in X_i, i = 1, \cdots, n \). Let \(Q = \{Q_1, \cdots, Q_m\} \) be the set of processes containing an indexed asynchronous \(\iota_i \)-action, \(i \in I = \{1, \cdots, k\} \). Let \(\bigcup_{i \in I} I_i = \{1, \cdots, n\} \), \(\bigcap_{i \in I} I_i = \emptyset, i = 1, \cdots, k \), where the \(j \in I_i \) is an index for the synchronous \(\iota_i \)-action for the subset of processes \(\{Q_j | j \in I_i\} \).

Furthermore, in Figure 1 we give

- the semantics of the extended half-synchronous operator,
- if we need more than one process \(P \) we use \(P_i \) otherwise we use \(P \) and
- for ease of reading, we omit the alphabets for the extended half-synchronous operator, therefore \(Q_i \iota_i \iota_j Q_j \) is denoted as \(Q_i \iota_j Q_j \).

Remark 2. The \(\iota_i \)-action is prone to deadlocks. If one process contains \(c_{\iota_i : X} : T \) followed by \(c_{\iota_j : X} : T, i \neq j \) and another process contains the same actions in reversed order the two processes may deadlock. Because we consider processes represented by consistent graphs only, such a process definition is inhibited.
2.2. EVRSP of the Extended Half-Synchronous Alphabetised Parallel Operator

As we are taking into account pairs of consistent graphs only, \(c_i x : T \) in one process without a \(c_j x : T \) in any process is inhibited, because the process may end in a deadlock and the deadlock violates the consistency requirements. But we still have to address issues like

- a series of identical writes \(c_i x : T \) in one process and the related reads \(c_i n x : T \) in another process,
- a series of consecutive identical writes \(c_i x : T \) to the same channel by different processes.

These issues are not inhibited by the semantics of \(\alpha \bowtie \beta \). As an example, the processes \(P_1, P_2, P_3, P_{123} \) in Listing 1 are represented by the graph in Figure 3, which contains consistent graphs \(G_1, G_2, G_3 \) leading to \(G_{123} = \bigsqcup_{i=1}^{3} G_i \).

Listing 1: Two processes writing to the same channel.

\[
\begin{align*}
P_1 &= c_i x : T \rightarrow \text{SKIP} \\
P_2 &= c_i x : T \rightarrow \text{SKIP} \\
P_3 &= c_i n x : T \rightarrow c_i n x : T \rightarrow \text{SKIP} \\
P_{123} &= P_1 \bowtie P_2 \bowtie P_3
\end{align*}
\]

A schematic process sketch of the processes given in Listing 1, is given in Figure 2. This process sketch describes the communication flow of the involved processes and shows that there is no predefined order in which \(P_1 \) and \(P_2 \) communicate with \(P_3 \). It follows that the graphs representing these processes must be \(G_1, G_2, G_{13} \) and \(G_{123} \), given in Figure 3, because \(G_{123} \bowtie G_2 \not\equiv G_{123} \).

\footnote{Because \(G_1 \bowtie G_2 \) the choice for \(G_{23} \) leads to the same result.}
Therefore it is clear that the graph G_{123} in Figure 3 represents the behaviour of the concurrent process P_{123}. But it is not clear what the graph should be that represents the concurrent process P_{13} given in Listing 1, because the write action could be related to the first read action or to the second read action. Therefore there are two choices for this example given by the graphs G'_{13} and G''_{13} in Figure 3. Following the process sketch in Figure 2, the graph G'_{13} should be chosen because the first two actions can be executed directly by the processes that represent these graphs, whereas the process representing the graph G''_{13} has to wait for the $c_i x : T$ of the process representing the graph G_2.

This problem becomes even worse if we consider the processes given in Listing 2.

\[
\begin{align*}
P_1 &= \text{do}X_1 \to c_1 x : T \to \text{SKIP} \\
&\quad \Box \\
&\text{do}X_2 \to c_1 x : T \to c_1 x : T \to \text{SKIP} \\
P_2 &= \text{do}Y_1 \to c_i x : T \to \text{SKIP} \\
&\quad \Box \\
&\text{do}Y_2 \to c_i x : T \to c_i x : T \to \text{SKIP} \\
P_{12} &= P_1 \parallel P_2
\end{align*}
\]

Listing 2: The ambiguity of a writing process and a reading process via the same channel.

