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Abstract.
Designing software controllers for multi-task automated service robotics is becom-

ing increasingly complex. The combination of discrete-time (cyber) and continuous-
time (physical) domains and multiple engineering fields makes it quite challenging
to couple different subsystems as a whole for further verification and validation. Co-
simulation is nowadays used to evaluate connected subsystems in the very early design
phase and in an iterative development manner.

Leveraging on our previous efforts for a Model-Driven Development and simula-
tion approach, that mainly focused on the software architecture, we propose a co-
simulation approach adopting the Functional Mock-up Interface (FMI) standard to
co-simulate the software controller with modelled physical plant dynamics. A model
coupling approach is defined that involves the model transformation from a physical
plant model implementing the FMI interface (denoted as a Functional Mock-up Unit,
FMU) to a Communicating Sequential Processes (CSP) model. The Master Algorithm
is (semi-)automatically generated from a co-simulation model that is formalised with
CSP syntax to orchestrate the communication between different FMUs. Additionally,
an optimized algorithm is defined to compensate for the artificial delay existing in a
feedback loop. Finally, an example is used to illustrate the co-simulation approach,
verify its working (at least, for this example) and to analyse the timing compensation
algorithm.
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Introduction

Designing software controllers for multi-task automated service robotics is becoming in-
creasingly complex. The combination of cyber-physical domains and multiple engineering
fields makes it quite crucial to evaluate the heterogeneous system as a whole. This is due to
the combination of discrete-time, discrete-event, and continuous-time models stemming from
different engineering fields, like software engineering, formal modelling, control engineer-
ing, electrical engineering, mechanical engineering. A typical top-level structure of a generic
robotic Cyber-Physical System (CPS) is shown in Figure 1. Furthermore, different teams or
external suppliers may use variety of tools to model different subsystems. Integration of such
sets of subsystems is challenging, especially at the end of the design phase, where models are
quite detailed, making this integration quite challenging and error-prone, thus costly.
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Figure 1. Typical robotic CPS: combination of multiple domains

Over the previous decade, merging control, systems, networking and software engineer-
ing built on the principles of multi-disciplinary modelling, model-driven design (MDD) and
co-simulation, has become relevant research activities [1,2]. The Modelica language and the
NS-2 network simulator are integrated to simulate Networked Control Systems in [3]. The
Crescendo technology is used in [4] which allows discrete-event models expressed in the Vi-
enna Development Method notation and continuous-time models expressed using 20-sim to
run in their separate simulators as a true co-simulation. However, in the above work and other
similar work [5], simulators involved in co-simulations are tightly coupled with each other
in their own semantics that makes them less flexible and less extensible. Another example
is the Ptolemy project [6,7] studying modelling and simulation of concurrent, real-time, em-
bedded systems. It focuses on well-defined models of computation that govern the interaction
between components. But similarly, the Ptolemy does not rely on standard notations.

Co-modelling and co-simulation are the promising approaches targeting the challenges
with respect to heterogeneity in modelling of CPS. Combined modelling (co-modelling) al-
lows models made in different modelling approaches be connected via a specifically defined
interface. This under the condition that the semantics of the involved modelling approaches
cover coupling over interfaces. Modelling approaches derived from the CPC (Component
Port Connector [8]) meta-model comply with this condition. The modelling approaches used
in this paper, block diagrams, CSP-based software descriptions, bond-graph based physical
plant models, do comply with this condition, of course. Consequently, the reliability of soft-
ware and the confidence in the design will both be increased.

However, as illustrated before, realizing a co-modelling and co-simulation methodology
and infrastructure is still challenging, especially:

• Coupling of different domain models and tools in a standardized way.
• State consistency between Discrete-Event (DE) controller models and Continuous-

Time (CT) plant models.

The Functional Mock-up Interface (FMI) [9] standard, initiated by auto-mobile indus-
tries within the ITEA2 MODELISAR project [10,11], and currently maintained by the Mod-
elica Association, has been designed to support the exchange, interoperation and coordina-
tion of model components or subsystem models designed with different modelling tools [12].
Recently, with the development pushed by both industries and academia, more than 100 sim-
ulation software tools claim to support FMI [9]. In fact, FMI appears to become the de-facto
standard for co-simulation and model exchange in CPS co-design.

