
Chapter 2

Design Rules for Deadlock Freedom

Introduction

The problem of determining whether any given concurrent system can ever deadlock
is similar to the famous halting problem of Turing machines – it is undecidable. This
means that there can never be an algorithmic method for proving deadlock freedom
which will work in the general case [Mairson 1989].

If the system consists only of finite-state processes then we can always theoretically
check deadlock-freedom by exhaustive state analysis, but as the number of states of the
system as a whole tends to be exponentially proportional to the number of processes this
technique is only viable for very small networks.

The previous chapter details efficient proof techniques which will work in a wide
variety of cases, but there is no guarantee that existing systems will be amenable to
them in practice. What is needed is a set of rules which enable us to guarantee deadlock-
freedom at the design stage before the major work of building the system has been done.

Here we describe three practical design paradigms which may be used for this pur-
pose.

� Networks of cyclic-ordered processes: Each process behaves according to a fixed
cyclic communication pattern. Useful for computationally intensive tasks, such
as finite-element analysis or neural network simulation.

� Client-Server systems: Processes communicate according to a master-slave pro-
tocol. Applications include process farms and message routing systems.

� User-Resource systems: User processes compete for shared resources. Applica-
ble to distributed databases and operating systems.

These rules have the joint advantages of being easy to use and also being backed up
with mathematical rigour. We use the theoretical results of the previous chapter to prove
them correct, and to show how they may be combined hierarchically. Used in this way
they are suitable for the construction of a rich variety of concurrent systems.

34

2.1. CYCLIC PROCESSES 35

2.1 Cyclic Processes

Many parallel applications consist of large arrays of simple processes, with fixed cyclic
communications patterns. P. H. Welch discovered some deadlock-prevention rules for
certain processes of this type [Welch 1987]. He presented these results informally in
the context of the occam programming language. We shall now state and prove them
in the formal context of CSP.

A process
�

is called I/O-SEQ if it operates cyclically such that, once per cycle, it
communicates on a finite set of input channels � in parallel, then it communicates on a
finite set of output channels � also in parallel.

Abstracting away any data that is passed, we can write a I/O-SEQ process, with
input channel set � , and output channel set � with the following CSP equation.

I/O-SEQ �������	��
 �
��������� �	��� SKIP �����
������������� � SKIP ��� I/O-SEQ �������	�

! I/O-SEQ �������	��
 �	"#�

A process which communicates on all its channels in parallel on every cycle is called
I/O-PAR. In CSP we write it like this

I/O-PAR �������	��
 �$��������� �&%'�(��� SKIP �)� I/O-PAR �*�+�,�-�

! I/O-PAR �������	��
 �	"#�

When I/O-PAR and I/O-SEQ processes are combined in a network we observe the
I/O convention. Recall that this means that a channel may be used by at most two
processes, one for input and the other for output. The connection digraph of a network
of I/O-PAR and I/O-SEQ processes is constructed in the following way. A vertex is used
to represent each process and an arc is used to represent each shared channel, directed
from the process for which it is an output channel towards the process for which it is an
input channel. A sequence of channels which forms a path in the connection diagram
of a network is called a data-flow path ; a sequence of channels which forms a circuit
is called a data-flow circuit

These processes may be composed in ways which guarantee deadlock freedom acc-
ording to some simple design rules.

Rule 1 (Welch 1987) Any network of I/O-PAR processes is deadlock-free.

In other words, any network constructed exclusively from I/O-PAR components, no
matter how large will never deadlock.

Rule 2 (Welch 1987) A connected network of I/O-SEQ processes is deadlock-free if,
and only if, it has no data-flow circuits.

36 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Rule 3 (Welch 1987) A connected network of I/O-SEQ and I/O-PAR processes is free
of deadlock if, and only if, it has no data-flow circuits which pass through only I/O-SEQ
processes.

We shall now prove the correctness of these rules using theorem 2 (page 29). Note
that rules 1 and 2 are corollaries of rule 3, so it is only necessary to prove the last result.

Proof. Let �
 � ��� ������� ���
	 be a connected network of I/O-SEQ and I/O-PAR
processes. Then for each maximal failure ��� ��
 � of

���
we define a variant function,� � �&������
 �&� , which calculates the number of complete cycles of I/O operations that

���
has completed after trace � . This is given by� � � ��� ��
 �&�
 � ��� �

� ! ��� ���
From the definitions we can deduce that a process in this network can never be wait-

ing for an I/O-SEQ process which has performed more cycles than it has, and can only
be waiting to communicate with an I/O-PAR process which has performed less cycles
than it has. So let � be a state ��� ����
 � ��
�� 	 � of the subnetwork � ��� � � � 	 . Then if

� � is
I/O-SEQ � ����� �� �

� �
! � � � ���#"� ! � � ��
 � �&��$ � � �&���%"� ! � � ��
 � �&�
but if

� � is I/O-PAR

� �&�'� �� �
� �
(� � �&���%"� ! � � ��
 � �&��) � � �&�*�#"� ! � � ��
 � �&�

Suppose that � has a deadlock state � , then by theorem 2 there must be a cycle of
ungranted requests in state � such that the variant function of each process is the same.
It follows from the above observations that all the processes in the cycle of ungranted
requests must be I/O-SEQ. Each of these processes must be waiting for input from its
successor in the cycle, so the cycle of ungranted requests corresponds to a data-flow
circuit (in the opposite direction) passing through only I/O-SEQ processes.