The graph representing the processes of Listing 2 contains a path represented by the trace $\text{do}X_1 \to c_1 x : T \to \text{do}Y_2 \to c_i x : T \to c_i x : T \to \text{SKIP}$ (the thick and dotted arrows in Figure 4\(^4\)), which is obviously wrong. But the dashed and dotted arrows in Figure 4 represent a trace that has to be possible. The problem lies in the black vertex in Figure 4, that allows two traces to be possible with a different number of write actions.

Remark 3. The problem described in Figure 4 also occurs in DVRSP. For this reason, we redefine DVRSP in a similar fashion as EVRSP in Appendix A.

\(^4\)For ease of reading the not-relevant labels are removed in Figure 4.
A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers

Because the graphs G_1 and G_2 are consistent according to the definition of consistency under VRSP, we have to adjust that definition incorporating the number of writes and reads in each path from the source to the sink of a graph.

The number of occurrences of a write action $c_i x : T$ in the path P_i, is called the **path write cardinality** of a path with respect to $c_i x : T$, denoted as $P_i(c_i x : T)$.

The number of occurrences of a read action $c_{i \lnot n} x : T$ in the path P_i, is called the **path read cardinality** of a path with respect to $c_{i \lnot n} x : T$, denoted as $P_i(c_{i \lnot n} x : T)$.

Graphs G_i and G_j are consistent, denoted as $G_i \equiv G_j$, if and only if the following two requirements hold:

1. $\rho_{G_i}(G_i \boxdot G_j) \equiv G_j$ and $\rho_{G_j}(G_i \boxdot G_j) \equiv G_i$.
2. $S'_{G_i \boxdot G_j} = S'_{G_i} \times S'_{G_j}$ and $S''_{G_i \boxdot G_j} = S''_{G_i} \times S''_{G_j}$.
3. Whenever P_m, P_n are paths from the source to the sink of G_i ($G_j, G_i \boxdot G_j$), $P_m(c_i x : T) = P_n(c_i x : T)$ and $P_m(c_{i \lnot n} x : T) = P_n(c_{i \lnot n} x : T)$.

Obviously the graphs representing the processes in Listing 2 are not consistent. But the processes in Listing 1 are consistent and therefore EVRSP has to determine the order of the read actions with respect to the write actions.

For EVRSP whenever two processes contain identical i-actions, these actions are treated asynchronously. For indexed i-actions, the index makes the i-actions different and therefore EVRSP handles these actions identically to DVRSP. Hence, VRSP must be extended to handle the i-actions for the graphs representing different processes only.

The Extended Dot Vertex-Removing Synchronised Product (EVRSP) of G_i and G_j, $G_i \boxdot G_j$ is constructed in two stages, where the definition of the intermediate stage of DVRSP is identical to the intermediate stage of EVRSP, $G_i \boxdot G_j = G_i \hat{\boxdot} G_j$, with
The set of these so-called synchronous arcs of $G_i \Box G_j$ is denoted by $A_{i,j}^s$.

The second step in this modification consists of removing (from $G_i \Box G_j$) the vertices $(v_i, v_j) \in V_{i,j}$ and the arcs a with $\text{tail}(a) = (v_i, v_j)$, whenever (v_i, v_j) has $\text{level} > 0$ in $G_i \Box G_j$ and (v_i, v_j) has $\text{level} 0$ in $G_i \Box G_j$ and all arcs $v_x w_x \in A_{i,j}$ for which there exists

Again, we modify the Cartesian product $G_i \Box G_j$ according to the existence of synchronising arcs, but now with the extra constraint that labels containing a character are asynchronous i.e., pairs of arcs with the same label pair without a character, with one arc in G_i and one arc in G_j.