With FMI, system engineers do not need to work with domain-specific languages or tools
directly. Instead, they need to consider how to transform and import domain implementations
and models, i.e. to couple different domain models specified by FMI in a co-simulation en-
vironment. Furthermore, data exchange and synchronization must be properly managed to
prevent state inconsistency between different subsystem models.

The goal of this paper is to use the FMI standard for co-simulation and process-oriented
approaches from the Communicating Sequential Processes (CSP) algebra, to construct a co-
simulation facility for cyber-physical robotic applications. We build on our previous work
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on MDD and co-simulation [13,14]. We use CSP semantics to realize the synchronisation
needed in this co-simulation. Towards this goal, we realize a coupling approach following
the FMI standard for the software controller-architecture model and the plant model, which
are formalised as CSP model (DE) and bond-graph model (CT), respectively.

Furthermore, an orchestrator skeleton can be automatically generated to build up the
Master Algorithm (MA), which is responsible to control the data exchange between different
subsystem models and to handle the synchronization during the entire co-simulation.

In Section 1, some background information about the FMI standard and about our mod-
elling tools is presented. Then, an approach for coupling different domain models based on
meta-modelling and model-to-model transformation, is illustrated in Section 2. In Section 3,
our method to generate CSP-based C++ code implementing the Master Algorithm is pre-
sented. Additionally an optimized algorithm is proposed to compensate for the artificial delay
that exists in a feedback loop. A practical example using our approach for co-simulation is
given in Section 4. Finally, in Section 5 we provide our conclusions and sketch some future
work.

1. Background

Functional Mock-up Interface

FMI is a tool-independent standard defining a generic Application Programming Inter-
face (API) that can be adopted by different modelling and simulation tools. FMI provides
two specific types of interfaces to support two time-driven control modes:

• FMI for co-simulation (FMI-CS)
• FMI for model exchange (FMI-ME)

FMI-CS is designed for both coupling of simulation tools, and coupling with subsystem mod-
els, which have been exported by their simulators together with their own solvers (i.e. nu-
merical simulation algorithms) as runnable code. Using FMI-CS, a subsystem model can be
represented as a stand-alone black-box simulation component that can be executed indepen-
dently in any simulation environment.

FMI-ME defines an interface to the dynamic model, which is described by differen-
tial, algebraic and discrete equations. But unlike FMI-CS, the solver to the model equations
should be provided by the simulation environment itself.

In the context of this paper, FMI-CS 2.0 is used as co-simulation interfacing standard.
A model implementing the FMI interface is denoted as a Functional Mock-up Unit (FMU).

The subsystem models of a typical cyber-physical robotic system, e.g., the sequence-
controller model, the loop-controller model and the plant model, can be encapsulated as indi-
vidual FMUs. In Figure 2, an example of a co-simulation model for such a system is shown,
specified as a model containing interconnected subsystem FMUs and can be simulated as
a whole in a co-simulation environment. Those different subsystem FMUs can be exported
from not necessarily different modelling tools.

FMU FMU FMU

A B C
A_out B_in1

B_in2

B_out

C_out

C_in

Figure 2. A co-simulation model consisting of interconnected FMUs

In a co-simulation model, each FMU consists of an XML model-description file together
with a shared library and/or C source files implementing the corresponding interface. The
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XML model-description file following an FMI description schema defines the static meta-
data of the model in a standardized way, including the definition of all (exposed) variables
and their attributes such as name, unit, initial value, etc. The XML file also contains the con-
figuration and the capability information of the FMU regarding simulation, i.e., the start and
the stop time, the integration step size and the ability flag of handling variable communica-
tion step size, etc. The shared library and/or C source files, provides the model implemen-
tation (and its solver in the case of FMI-CS) together with the FMI API. The shared-library
solution is especially used if the FMU provider wants to protect intellectual property rights
or to allow an automatic import of the FMU in another simulation environment, hence it is
preferred in our approach due to the latter reason.

