
Appendix B

Graphs and Digraphs

In this thesis we make frequent use of graphs to represent various properties of net-
works of processes. We adopt the terminology of [Wilson 1985].

A graph
�

is defined to be a pair ����� �����	� � ���
� , where ��� ��� is a non-empty finite
set of elements called vertices, and �
� ��� is a finite family of unordered pairs of ele-
ments of ��� ��� called edges. (A family is a collection of elements like a set, except
that an element may occur more than once; e.g. ��� ��������� is a set, but ��� � � ��������� � �����
is a family.)

A digraph � is defined to be a pair ������� ��� ����� ���
, where ����� �

is a non-empty
finite set of elements called vertices, and �
��� �

is a finite family of ordered pairs of
elements of ����� �

called arcs.

A graph (or digraph) is simple if there are no duplicate edges (or arcs) ��� and no
‘loops’ ��� .

Figure B.1: A Graph

A E

F

GH

D

C

B

136

137

A walk in a graph (or digraph) is a finite sequence of edges (or arcs) of the form

� ��� ��� � ��� ��� ����� � ���
	�� ���
�
A walk in which all the edges (or arcs) are distinct is called a trail; if, in addition, the
vertices ��� � ��� ����� � ��� are distinct (except, possibly, ����� ���), then the trail is called a
path. A path or trail is closed if � � � � � . A closed path is called a circuit.

The simple graph

����� ��� ����� � �	� ����������� ��� � � � ��������� � � � ��� ������� � � �������
� � �
� ��� ���
�

is illustrated in figure B.1. Here the sequence
� � � ��������� ��� is both a closed trail and

a circuit; the sequence
� � � ��������� � � � ��� ������� ��� is a closed trail but not a circuit.

A graph with no circuits is known as a tree. If � is a digraph, the graph obtained
from � by replacing each arc by a corresponding edge is called the underlying graph
of � . A directed tree is a digraph of which the underlying graph is a tree.

A graph is connected if there exists a path between any two vertices. The vertices
of a disconnected graph may be partitioned into connected components such that two
vertices are in the same connected component if, and only if, there exists a path between
them.

A graph is said to have a separation vertex � (sometimes called an articulation
point) if there exist vertices � and

�
, where ���� � and

� �� � , and all paths connecting
� and

�
pass through � . In the graph of figure B.1 the separation vertices are

�
,
�

and�
. A graph which has a separation vertex is called separable, and one which has none

is called non-separable.
Let �! #" ��� ��� . If the induced subgraph

� ���$ �	� � (where
� is the set of edges

of
�

which connect vertices of ��) is connected, non-separable and for every larger
�� , �� &% �� &" � , the induced subgraph

� ���� �	� � is separable, we say that �� is
a non-separable component of

�
. In the graph of figure B.1 the non-separable compo-

nents are � � ��� ����� , � ��� � � ���
, � ������� , and � ��������� �

.
A disconnecting edge of a graph is an edge, the removal of which increases by one

the number of connected components. This is also known as a bridge. If all the discon-
necting edges of a graph are removed the residual connected components are known
as essential components of the original graph. The graph illustrated in figure B.1 has
a single disconnecting edge

���
. Its essential components are ��� ��� ����� � �	���

and
� ��� ����� �

.
A digraph is strongly connected if, for any two vertices � and � , there exists a path

from � to � and also from � to � . The vertices of a digraph which is not strongly con-
nected may be partitioned into strongly connected components using the equivalence
relation ' , where �(' � means that there is a path from � to � and also from � to � .

Suppose that the vertex-set of a graph (or digraph) G can be partitioned into two
subsets �)� and �*� , such that no edge (arc) joins two elements from the same subset.
We say that G is bipartite.

138 APPENDIX B. GRAPHS AND DIGRAPHS

We denote by
�����

the graph (digraph) obtained by removing an edge (arc) vw,
and combining vertices v and w into a single vertex (if they are distinct). This is known
as an edge-contraction. A succession of edge-contractions is called a contraction.

The Depth-First Search Algorithm

The Depth-First Search technique is method for scanning the edges (or arcs) of a finite
graph (or digraph) which is widely recognised as a powerful technique. It is used by
Deadlock Checker in a variety of situations either to perform analysis of transition sys-
tems, or to establish global properties of networks, such as the absence of circuits. The
algorithm involves constructing a walk which traverses each edge or arc exactly once
in either direction.

The algorithms given here are based on those in [Even 1979], where proofs of cor-
rectness are to be found.

DFS for Graphs

For a (possibly disconnected) graph the algorithm proceeds as follows. Consider the
graph

� � ����� �����	� � ����� .
1. Set up two arrays indexed by vertices of ��� ��� : an array of vertices called father

and an array of integers called order. Also set up a boolean array called used,
indexed by edges of

� � ��� . Set each element of used to be false, each element of
father to be “undefined”, and each element of order to be 0. Also set ��� ��� and
�	� ��
 (
 is the vertex we choose to start from).

2. Set ��� �
����� and order ��� � � ���
3. If there are no unused edges incident with � then go to step 5

4. Choose an unused edge ���� � . Set used � ��� � � true. If order ��� � ���� go to step
3. Otherwise first set father ��� � � � � , �	� � � and then go to step 2.

5. If father ��� � is defined then set ��� � father ��� � and go to step 3.

6. (father �
� � is undefined). If there is a vertex � for which order ��� � ��� then set
�	� � � and go to step 2.

7. (All the vertices have been scanned) Halt.