The first step in this modification consists of ignoring the synchronising arcs while forming arcs in the product, but additionally combining pairs of synchronising arcs of G_i and G_j into one arc, yielding the intermediate product which we denote by $G_i \hat{\Box} G_j$.

To be more precise, $G_i \hat{\Box} G_j$ is obtained from $G_i \Box G_j$ by first ignoring all except for the so-called asynchronous arcs, i.e., by only maintaining all arcs $a \in A_{i,j}$ for which $\mu(a) = ((v_i, v_j), (w_i, w_j))$, whenever $v_j = w_j$ and $\lambda(a) \notin L_j$ or $v_j = w_j$ and $\lambda(a) \in L_j$ and $j \in l(a)$, as well as all arcs $a \in A_{i,j}$ for which $\mu(a) = ((v_i, v_j), (w_i, w_j))$, whenever $v_i = w_i$ and $\lambda(a) \notin L_i$ or $v_i = w_i$ and $\lambda(a) \in L_i$ and $j \in l(a)$. This set of arcs is denoted by $A_{i,j}^a$. Additionally, we add arcs that replace synchronising pairs $a_i \in A_i$ and $a_j \in A_j$ with $\lambda(a_i) = \lambda(a_j)$ and $j \notin l(a_j)$. If $\mu(a_i) = (v_i, w_i)$ and $\mu(a_j) = (v_j, w_j)$, such a pair is replaced by an arc $a_{i,j}$ with $\mu(a_{i,j}) = ((v_i, v_j), (w_i, w_j))$ and $\lambda(a_{i,j}) = \lambda(a_i)$ and $j \notin l(a_i)$.

The set of these so-called synchronous arcs of $G_i \hat{\Box} G_j$ is denoted by $A_{i,j}^s$.

The first step in this modification consists of ignoring the synchronising arcs while forming arcs in the product, but additionally combining pairs of synchronising arcs of G_i and G_j into one arc, yielding the intermediate product which we denote by $G_i \hat{\Box} G_j$.

To be more precise, $G_i \hat{\Box} G_j$ is obtained from $G_i \Box G_j$ by first ignoring all except for the so-called asynchronous arcs, i.e., by only maintaining all arcs $a \in A_{i,j}$ for which $\mu(a) = ((v_i, v_j), (w_i, w_j))$, whenever $v_j = w_j$ and $\lambda(a) \notin L_j$ or $v_j = w_j$ and $\lambda(a) \in L_j$ and $j \in l(a)$, as well as all arcs $a \in A_{i,j}$ for which $\mu(a) = ((v_i, v_j), (w_i, w_j))$, whenever $v_i = w_i$ and $\lambda(a) \notin L_i$ or $v_i = w_i$ and $\lambda(a) \in L_i$ and $j \in l(a)$. This set of arcs is denoted by $A_{i,j}^a$. Additionally, we add arcs that replace synchronising pairs $a_i \in A_i$ and $a_j \in A_j$ with $\lambda(a_i) = \lambda(a_j)$ and $j \notin l(a_j)$. If $\mu(a_i) = (v_i, w_i)$ and $\mu(a_j) = (v_j, w_j)$, such a pair is replaced by an arc $a_{i,j}$ with $\mu(a_{i,j}) = ((v_i, v_j), (w_i, w_j))$ and $\lambda(a_{i,j}) = \lambda(a_i)$ and $j \notin l(a_i)$.

The set of these so-called synchronous arcs of $G_i \hat{\Box} G_j$ is denoted by $A_{i,j}^s$.

The second step in this modification consists of removing (from $G_i \hat{\Box} G_j$) the vertices $(v_i, v_j) \in V_{i,j}$ and the arcs a with $\text{tail}(a) = (v_i, v_j)$, whenever (v_i, v_j) has $\text{level} > 0$ in $G_i \hat{\Box} G_j$ and (v_i, v_j) has $\text{level} 0$ in $G_i \hat{\Box} G_j$ and all arcs $v_x w_x \in A_{i,j}$ for which there exists

Figure 4. Graphs G_1, G_2 and $G_12 = \bigoplus G_i$ representing processes P_1, P_2 and P_{12} of Listing 2.
a related arc \(v_iw_j \in A_{i,j} \), with operator \(i_n \in l(v_xw_x) \) for which there does not exist at least \(n \) related arcs \(v_izw_z \) with operator \(i \in l(v_iw_i) \) with \(v_iw_i < v_zw_z \). This is then repeated in the newly obtained graph, and so on, until there are no more vertices at level 0 in the current graph that are at level \(> 0 \) in \(G_i \) or \(G_j \).