In FMI standard, a Master-Slave mechanism is used during co-simulation. The com-
munication between FMUs (slaves) is orchestrated by a master program, referred to as the
Master Algorithm (MA). Slaves are assumed to communicate with the master only. The MA
orchestrates the data exchange at specific discrete communication points, by providing call-
ing sequences of FMI API, i.e. executing the FMUs and advancing time, getting and set-
ting exposed variable values, to ensure the state consistency between different FMUs. In Fig-
ure 3, the Master-Slave structure when coupling subsystem models using FMI-CS interfaces
is illustrated.

The MA is a crucial component, as it is essential for the co-simulation. However, it is
not part of the FMI standard, implying that a sophisticated MA needs to be developed for the
problem at hand.

Master

......

FMI
 

Slave

Model Solver

FMU 1

FMI
 

Slave

Model Solver

FMU 2

FMI
 

Slave

Model Solver

FMU N

Co-simulation model

Figure 3. FMI for co-simulation: coupling with subsystem models

Tools for Modelling and Co-simulation

TERRA [15] is a CSP-algebra based graphical modelling tool suite and is designed for
embedded control software architecture modelling (DE domain). Additionally, it provides
model-to-model transformation and C++ code generation to facilitate further verification and
validation.

TERRA provides two abstraction layers to create a hierarchical structure for a system:
the architecture layer and the external sub-model layer. The latter is also identified as the
functional layer in this paper. On the architecture layer, model components such as block,
link, and port are used to describe the architecture composition, the component dependencies,
and to define connections with the ’outside’ world (e.g., connections with an FPGA I/O
board). Each model block on the architecture layer contains an external sub-model describing
functional details, e.g., sets of I/O, numerical calculation and sequence of behaviours.

All sets of I/O that go to/come from the external sub-model are ’exposed’ directly to the
corresponding architecture model block as ports with incoming/outgoing directions. Through
these ports the external sub-model can be linked to other architecture components. In Figure
4, a classic loop control example modelled in TERRA is shown. The top half is the architec-
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ture model while the bottom half contains corresponding functional external sub-models. On
the architecture layer, the arrowed lines each linking two ports are defined as CSP commu-
nication channels. Each port linked by an arrowed line on the architecture layer is connected
to a CSPWriter or a CSPReader on the functional layer. Therefore, a link, i.e., a CSPChannel
on the architecture layer is actually between a pair of CSPWriter and CSPReader that exist
in different external sub-models. On both layers, models are formalized with CSP syntax,
e.g., all model blocks on the architecture layer are in parallel and all communication chan-
nels/links on both layers are supposed to work in a waiting-rendezvous manner (unless the
channel is buffered).

Figure 4. Example of a basic control-loop design using TERRA models

20-sim [16] is a graphical modelling tool, capable of modelling plant dynamics using
bond graphs (CT domain), and modelling control laws by iconic diagrams within which the
control algorithms are presented as dynamic equations.

Currently, 20-sim supports exporting both plant models and control law models as indi-
vidual FMUs with interfaces specified by FMI-CS. However, this exporting has restrictions:
only basic numerical solvers are exported, and not all modelling constructs are covered. For-
tunately, these restrictions do not restrict the work for this paper.

2. Coupling Different Domain Models

In Figure 5, the co-simulation design flow derived from our previous work in [14] is shown.
Step 1 to Step 3 concentrate on constituting a co-simulation model containing interconnected
FMUs. Step 4 and Step 5 are designed towards generating the Master Algorithm and per-
forming co-simulations.

This paper contributes to Step 3 and Step 4, i.e. coupling different domain models fol-
lowing FMI standard and generating CSP-based C++ code implementing the Master Algo-
rithm to orchestrate co-simulations.

In this section, we first introduce an approach for coupling different domain models
using TERRA and 20-sim.

To achieve the co-simulation for a CPS, e.g, a robotic system containing a software
controller and a plant, the different domain models need to be coupled in a proper way to
constitute a co-simulation model. We first create a CSP-based architecture model to abstract
the system composition in Step 1, to interconnect different subsystem models. Therefore,
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Figure 5. A co-simulation design flow

such a model is a co-simulation model. The architecture model blocks are place holders for
further detailed design.

In Step 2, first detailed functional models need to be constructed with proper tools, e.g.,
control laws and plant dynamics are modelled in 20-sim. In this paper, we assume that these
models are already available. To constitute a co-simulation model, the transformation be-
tween different formalisms must be done. For instance, the control laws and the plant dynam-
ics are intended to be ’filled’ into the corresponding functional layer of different architecture
model blocks. 20-sim supports exporting FMUs specified by FMI-CS. As a result, a 20-sim
model can be provided as a shared library wrapped by FMI-CS interface together with an
XML model description file.