If we assume a constant time for array lookup then this algorithm can be imple-
mented with linear time. (To implement step 6 efficiently actually requires maintaining
a linked list of those vertices that have not yet been visited.)

139

DFS for Digraphs

For a (possibly disconnected) digraph the DFS algorithm is very similar. Consider the
digraph � � ������� � � ����� ���

.

1. Set up two arrays indexed by vertices of ����� �
: an array of vertices called father

and an array of integers called order. Also set up a boolean array called used,
indexed by arcs of �
��� �

. Set each element of used to be false, each element of
father to be “undefined”, and each element of order to be 0. Also set ��� ��� and
�	� ��
 (
 is the vertex we choose to start from).

2. Set � � ��� ��� and order ��� � � ���
3. If there are no unused arcs outgoing from � then go to step 5

4. Choose an unused arc � �� � . Set used ��� � � � true. If order ��� � �� � go to step
3. Otherwise first set father ��� � � � � , � � � � and then go to step 2.

5. If father ��� � is defined then set ��� � father ��� � and go to step 3.

6. (father �
� � is undefined). If there is a vertex � for which order �
� � ��� then set
�	� � � and go to step 2.

7. (All the vertices have been scanned) Halt.

Checking for Circuit-Freedom of a Digraph

The above algorithm is modified to check for the presence of a circuit in � by main-
taining a boolean array, indexed by ����� �

, to represent which vertices belong to the
current search path. The digraph has no circuit only if, at step 4, no vertex � is ever
found which lies on the current search path.

Finding Non-Separable Components of a Graph

Consider the graph
� � ����� ��� � � � ����� .

1. Set up three arrays indexed by vertices of ��� ��� : an array of vertices called father,
and two arrays of integers called order and low. Also set up a boolean array called
used, indexed by edges of

� � ��� , and an initially empty stack of vertices,
�

. Set
each element of used to be false, each element of father to be “undefined”, and
each element of order to be 0. Also set � � � � and � � � ��� � ��
 (
 is the vertex
we choose to start from).

2. Set � � ��� ��� , order ��� � � ��� , low ��� � � �
� . Put � on
�

.

3. If there are no unused edges incident with � then go to step 5

140 APPENDIX B. GRAPHS AND DIGRAPHS

4. Choose an unused edge � �� � . Set used � ��� � � true. If order ��� � �� � then set

low �
� � � � Min � low �
� ��� order �
� �
�
and go to step 3. Otherwise first set father ��� � � � � , � � � � and then go to step
2.

5. If father ��� � is undefined or father ��� � � ��� go to step 9.

6. (father �
� � �� ���) If low ��� ��� order � father ��� ��� then set

low � father ��� �
� � � Min � low � father �
� �
� � low �
� �
�
and go to step 8.

7. (low ��� ��� order � father ��� ���) father �
� � is a separation vertex. All the vertices
from

�
down to and including � are now removed; together with father �
� � they

form a non-separable component.

8. Set � � � father ��� � and go to step 3.

9. All vertices on
�

down to and including � are now removed. Together with � �
they form a non-separable component.

10. If � � still has unused incident edges then goto step 12.

11. If there is a vertex � such that order �
� � ��� then set ��� � � � � � � and go to step
2, otherwise halt.

12. Vertex ��� is a separation vertex. Let ��� � ��� and go to step 4.

Finding Disconnecting Edges of a Simple Graph

The disconnecting edges of a simple graph are equivalent to its non-separable compo-
nents of size two. Hence we may find the disconnecting edges of a simple graph, such
as a network communication graph, using the algorithm for non-separable components.

Finding Strongly Connected Components of a Digraph

Consider the digraph � � ������� � � ����� ���
.

1. Set up three arrays indexed by vertices of ����� �
: an array of vertices called father

and two arrays of integers called order and low. Also set up a boolean array called
used, indexed by arcs of ����� �

. Create an initially empty stack of vertices
�

. Set
each element of used to be false, each element of father to be “undefined”, and
each element of order to be 0. Also set � � � � and � � �
 (
 is the vertex we
choose to start from).

141

2. Set � � ��� ��� , order ��� � � ��� and low ��� � � ��� . Put � on
�

.

3. If there are no unused arcs outgoing from � then go to step 7.

4. Choose an unused arc � �� � . Set used ��� � � � true. If order ��� � � � set
father ��� � � � � , � � � � and then go to step 2.

5. If order �
� ��� order �
� � go straight back to step 3. Otherwise, if � is not on
�

(�
and � do no belong to the same component) go to step 3.

6. (order �
� � � order �
� � and both vertices are in the same component.) Set

low ��� � � � Min � low ��� � � order �
� ���
and go to step 3.

7. If low �
� � � order ��� � then delete all vertices from
�

down to and including � ;
these vertices form a component.

8. If father ��� � is defined then set

low � father �
� �
� � � Min � low � father �
� �
� � low ��� ���
� � � father �
� �

and go to step 3.

9. (father �
� � is undefined.) If there is a vertex � for which order ��� � � � then let
�	� � � and go to step 2.

10. (All the vertices have been scanned.) Halt.

Selecting Arcs from a Digraph Lying on a Circuit

We may use the above technique to find all the arcs in a digraph which lie on a circuit.
(This is required for the CSDD algorithm of Deadlock Checker). First we partition the
vertices of the Digraph into strongly connected components, as described above. Dur-
ing the analysis a partition number � ��� � is assigned to each vertex � . We then scan
through the arcs ��� of the graph, removing any where � �
� � ���� ��� � . It may be easily
shown that those arcs which remain are exactly those which lie on a circuit in � .