The resulting graph is called the Vertex Removing Synchronised Product (VRSP) of \(G_i \) and \(G_j \), denoted as \(\exists \circ G_i \exists \circ G_j \).

For \(k \geq 3 \), the VRSP \(\exists \circ G_1 \exists \circ G_2 \exists \cdots \exists \circ G_k \) is defined recursively as \(((G_1 \exists \circ G_2) \exists \cdots \circ G_k) \).

Remark 4. Because arcs \(v_iw_i \) with \(i \in l(v_iw_i) \) are indexed, the arcs \(v_iw_i \) with different indexes represent asynchronous actions, because they have different labels due to different indexes.

Remark 5. The EVRSP allows two or more processes to write a value to the same channel.

In Figure 5 we give an example that shows the stages of the EVRSP. Figure 5.a shows the Cartesian Product of the graphs \(G_1, G_3 \) given in Figure 3. The dotted arcs in Figure 5.b are selected for removal. For the arcs \(u_1u_3 \) and \(u_3u_5 \) both with label \(c_{i_1}x:T \), there exists a related arc \(u_1u_2 \) with label \(c_{i_1}x:T \). Then, because \(P_1 = u_1u_2, P_2 = u_1 \cdots u_6 \), \(P_1(c_{i_1}x:T) = 1 > P_2(c_{i_1}x:T) = 0 \) and \(P_1(c_{i_1}x:T) = 1 < P_2(c_{i_1}x:T) = 2 \), \(u_1u_3 \) and \(u_3u_5 \) are removed in Figure 5.c. The last stage of EVRSP removes \(u_3, u_5 \) and the arcs that have \(u_3, u_5 \) as a tail because \(d^-_{G_1 \exists \circ G_3}(u_3) = d^-_{G_1 \exists \circ G_3}(u_5) = 1 \) and \(d^-_{G_1 \exists \circ G_3}(u_3) = d^-_{G_1 \exists \circ G_3}(u_5) = 0 \), which leads to Figure 5.d.

3. Case Study of the Extended Half-Synchronous Alphabetised Parallel Operator

To show that the extended operators are useful, we consider a system that runs at 1 kHz, so with a period of 1 ms. The hardware of the system consists of one processor, two controllers, a FPGA, two sensors and two actuators.
A part of the system must be able to perform a controlled emergency stop. This part, running on the processor, consists of a Controlled Emergency Stop (CES) thread, two Application threads (A1, A2) and two Controller threads (C1, C2).

Assume that the total amount of data used by these threads does not fit in the L2 cache, therefore every context switch leads to a cache flush. This increases the context-switch time \[14\]. According to \[14\] due to L2 cache flushes the context-switch time can take up to 1.5 ms for the hardware and software under consideration. In average \[14\] measured a context-switch time of 3.8 µs.

Taking into account the measured timing for a context switch, we assume that the worst-case context-switch time for our example is 20 µs. Because the CES case study describes a fictive PHRCS, we use estimated guesses for the timing of all actions of the processes, the controllers, the FPGA and the devices.

Each Application process controls the behaviour of one Controller thread. Each Controller process communicates, for example, via memory mapped I/O, with a controller responsible for the behaviour of a sensor and an actuator.

To calculate the values that drive the actuators, the Controller threads interact with an Algorithmic Software process (Alg.Soft.). The Algorithmic Software process calculates, for example, the Fast Fourier Transform (FFT) of the data by communicating via memory mapped I/O to an FPGA. The FPGA performs a FFT on the data. This architecture is shown in Figure 6.