Consequently, the goal of Step 3 is to solve the transformation between the FMI XML
formalism to the TERRA CSP formalism to couple these different domain models. To achieve
this, sets of Eclipse plug-ins have been developed and integrated with TERRA using its
Model-Driven Design methodology. A meta-model is generated from the FMI XML schema,
as shown in Figure 6. This meta-model has been used to define a parser for parsing FMU
XML files to TERRA CSP models to be imported as a functional external sub-models of their
corresponding architecture model blocks.

In Table 1, we present the most important mapping relations between the FMI XML
schema and the TERRA CSP definition. These mapping relations define the model-to-
model transformation rules, which are formulated in the Epsilon Transformation Lan-
guage (ETL) [17,18]. CSPModel-FMU in Table 1 represents a CSPModel process with an
FMU interface configuration and it is denoted as an FMU interfacing model (the square block
in the middle of the right half of Figure 7). The FMU interfacing model generally abstracts
the access to an black-box FMU. In FMI XML schema, all variables of an FMU are defined
as ScalarVariables. In TERRA, only the exposed variables with input/output causality type
are transformed to variables flowing through CSPWriters or CSPReaders that are connected
to certain ports and are linked by CSPChannels. The ports are exposed to the architecture
layer and can be connected with other subsystem models.

Other model properties such as co-simulation capabilities, default experiment configu-
ration and parameter mapping, are transformed to model properties of an FMU interfacing
model. The model properties mentioned above are important when generating C++ code im-
plementing the Master Algorithm for co-simulation. This is discussed in the following sec-
tion. More technical details of the model-to-model transformation are presented in [19].
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Figure 6. Simplified FMI XML schema meta-model

In Figure 7, an example of an original 20-sim model (left) and its transformed TERRA
CSP model (right) is shown. The plant model represents the physical part of a fluid-level
control system which is continuous in time. The input signal ’control’ and the output signal
’height’ are defined as exposed variables.

Figure 7. Example of transformation from a 20-sim model to a TERRA CSP model

3. Master Algorithm

The FMI standard only specifies the API that FMUs must implement, but does not specify
how to perform the co-simulation. A sophisticated MA must be developed to orchestrate the
co-simulation by calling the FMI API functions on interconnected FMUs. Luckily after ob-
taining a co-simulation model in TERRA, this can be done semi-automatically by leveraging
on the CSP rendezvous communication and TERRA’s code generation facility, to generate
CSP-based C++ code implementing the MA.
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Table 1. Partial mapping relations between the FMI XML schema and TERRA CSP

FMI XML FMU Model TERRA Model TERRA Model
Schema Elements Properties Objects Properties
fmiModelDescription modelName CSPModel-FMU modelDescription

guid
CoSimulation canHandle-
(capabilities) VariableCommunication-

StepSize CSPModel-FMU FMUProperties
canGetAndSetFMUstate
......

DefaultExperiment startTime
(configuration) stopTime CSPModel-FMU simulationProperties

stepSize
ScalarVariable name (variable name)
if causality type start (initial value) CSPModel-FMU parameterXXXMapping
is parameter valueReference (XXX is datatype)

type (datatype)
ScalarVariable name (variable name)
if causality type valueReference CSPModel-FMU portMapping
is input/output type (datatype)
ScalarVariable name (variable name) name (prefix ’v’)
if causality type type (datatype) Variable type (datatype)
is input/output
ScalarVariable name (variable name) CSPWriter name (prefix ’w’/’r’)
if causality type type (datatype) CSPReader type (datatype)
is input/output
ScalarVariable name (variable name) name
if causality type type (datatype) Port type (datatype)
is input/output direction

(OUTGOING/
INCOMING)

In FMI-CS mode, the MA generally involves coordinating data exchange between inter-
connected FMUs and advancing time. The FMI standard provides an example state machine
of calling sequence from master to slave [20]. Three sub-phases are represented as follows:

• Instantiation and Initialisation phase where the subsystem FMUs are instantiated
and initialized by calling four FMI functions: fmi2Instantiate, fmi2SetupExperiment,
fmi2EnterInitializationMode and fmi2ExitInitializationMode.

