Appendix B

Graphs and Digraphs

In this thesis we make frequent use of graphs to represent various properties of net-
works of processes. We adopt the terminology of [Wilson 1985].

A graph G isdefinedtobeapair (V(G), E(G)), where V(G) isanon-empty finite
set of elements called vertices, and A(G) is afinite family of unordered pairs of ele-
ments of V(@) caled edges. (A family is a collection of elements like a set, except
that an element may occur more than once; eg. {a, b, ¢} isaset, but (a, a, ¢, b, a, ¢)
isafamily.)

A digraph D is defined to be apair (V(D), A(D)), where V(D) is a non-empty
finite set of elements called vertices, and A(D) is afinite family of ordered pairs of
elements of V(D) called arcs.

A graph (or digraph) is simple if there are no duplicate edges (or arcs) uv and no
‘loops’ uw.

Figure B.1: A Graph

B D
c

A E

E

H G

136

137

A walk in agraph (or digraph) is afinite sequence of edges (or arcs) of the form

(Uovb V1V2, .., Um—1 Um)

A walk in which al the edges (or arcs) are distinct is called atrail; if, in addition, the
vertices vy, vy, . ., v, aredistinct (except, possibly, v, = v,,), then the trail iscaled a
path. A path or trail is closed if v, = v,,. A closed path is called acircuit.

The simple graph

({A,B,C,D,E,F,G,H},(AB, BC, CD, DE, EC, CA, EF, FH, GH, FG))

isillustrated in figure B.1. Here the sequence (A B, BC, CA) isboth aclosed trail and
acircuit; the sequence (AB, BC, CD, DE, EC, CA) isaclosed trail but not acircuit.

A graph with no circuits is known as atree. If D isadigraph, the graph obtained
from D by replacing each arc by a corresponding edge is called the underlying graph
of D. A directed treeis adigraph of which the underlying graph is atree.

A graph is connected if there exists a path between any two vertices. The vertices
of a disconnected graph may be partitioned into connected components such that two
vertices arein the same connected component if, and only if, there exists apath between
them.

A graph is said to have a separation vertex v (sometimes called an articulation
point) if there exist vertices ¢ and b, where a # v and b # v, and all paths connecting
a and b passthrough v». In the graph of figure B.1 the separation verticesare C', ' and
F'. A graph which has a separation vertex is called separable, and one which has none
is called non-separable.

Let V' C V(G@). If theinduced subgraph G'(V', E') (where £’ isthe set of edges
of G which connect vertices of V') is connected, non-separable and for every larger
V", V' V" C V,theinduced subgraph G”(V", E") is separable, we say that V' is
anon-separable component of G. In the graph of figure B.1 the non-separable compo-
nentsare {A, B, C},{C,D,E}{E,F},and{F, G, H}.

A disconnecting edge of agraph isan edge, the removal of which increases by one
the number of connected components. Thisisalso known asabridge. If al the discon-
necting edges of a graph are removed the residual connected components are known
as essential components of the original graph. The graph illustrated in figure B.1 has
a single disconnecting edge EF. Its essential components are {A, B, C', D, E'} and
{F,G,H}.

A digraph is strongly connected if, for any two vertices v and v, there exists a path
from « to v and also from v to u. The vertices of adigraph which is not strongly con-
nected may be partitioned into strongly connected components using the equivalence
relation ~, where u ~ v means that there is a path from « to v and al'so from v to w.

Suppose that the vertex-set of a graph (or digraph) G can be partitioned into two
subsets V; and V,, such that no edge (arc) joins two elements from the same subset.
We say that G is bipartite.

138 APPENDIX B. GRAPHS AND DIGRAPHS

We denote by G\ e the graph (digraph) obtained by removing an edge (arc) wy,
and combining vertices v and winto asingle vertex (if they are distinct). Thisisknown
as an edge-contraction. A succession of edge-contractions is called a contraction.

The Depth-First Search Algorithm

The Depth-First Search technique is method for scanning the edges (or arcs) of afinite
graph (or digraph) which is widely recognised as a powerful technique. It is used by
Deadlock Checker in avariety of situations either to perform analysis of transition sys-
tems, or to establish global properties of networks, such as the absence of circuits. The
algorithm involves constructing a walk which traverses each edge or arc exactly once
in either direction.

The algorithms given here are based on those in [Even 1979], where proofs of cor-
rectness are to be found.

DFSfor Graphs

For a (possibly disconnected) graph the algorithm proceeds as follows. Consider the
graph & = (V(G), E(@)).

1. Setuptwo arraysindexed by verticesof V(G): anarray of vertices called father
and an array of integers called order. Also set up a boolean array called used,
indexed by edgesof £(G). Set each element of used to be false, each element of
father to be “undefined”, and each element of order to be 0. Alsoset i := 0 and
v := s (s isthe vertex we choose to start from).

2. Seti:=1+ 1 andorder(v) := ¢
3. If there are no unused edges incident with » then go to step 5

4. Choose an unused edge v = u. Set used(e) := true. If order(u) # 0 goto step
3. Otherwise first set father(u) := v, v := » and then go to step 2.

5. If father(v) is defined then set v := father(v) and go to step 3.

6. (father(v) is undefined). If thereis avertex « for which order(u) = 0 then set
v := u and go to step 2.

7. (All the vertices have been scanned) Halt.