Furthermore, assume that

- the controller threads and the algorithmic software thread have priority over the application threads,
- the CES and Application threads have equal priority,
- the Controller threads have equal priority,
- the actions of the CES thread, the Application threads and the Controller threads take 20 µs to execute, this includes context switches, state changes in the threads and the like,
- the Algorithmic Software takes 130 µs to calculate the FFT on each data item, which includes the calculation time of the FPGA. It buffers commands from the Controller threads.
- the Controller takes 80 µs to read the sensor value and 160 µs to write the actuator value to the actuator.

This leads to a simple CSP specification given in Listing 3 using the extended half-synchronous operator, the ¡-actions and the indexed ¿i-actions, where the alphabet of CES is CES, the alphabet of Ai is Ai and the alphabet of Cj is Cj.

Remark 6. The c2¡stop of A1 and A2 are asynchronous writes. Because both A1 and A2 perform this action and the C1 and C2 read this action only once, one of the writes is not read. This is an example of a writing without reading, which is intended, as the C1 and C2 have to start stopping as soon as possible.

Remark 7. In \[5\] we showed that writing without reading is pointless, because there could be only one writer for several readers. For the extended half-synchronous operator and asynchronous writers with at least one reading action, the Controlled Emergency Stop example shows a smaller model and therefore less execution time, because no buffers are necessary.

Remark 8. Because the reads have different indexes, the C1, C2 do not delay one another.
Figure 6. Communication Flow of the Controlled Emergency Stop.

Remark 9. The c_1-channel is unidirectional because CES only writes to A_1, A_2. The c_2-channel is bidirectional because A_1, A_2 write to C_1, C_2 and vice versa.

The graphs representing the processes in Listing 3 are given in Figure 7. The behaviour not modelled in Listing 3, the \ldots, are left out of Figure 7.

Remark 10. It is up to the process software to handle the state transitions. This includes the handling of guarded actions, which are labels in the graph.

The processes C_1, C_2 in Listing 3 are synchronising over the $c_2\mu$-boot-action and $waitForNextPeriod$-action. Only the $waitForNextPeriod$-action occurs in all longest paths. But still the worst-case performance is improved by the execution time of one $waitForNextPeriod$-action, together with two context switches. Therefore for the EVRSP of $C_1, C_2, C_1\otimes C_2$, there is some gain. The memory occupancy is not quadratic with respect to the number of vertices of C_1 and C_2, because of the order that the μ-actions and μ-actions impose on the product. For A_1, A_2, CES the gain is better, because both the ack-action and $waitForNextPeriod$-action are on all longest paths. For example, in Figure 8 the longest path of $A_1\otimes A_2$ contains seven arcs, whereas the longest path of A_1 plus the longest path of A_2 is equal to 10.
CES = readStatus.s → (s == stop; c₁stop → ack → writeStatus.boot → CES₁
 □
 s == boot; c₁boot → ack → writeStatus.init → CES₁)
 □
 ...
 s == → CES₁)
CES₁ = waitForNextPeriod → SKIP

A₁ = c₁stop → c₂stop → c₂STOPACK₁ → A₁₁
 □
 c₁BOOT → c₂BOOT → c₂STOPACK₁ → A₁₁
 □
 ...
A₁₁ = ack → waitForNextPeriod → SKIP

A₂ = c₁STOP → c₂STOP → c₂STOPACK₂ → A₂₁
 □
 c₂BOOT → c₂BOOT → c₂STOPACK₂ → A₂₁
 □
 ...
A₂₁ = ack → waitForNextPeriod → SKIP

C₁ = c₂STOP → readSensor.s₁ → writeAlgSoft.s₁ → readAlgSoft.v₁ →
 writeAC₁.v₁ → readAckAC₁ → c₂STOPACK₁ → C₁₁
 □
 c₂BOOT → resetSensor₁ → writeInitAC₁ → readAckAC₁ → c₂STOPACK₁
 → C₁₁
 □
 ...
C₁₁ = waitForNextPeriod → SKIP