• Simulation phase where the simulation computation is performed. The calculation un-
til the next communication point is performed with function fmi2DoStep. Arguments
currentCommunicationPoint and communicationStepSize are defined as the current
communication point of the master tci and the communication step size hci, respec-
tively. The latter must be greater than zero in FMI 2.0 and the slave must integrate
(simulate) until time instant tci+1 = tci + hci. The MA can propose a fixed communi-
cation step size or a variable communication step size to the FMU, to define the com-
munication points and the fmi2DoStep must synchronize to these points by always
integrating exactly to tci + hci (if the FMU can accept the proposed hci).

• Termination phase where the solution at the final time of the co-simulation can be
retrieved. Normally fmi2Terminate and fmi2FreeInstance functions are called at the
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end of this phase.

Besides, fmi2SetXXX and fmi2GetXXX functions are used to update inputs and retrieve output
of FMUs, where XXX represents the used datatype (Real, Integer, Boolean or String). In
both the Instantiation and Initialisation phase and Simulation phase, the fmi2SetXXX and
fmi2GetXXX can be called by the MA, but there is an additional restriction that it is not
allowed to call fmi2GetXXX functions after fmi2SetXXX functions without an fmi2DoStep
call in the Simulation phase.

By carrying out Step 3 in Figure 5, the subsystem FMUs can be embedded in a TERRA
architecture model. Connections between FMUs are defined by directed links representing
CSP communication channels. In Figure 8 a Master-Slave structure of two interconnected
FMUs in TERRA is shown, containing both an architecture model diagram and two corre-
sponding functional external sub-model diagrams. Since the FMUs are provided as shared
libraries, the MA must provide suitable ways to access them, in order to perform the different
phases in correct order as well as to carry out co-simulation at specific communication points.

Figure 8. Example of interconnected FMUs in TERRA

We have developed an FMU interface meta-model to abstract the interfacing to an FMU
as a CSPModel process (i.e., the CSPModel-FMU in Table 1), and to represent other simu-
lation properties and co-simulation capabilities. In Figure 9, the explicit meta-model of our
approach is shown. In the middle of the figure, FMIModel class is the abstraction of the sub-
system model, i.e., the FMU which the MA is going to orchestrate. This class inherits from
the CPPCodeBlockConfiguration class of the CPP meta-model implementing a C++ code
block in TERRA. The parent class of CPPCodeBlockConfiguration is the ICPCExternalTool-
Configuration interface class, which is part of the CPC (Component-Port-Connector) meta-
model, from which the TERRA CSP meta-model is derived [15]. In this way, interfacing
to the FMU is abstracted as a C++ code block in the form of a CSPModel process. Conse-
quently, benefiting from the C++ code generation features provided by the CPP meta-model,
it is possible to easily create C++ coded algorithms to access the FMU instances provided as
shard libraries.

Table 2 is the mapping relations between the generated C++ class functions of each
FMU interfacing model and FMI co-simulation phases as well as the FMI API functions to
be invoked by the C++ class functions. In general, the Instantiation and (partial) Initialisation
phase is executed in the constructor of the generated FMU interfacing model class. Perform-
ing of simulation steps is carried out by calling the fmi2DoStep iteratively in the execute()
function. Simulation, i.e. executing the model, of the slave FMU is done by its own solver
using the proposed communication step size until the given time instant. Before and after a
call to fmi2DoStep, the fmi2SetXXX and fmi2GetXXX functions are used to update inputs
and retrieve outputs of an FMU, which are assigned to reference variables flowing through
CSPReaders and CSPWriters, respectively, to communicate with other FMUs. When the
given final time is reached by the co-simulation, certain solutions can be triggered. Currently
in our work, a simple termination of the co-simulation is invoked.
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Figure 9. FMU interface meta-model

Table 2. Mapping relations between the generated C++ class functions and FMI co-simulation phases