If we assume a constant time for array lookup then this algorithm can be imple-
mented with linear time. (To implement step 6 efficiently actually requires maintaining
alinked list of those vertices that have not yet been visited.)

139

DFSfor Digraphs

For a (possibly disconnected) digraph the DFS algorithm isvery similar. Consider the
digraph D = (V(D), A(D)).

1. Setuptwo arraysindexed by verticesof V(D): an array of vertices called father
and an array of integers called order. Also set up a boolean array called used,
indexed by arcs of A(D). Set each element of used to be false, each element of
father to be “undefined”, and each element of order to be 0. Alsoset i := 0 and
v := s (s isthe vertex we choose to start from).

2. Seti:=1+ 1 andorder(v) := ¢
3. If there are no unused arcs outgoing from v then go to step 5

4. Choose an unused arc v = u. Set used(a) := true. If order(u) # 0 go to step
3. Otherwise first set father(u) := v, v := » and then go to step 2.

5. If father(v) is defined then set v := father(v) and go to step 3.

6. (father(v) is undefined). If thereisavertex « for which order(u) = 0 then set
v := u and go to step 2.

7. (All the vertices have been scanned) Halt.

Checking for Circuit-Freedom of a Digraph

The above algorithm is modified to check for the presence of a circuit in D by main-
taining a boolean array, indexed by V (D), to represent which vertices belong to the
current search path. The digraph has no circuit only if, at step 4, no vertex u is ever
found which lies on the current search path.

Finding Non-Separ able Components of a Graph
Consider thegraph G = (V(G), E(G)).

1. Setupthreearraysindexed by verticesof V' (G): anarray of verticescalled father,
and two arraysof integerscalled order and low. Also set up aboolean array called
used, indexed by edges of £(G), and aninitially empty stack of vertices, S. Set
each element of used to be false, each element of father to be “undefined”, and
each element of order to be 0. Also set i := 0 and v := vy := s (s iSthe vertex
we choose to start from).

2. Seti:=1i+ 1,order(v) := i, low(v) :=i. PutvonS.

3. If there are no unused edges incident with » then go to step 5

140

10.
11.

12.

APPENDIX B. GRAPHS AND DIGRAPHS

Choose an unused edge v = u. Set used(e) := true. If order(u) # 0 then set
low(v) := Min(low(v), order(«))

and go to step 3. Otherwise first set father(u) := v, v := » and then go to step
2.

If father (v) isundefined or father (v) = v, goto step 9.

(father (v) # vg) If low(v) < order(father(v)) then set
low(father (v)) := Min(low(father(v)), low(v))

and go to step 8.

(low(v) > order(father(v))) father(v) is a separation vertex. All the vertices
from S down to and including v are now removed; together with father (v) they
form a non-separable component.

Set v := father(v) and go to step 3.

All vertices on S down to and including v are now removed. Together with v,
they form a non-separable component.

If vy still has unused incident edges then goto step 12.

If thereisavertex u such that order(u) = 0 thenset v := v, := w and go to step
2, otherwise halt.

Vertex v, isaseparation vertex. Let v := v, and go to step 4.

Finding Disconnecting Edges of a Simple Graph

The disconnecting edges of asimple graph are equivaent to its non-separable compo-
nents of size two. Hence we may find the disconnecting edges of a simple graph, such
asanetwork communication graph, using the algorithm for non-separable components.

Finding Strongly Connected Components of a Digraph
Consider thedigraph D = (V (D), A(D)).

1.

Set up three arraysindexed by verticesof V(D): anarray of vertices called father
and two arraysof integers called order and low. Also set up aboolean array called
used, indexed by arcsof A(D). Create aninitially empty stack of vertices S. Set
each element of used to be false, each element of father to be “undefined”’, and
each element of order to be 0. Alsoset ¢ := 0 and v := s (s isthe vertex we
choose to start from).

141

2. Seti:=1i+ 1,order(v) :=iandlow(v) :=i. PutvonsS.
3. If there are no unused arcs outgoing from v then go to step 7.

4. Choose an unused arc v = u. Set used(a) := true. If order(u) = 0 set
father(u) := v, v := u and then go to step 2.

5. If order(u) > order(v) go straight back to step 3. Otherwise, if uw isnoton S (u
and v do no belong to the same component) go to step 3.

6. (order(u) < order(v) and both vertices are in the same component.) Set
low(v) := Min(low(v), order(u))
and go to step 3.

7. If low(v) = order(v) then delete al vertices from S down to and including v;
these vertices form a component.

8. If father(v) is defined then set

low(father(v)) := Min(low(father(v)),low(v))
v := father(v)

and go to step 3.

9. (father(v) is undefined.) If there is avertex u for which order(u) = 0 then let
v := u and go to step 2.

10. (All the vertices have been scanned.) Halt.

Selecting Arcsfrom a Digraph Lying on a Circuit

We may use the above technique to find al the arcs in adigraph which lie on a circuit.
(Thisisrequired for the CSDD algorithm of Deadlock Checker). First we partition the
vertices of the Digraph into strongly connected components, as described above. Dur-
ing the analysis a partition number N(v) is assigned to each vertex v. We then scan
through the arcs uv of the graph, removing any where N(u) # N(v). It may be easily
shown that those arcs which remain are exactly those which lie on acircuit in V.