C₂ = c₂STOP → readSensor.s₂ → writeAlgSoft.s₂ → readAlgSoft.v₂ →
 writeAC₂.v₂ → readAckAC₂ → c₂STOPACK₂ → C₂₁
 □
 c₂BOOT → resetSensor₂ → writeInitAC₂ → readAckAC₂ → c₂STOPACK₂
 → C₂₁
 □
 ...
C₂₁ = waitForNextPeriod → SKIP

System = CESₜCES {A₁A₂ ∪ A₁C₁ ∪ C₂ } (A₁A₁ {A₂ } A₁A₂ A₂ A₁C₁A₂ C₁C₂ (C₁C₁ C₂ C₂))

This reduces the overhead of synchronisation considerably. Also the memory occupancy
with respect to the number of vertices and arcs is 26 vertices and 39 arcs for A₁ ∩ A₂
and 16 vertices and 16 arcs (two times 8 vertices and 8 arcs) for A₁ and A₂. The poly-
nomial space complexity in this case is arguably reasonable, considering that the space
complexity for the Cartesian product without synchronisation would be exponential.
All other products are left out because the number of vertices these graphs contain makes the figures unreadable.

One trace, due to a stop-action shown in Listing 3, is of particular interest because it shows the longest path in the combined graph representing the System process for a stop-action and a boot-action.

\[\begin{align*}
\text{readStatus.s, 20} & \rightarrow c1\text{stop, 20} \rightarrow c1\text{stop, 20} \rightarrow c2\text{stop, 20} \rightarrow c2\text{stop, 20} \rightarrow \text{readSensor.s1, 80} \rightarrow c2\text{stop, 20} \rightarrow \text{readSensor.s2, 80} \rightarrow c2\text{stop, 20} \rightarrow \text{writeAlgSoft.s1, 130} \rightarrow \text{writeAlgSoft.s2, 130} \rightarrow \text{readAlgSoft.v1}, 20 \rightarrow \text{writeAC1.v1, 160} \rightarrow \text{readAckAC1}, 20 \rightarrow c2\text{stopAck1}, 20 \rightarrow c1\text{stopAck1}, 20 \rightarrow \text{readAlgSoft.v2, 20} \rightarrow \text{writeAC2}, 160 \rightarrow \text{readAckAC2}, 20 \rightarrow c2\text{stopAck2}, 20 \rightarrow c1\text{stopAck2}, 20 \rightarrow \text{ack, 60}^5 \rightarrow \text{writeStatus.boot, 20} \rightarrow \text{waitForNextPeriod, 100}^6 \rightarrow \text{SKIP}
\end{align*}\]

Listing 4: Trace of the CES.

The worst-case execution time is the summation over the time part of the labels. To stop both the actuators in our example, this adds up to 1240 µs. Because the controllers

5The processes CES, A1 and A2 synchronise over the ack-action. Therefore the execution time adds up to 60 µs.

6The processes CES, A1, A2, C1 and C2 synchronise over the waitForNextPeriod-action. Therefore the execution time adds up to 100 µs.
for the sensors and actuators, and the FPGA are running partially in parallel, the execution time is 940 µs.

The shortest run time of the controllers and the FPGA is 260 µs. This happens when the controllers and the FPGA are running in parallel at the same time. Therefore the best case execution time is 880 µs.

Although there is no deadline-miss in this fictive example for the stop part of the CES, when the model would support the writing to and reading from buffers, the best case execution time would increase. For example, adding three buffers with each two actions to perform, there is an extra 120 µs execution time. This leads to an execution time in the best case of 1000 µs. Then a deadline-miss seems inevitable.

In Figure 9 the time line of a possible trace of the stop part of the CES is given. Each gray block represents the time that the thread is executing. The label of each hardware related action contains the overall time. If applicable, this includes the time the hardware needs to reply. The dashed arrows represent a call to the hardware and the reply from the hardware.

As Figure 9 shows, the stop part of the CES takes 940 µs to execute. This can be improved by using the EVRSP of the graphs, $SynchronisedSystem = CES \diamond A_1 \diamond A_2 \diamond C_1 \diamond C_2$. The actions that synchronise are $waitForNextPeriod$ and ack, therefore the processor needs at most 820 µs to execute the thread represented by

Figure 8. Graph $A_1 \diamond A_2$.