FMU Interfacing Model: FMI Co-simulation FMI API Functions
Generated C++ Class Functions Phases To Be Invoked
FMI FMUName(IO parameter,...) Instantiation and fmi2Instantiate
(constructor) (partial) Initialisation fmi2SetupExperiment

fmi2EnterInitializationMode
execute() (partial) Initialisation fmi2ExitInitializationMode
(at the first iteration) (synchronize init values only)
execute() Simulation fmi2DoStep
(execute iteratively)
execute() Terminate fmi2Terminate
if stopTime (final time) is reached fmi2FreeInstance

In our design, the MA orchestrates the data exchange between two FMUs by performing
a rendezvous communication through CSPChannels. As is also shown in the functional sub-
model layer diagram (the bottom half of Figure 8), the interfacing to an FMU is in SEQUEN-
TIAL with a corresponding CSPWriter/CSPReader, which means the MA can only perform
the data exchange from FMU A to FMU B in a waiting-rendezvous manner. In that sense,
the non-trivial determinism of the MA can be ensured, meaning that the results of different
co-simulation runs do not depend on any arbitrary order in which the FMUs might be chosen
during the various iterations [21].

In control systems, a feedback loop is always present as shown in Figure 10a (also see
the top part of Figure 4). Using the preferred IO-SEQ pattern [22], i.e. readers, computation
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and writers in sequence, being the obvious data flow, whereby all readers are in a PARALLEL
composition as well as all writers, results in a deadlock, see Figure 10b (note that in this
figure, only one reader and one writer are used per block).

(a) TERRA architecture model of a simple feedback control system

(b) Deadlock: cyclic dependencies in a feedback loop

(c) Deadlock free modification by using PARALLEL composition

Figure 10. Co-simulation models with a feedback loop

Figure 11 is the machine readable CSP generated by TERRA representing the loop con-
trol system. Clearly, in Figure 11b, i.e. in the model of Figure 10c, there is no deadlock due
to having all readers and writers in one PARALLEL composition on the functional layer. The
communication events happen in an interleaving manner.

Unfortunately, this brings an artificial delay into the simulation for each FMU, since
the output ytci of the FMU at the current communication point tci is calculated by the input
retrieved at previous communication point tci − hci−1. Such an artificial delay is in principle
wrong, but in case hci−1 is small in combination with a robust control law, the simulation
results might be still close to the correct one.

We have implemented an optimized algorithm to compensate for this artificial delay by
storing and retrieving the state of the FMUs (FMUstate), as shown in Algorithm 1. FMI 2.0
provides two functions fmi2GetFMUstate and fmi2SetFMUstate to store and restore the FMU
internal state. In the Store state phase the simulation time is not advanced, whereas in the
Restore state phase the simulation time is advanced (Line 19), after restoring and updating
internal state with up-to-date and in-time input.

In Algorithm 1, at each communication point, the calculation (simulation) of each FMU
is executed twice as values before and after communication point differ. This is the current
approach to handle discontinuities. With no doubt, this brings additional computation and
communication costs what is investigated in the experiments discussed in the next section.
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-- Channels
channel channel_Controller_writer_to_plant_reader
channel channel_plant_writer_to_Controller_reader
-- Processes
MainModel_PARALLEL = if (true) then (MainModel_Controller [| {|

channel_Controller_writer_to_plant_reader ,
channel_plant_writer_to_Controller_reader |} |]
MainModel_plant ) ; MainModel_PARALLEL else SKIP

MainModel_Controller = Controller_SEQUENTIAL
Controller_SEQUENTIAL = Controller_reader ; Controller_FMI_FMU_Controller ; Controller_writer
Controller_reader = channel_plant_writer_to_Controller_reader -> SKIP
Controller_FMI_FMU_Controller = SKIP
Controller_writer = channel_Controller_writer_to_plant_reader -> SKIP
MainModel_plant = plant_SEQUENTIAL
plant_SEQUENTIAL = plant_reader ; plant_FMI_FMU_plant ; plant_writer
plant_reader = channel_Controller_writer_to_plant_reader -> SKIP
plant_FMI_FMU_plant = SKIP
plant_writer = channel_plant_writer_to_Controller_reader -> SKIP

(a) Machine readable CSP for Figure 10b
-- Channels
channel channel_Controller_writer_to_plant_reader
channel channel_plant_writer_to_Controller_reader
-- Processes
MainModel_PARALLEL = if (true) then (MainModel_Controller [| {|

channel_Controller_writer_to_plant_reader ,
channel_plant_writer_to_Controller_reader |} |]
MainModel_plant ) ; MainModel_PARALLEL else SKIP