Figure 9. Time line of a possible trace of the stop part of the CES.
the graph SynchronisedSystem.

The improvement with respect to timeliness can be easily seen when we model the CES using standard CSP as shown in Figure 10, although this example gives an improvement of only 50µs. This is because we do not have to model buffers as well due to the simplicity of the example. The c_2.stop,20 actions of A_1, A_2, C_1 and C_2 are executed atomically, therefore it is immaterial which of the processes A_1, A_2, C_1 and C_2 executes the action c_2.stop,20 first. In fact the priority inheritance protocol [15] is implemented for the processes A_1, A_2 and C_1, C_2 for the action c_2.stop,20.

4. Discussion and Conclusions

In this paper we have discussed an extension of the $X \mathop{\triangleright} Y$ operator, the new $X \mathop{\triangleleft} Y$ operator and the f-action together with the new i-action, that delay the reading of a process from a buffer. The $X \mathop{\triangleleft} Y$ operator together with the f-action and i-action are an abstraction of a buffer, therefore the designer does not have to model the buffer as well. In this manner the writing process does not have to wait for the reading process to synchronise. There are five advantages of the $X \mathop{\triangleright} Y$ operator in combination with the EVRSP with respect to standard CSP:

- it eases the design by taking away the burden of separating the writing actions and reading actions in time, which eliminates the necessity of a buffer,
- it gives maximum flexibility by indexing the reading actions,
- it allows multiple write actions to the same channel,
- the length of the longest path is reduced, if the writing actions and reading actions are part of all the longest paths of the participating graphs,
- in a distributed computing system, for example, a processor-coprocessor combination, the waiting time of the processor or coprocessor can be reduced.

The first advantage makes the design less error prone and therefore the design phase needs less time. The absence of a buffer leads to less actions that have to be performed by the involved threads and therefore to a reduction of the utilisation of the processor.

Furthermore, the overall design cycle gains because the improved description on design level leads to less effort for the implementation and less effort for testing, achieved by the second and third advantage.

The fourth advantage is due to EVRSP only and leads to an application that needs less execution time.

The fifth advantage is due to a reduction of the end-to-end execution time during one period and therefore leads to an application for which the possibility of a deadline-miss is reduced.

Of course there is also a drawback, when using EVRSP. The designer has to figure out whether the disconnection of reads and writes leads to a greater reduction of the end-to-end execution time in one period than using synchronous writing actions and reading actions.
5. Future Work

With this contribution, together with our contributions [1,2,3,5], we have dealt with the graph theoretical aspects of improving the performance of PHRCSs by reduction of the number of context switches and reducing the end-to-end execution time.

But several issues in our design cycle have not been addressed yet. With respect to the system architecture we have described in [2] the transformation functions that transform a graph into an algebraic specification, but they are not defined yet. Furthermore, although partially implemented by [16], there is no fully operational tool-chain that automatically, based on the process algebraic specification, produces software which can be compiled and built, thereby producing a set of Periodic Hard Real-Time Control Processes (PHRCPs). Also tooling that supports the choice for synchronous writing actions and reading actions versus EVRSP has to be developed.

So far we have used a fixed period of 1 ms. Allowing the PHRCP to have different periods and taking into account the priority of processes will lead to a not explored area of EVRSP. All these issues will introduce scheduling problems that have to be solved by an adapted version of EVRSP.

The end result to go for could be allowing cyclic and non-deterministic process specifications and study the impact on EVRSP.

Acknowledgement

The authors would like to express their gratitude to the anonymous reviewers for the very useful suggestions and comments. The research of the first author has been funded by the InHolland University of Applied Science, Alkmaar, The Netherlands.

References

Appendix

A. Redefinition of the Dot Vertex-Removing Synchronised Product (DVRSP)

The Dot Vertex-Removing Synchronised Product (DVRSP) of G_i and G_j, $G_i\bullet G_j$ is a modification of the Cartesian product $G_i\boxtimes G_j$ according to the existence of synchronising arcs, but now with two extra constraints that labels of the type $c_1 x : T$ are allowed in only one process i.e., pairs of arcs with the same label $c_1 x : T$ and $c_2 x : T$ are asynchronous i.e., pairs of arcs with one arc with the label $c_1 x : T$ in G_i and the other arc with the label $c_2 x : T$ in G_j are asynchronous.