MainModel_Controller = Controller_SEQUENTIAL
Controller_SEQUENTIAL = Controller_FMI_FMU_Controller ; Controller_PARALLEL
Controller_FMI_FMU_Controller = SKIP
Controller_PARALLEL = Controller_writer ||| Controller_reader
Controller_writer = channel_Controller_writer_to_plant_reader -> SKIP
Controller_reader = channel_plant_writer_to_Controller_reader -> SKIP
MainModel_plant = plant_SEQUENTIAL
plant_SEQUENTIAL = plant_FMI_FMU_plant ; plant_PARALLEL
plant_FMI_FMU_plant = SKIP
plant_PARALLEL = plant_reader ||| plant_writer
plant_reader = channel_Controller_writer_to_plant_reader -> SKIP
plant_writer = channel_plant_writer_to_Controller_reader -> SKIP

(b) Machine readable CSP for Figure 10c

Figure 11. Machine readable CSP generated by TERRA

4. Experiments

Experiments have been carried out to verify our approach, by implementing a fluid-level con-
trol system. First, the model, and the process of generating the co-simulation is presented.
Then, we do two types of experiments: (1) on the functionality and accuracy, i.e. to check
whether the fluid-level signals (traces) are correct, and (2) on the performance of our algo-
rithm compared to a MA without the timing compensation.

An architecture model is created in TERRA to represent the control architecture, as
shown in Figure 10a. The functional external sub-models, namely the LevelController model
and the plant model are transformed from 20-sim FMUs in later steps.

In Figure 12b, the plant model of the fluid-level control system is shown in the form of
20-sim iconic diagrams on the left and as a bond graph on the right. The two exposed signals
are control and height.

The plant contains two tanks coupled through a pipe, which has a fluid input in the first
tank (tank 1, the left tank in Figure 12b) and has a output valve in the second tank (tank 2).
The leaking volume flow depends on the fluid level (i.e., pressure) in tank 2. The volume flow
of the fluid input to tank 1, is controlled by a proportional controller as shown in Figure 12a
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Algorithm 1 Algorithm to compensate for artificial delays at a communication point
1: Current communication point tci
2: if rollback flag == true then
3: // Store state phase
4: if store state done == false then
5: fmi2SetXXX to set input received at tci−1

6: fmi2GetFMUstate to store internal state at tci
7: store state done = true
8: fmi2DoStep to update internal state to tci + hci
9: fmi2GetXXX to retrieve output at tci

10: Forward output to other FMUs
11: end if
12: // Restore state phase
13: if store state done == true then
14: fmi2SetXXX to set input received at tci
15: fmi2SetFMUstate to restore internal state to tci
16: store state done = false
17: fmi2DoStep to update internal state to tci + hci, with updated input receive at tci
18: fmi2GetXXX to retrieve output at tci
19: Advance simulation time to tci + hci
20: Forward output to other FMUs
21: end if
22: end if

with exposed in and out signals, to keep the fluid level in tank 2 at a desired level.

in

outK

(a) Level controller model

Two tanks with a pipe

control

height

C C

f

I

MSf

0

0

01 R

R

control

height

f

MSf

R

(b) Plant model

Figure 12. A fluid level control system modelled in 20-sim

After carrying out Step 2 and Step 3 in Figure 5, two TERRA CSP models with exactly
the same structure as shown in the left and right half of Figure 10c, respectively, are im-
ported into the architecture model of Figure 10a, resulting a fluid level control co-simulation
model in TERRA. Consequently, since the system contains a feedback loop, Algorithm 1 is
implemented when generating C++ code for the MA.
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The simulation experiment is as follows: the initial fluid levels of tank 1 and tank 2 are
1.0m and 2.0m, respectively. The maximum fluid volume flow rate from the controller input
to tank 1 is limited to 0.5m3/s. From the simulation time 0.000s the desired level in tank 2
is 1.5m, until the simulation time 10.000s. At the simulation time 10.000s, a time event is
triggered to change the desired level in tank 2 to 2.5m. The co-simulation finishes at 20.000s,
with a fixed communication step size of 0.001s.