Assume that $a \in A(i,j), \mu(a) = ((v_x, v_y), (w_x, w_y))$ is an arc with $\xi \in l(a) = l_r$,

P_n is a path from the source of $G_i\bullet G_j$ through (w_x, w_y),

P_m is the path from the source to the sink of $G_i\bullet G_j$.

The first step in this modification consists of ignoring the synchronising arcs while forming arcs in the product, but additionally combining pairs of synchronising arcs of G_i and G_j into one arc, yielding the intermediate product which we denote by $G_i\mathring{\boxtimes} G_j$.

To be more precise, $G_i\mathring{\boxtimes} G_j$ is obtained from $G_i\boxtimes G_j$ by first ignoring all except for the so-called asynchronous arcs, i.e., by only maintaining all arcs $a \in A(i,j)$ for which $\mu(a) = ((v_x, v_y), (w_x, w_y))$, whenever $v_j = w_j$ and $\lambda(a) \notin L_j$, as well as all arcs $a \in A(i,j)$ for which $\mu(a) = ((v_i, v_j), (w_i, w_j))$, whenever $v_i = w_i$ and $\lambda(a) \notin L_i$.

This set of arcs is denoted by $A^e(i,j)$. Additionally, we add arcs that replace synchronising pairs $a \in A(i,j)$ and $a_j \in A(j,i)$ with $\lambda(a) = \lambda(a_j)$ and $\xi \notin l(a_j) (l(a))$. If $\mu(a_j) = (v_j, w_j)$ and $\mu(a) = (v_i, w_i)$, such a pair is replaced by an arc $a_{i,j}$ with $\mu(a_{i,j}) = ((v_i, v_j), (w_i, w_j))$ and $\lambda(a_{i,j}) = \lambda(a_j)$ and $\xi \notin l(a_j)$. The set of these so-called synchronous arcs of $G_i\mathring{\boxtimes} G_j$ is denoted by $A_{i,j}^s$.

The second step in this modification consists of removing (from $G_i\mathring{\boxtimes} G_j$) the vertices $(v_i, v_j) \in V_{i,j}$ and the arcs a with $tail(a) = (v_i, v_j)$, whenever (v_i, v_j) has level > 0 in $G_i\boxtimes G_j$ and $(v_i, v_j)\ boxtimes G_j$ and all arcs $a_{x_1,y_1} \in A(i,j), \mu(a_{x_1,y_1}) = ((v_{x_1}, v_{y_1}), (w_{x_1}, w_{y_1}))$ with $l(a_{x_1,y_1}) = l_r$ for which there exists a related arc $a_{x_2,y_2} \in A(i,j), \mu(a_{x_2,y_2}) = ((v_{x_2}, v_{y_2}), (w_{x_2}, w_{y_2}))$ with label l_w, where $P_n(l_r) > P_n(l_w)$ and $P_n(l_r) < P_m(l_w)$. This is then repeated in the newly obtained graph, and so on, until there are no more vertices at level 0 in the current graph that are at level > 0 in $G_i\boxtimes G_j$.

A.H. Boode, J.F. Broenink / Asynchronous Readers and Asynchronous Writers 19
The resulting graph is called the Dot Vertex Removing Synchronised Product (DVRSP) of \(G_i \) and \(G_j \), denoted as \(G_i \diamond G_j \). For \(k \geq 3 \), the VRSP \(G_1 \diamond G_2 \diamond \cdots \diamond G_k \) is defined recursively as \(((G_1 \diamond G_2) \diamond \cdots) \diamond G_k \).

Remark 11. The definition of DVRSP inhibits identical write actions to the same channel, i.e. \(Q_i \leftarrow x : T \Rightarrow Q_i^1, Q_j \leftarrow x : T \Rightarrow Q_j^1 \), \(i \neq j \) is ensured.