In Figure 13 the co-simulation results by performing Step 5 in Figure 5 are shown. The
input and output from the plant model, i.e. the fluid input to tank 1 and the fluid level in tank 2
are presented in the graphs. The top part is plot for the whole co-simulation period, 20.000s.
As illustrated by the figure the height signal changes as expected, meaning that the desired
change of the fluid level in tank 2 is controlled properly.
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Figure 13. Fluid level control: co-simulation with/without timing compensation, step size = 0.001

In the bottom left, the zoom-in results from time 9.995s to 10.005s with timing com-
pensation are shown. At time 10.000s, the control signal jumps to the maximum of 0.5m3/s.
However in contrast to this, in the bottom right, without any timing compensation, the control
signal jumps to the maximum at time 10.001s, so with one step delay. The comparison is
consistent with what we have discussed with respect to Algorithm 1.

In this fluid-level control system, this one-step delay does not cause a too much devia-
tion from the correct simulation results. However, this would have been the case when the
communication step size would have been large.

To investigate the effect of this time delay, the experiment is performed again, but now
the communication step size is changed to 0.3s. By comparing results in Figure 14, it shows a
significant influence when not engaging the timing compensation. The one step delay (0.3s)
as shown in the right half of Figure 14 makes the control response time almost 2.5s longer.
Besides, in the zoom-in part on the left, there is also a 0.2s delay. The reasoning for this delay
is that the time event happened exactly at time 10.000s, and at the previous communication
point 9.999s the event did not happen yet. This brings a risk of missing event if the event is not
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triggered by time (or unpredictable). The store-restore-state mechanism used in Algorithm 1
can still be used to prevent missing events but we still need to make further studies.

With timing compensation, step size = 0.3
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Figure 14. Co-simulation comparison: with/without timing compensation, step size = 0.3

The second experiment is on the performance of our algorithm compared to a MA with-
out timing compensation. Here, we run the co-simulation with different communication step
sizes and with or without engaging timing compensation. The results are shown in Figure 15.

At smaller communication step sizes, the timing compensation takes more execution
time, as the extra work for this timing compensation has a larger relative contribution in the
execution time: this extra work must be done at every communication point between the two
FMUs.

For a co-simulation with large step size, using timing compensation to eliminate the
significant influence brought by the artificial delay as discussed before should be prioritized.

Co-simulation performance
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Figure 15. Co-simulation performance: different communication step sizes with/without timing compensation

5. Conclusions

In this paper, we presented a co-simulation approach which is compliant to the FMI 2.0
standard. By coupling different domain models into our TERRA tool, and leveraging on its
model-driven features, a CSP-based C++ code skeleton implementing the Master Algorithm
can be automatically generated.
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The MA orchestrates the co-simulation between different FMUs benefiting from CSP
semantics, to break the cyclic I/O dependencies and to perform the synchronization at specific
communication points.

To correctly handle timing, we developed an optimized algorithm for the MA to com-
pensate for the artificial delay, which is present when simply connecting the two models to
be co-simulated.

A fluid level control model was co-modelled and co-simulated using the proposed ap-
proach. Experiments were designed and performed to evaluate on the functionality and accu-
racy of the co-simulation, and to analyse performance with or without engaging the timing
compensation.

Experiment results verified that the fluid level was controlled properly and the one-step
artificial delay was handled correctly with engaging the timing compensation. Without en-
gaging the timing compensation, the one-step delay did not cause a too much deviation with
a small communication step size, i.e. 0.001s, but when the communication step size changed
to 0.3s it had a more significant influence to the control response time. Additionally, co-
simulation performance was discussed by measuring execution time with different commu-
nication step sizes. We can conclude that for a co-simulation with large step size, using the
timing compensation to eliminate the artificial delay should be prioritized.

Future work is to further develop Master Algorithms that can handle arbitrary state
events. In that case, at least one of the simulation algorithms must be capable of going back-
wards in time. Furthermore, after FMI-ME is supported by 20-sim (work in progress by
Controllab Products B.V.), coupling of simulation tools, i.e. TERRA and 20-sim, should be
implemented whereby more sophisticated co-modelling and more advanced co-simulation
calculations can be supported.
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