Otherwise suppose that the network contains a data-flow circuit through I/O-SEQ
processes. Each process on this circuit is bound to come to a halt during its first cycle to
wait forever for input from its predecessor. No process in the network can ever advance
more than one cycle beyond any of its neighbours in the connection digraph, so dead-
lock will eventually ensue because the network is connected +

Figure 2.1 illustrates examples of networks constructed from I/O-SEQ and I/O-PAR
elements. One of these has a data-flow circuit passing exclusively through I/O-SEQ
processes and so deadlocks; the other has no such circuit and so is deadlock-free.

Composite Processes

Sometimes we may build a component from I/O-SEQ and I/O-PAR processes, and then
wish to replicate it many times in a larger system. The next rule describes how, in the

2.1. CYCLIC PROCESSES 37

Figure 2.1: Networks of I/O-SEQ and I/O-PAR Processes

I/O-SEQ

I/O-SEQ

I/O-SEQ

I/O-SEQ I/O-SEQ

I/O-SEQI/O-SEQ

I/O-SEQ

I/O-SEQ

I/O-SEQ I/O-SEQ

I/O-SEQ

I/O-PAR I/O-PAR

I/O-SEQ I/O-SEQ

Deadlocks

I/O-PAR I/O-PAR

I/O-SEQ I/O-SEQ

Deadlock-free

right circumstances, we may treat such a component as a single process for the purpose
of deadlock analysis. We shall start with some new definitions.

If a connected network, � , of I/O-SEQ processes has no data-flow circuits we say
that PAR � � � is a composite-I/O-SEQ process.

The input and output channels of PAR � � � are taken to be those channels which do
not belong to the vocabulary of � and so are used by only a single process. We call
these the external channels of � .

If a connected network, � , of I/O-SEQ and I/O-PAR components, has neither a data-
flow circuit, passing through only I/O-SEQ processes, nor a data-flow path from an
I/O-SEQ process with an external input channel to an I/O-SEQ process with an exter-
nal output channel, passing through only I/O-SEQ processes, we say that PAR � �	� is a
composite-I/O-PAR process.

We find that Welch’s rules generalise to composite processes as follows.

Rule 4 (Welch 1987) A connected network � of composite-I/O-SEQ and composite-
I/O-PAR processes is deadlock-free if, and only if, it has no data-flow circuits which
pass through only composite-I/O-SEQ processes.

Proof. Let � �

be the network of I/O-PAR and I/O-SEQ processes that may be derived
from � by breaking each process down into its basic components. This rule follows
from rule 3 by proving that � contains a data-flow circuit through composite-I/O-SEQ
processes if, and only if, � �

contains a data-flow circuit through I/O-SEQ processes.
In graph-theoretic terms the connection diagram of � is a contraction of that of � �

(see appendix B). Suppose that � contains a data-flow circuit through only composite-
I/O-SEQ processes, then, clearly, � �

contains a data-flow circuit passing only through
I/O-SEQ processes.

38 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Alternatively, suppose that a data-flow circuit,
�

, is contained within � �

, passing
only through I/O-SEQ processes. Under the contraction of connection diagrams from� �

to � ,
�

maps either to a directed closed trail of � , or to a single vertex. (Note
that a closed trail differs from a circuit in that its vertices are not necessarily distinct
– it may ‘cross’ itself.) The latter option may be eliminated immediately as it implies
the presence of a data-flow circuit within a composite process, which is prohibited by
definition. The former option implies that � contains a directed closed trail through
composite-I/O-SEQ processes, because there can be no path through a composite-I/O-
PAR process that does not cross a simple I/O-PAR element. Any directed closed trail of� entails at least one circuit.

So � contains a data-flow circuit through composite-I/O-SEQ processes, if and only
if � �

contains a data-flow circuit through I/O-SEQ processes, and the required result
may now be deduced from rule 3 +

It is useful to note that basic I/O-SEQ and I/O-PAR processes are also composite-
I/O-SEQ and composite-I/O-PAR respectively. This enables us to build a deadlock-free
network from a mixture of basic and composite processes.

Example – Emulating VLSI Circuits

Welch originally formulated these design rules in order to emulate VLSI circuits, using
the occam programming language. He used rule 4 to construct various ‘circuits’ hier-
archically. For example, a ‘latch’ component is shown in figure 2.2. This is built from
two I/O-PAR ‘nand’ gates and two I/O-SEQ ‘delta’ processes (which simply duplicate
their input signal). The latch component is composite-I/O-PAR.

Welch used this technique to predict the behaviour of complex electronic circuits
prior to their realisation in silicon. He was able to construct deadlock-free networks
with hundreds of thousands of processes, using design rules 1 to 4. These rules have
subsequently been used for many other applications by occam programmers. (e.g. See
[Macfarlane 1992].) Rules 1 and 2 were also reported in [Roscoe and Dathi 1986].

A General Rule

Dijkstra and Scholten developed a rule for cyclic processes which communicate exactly
once with each of their neighbours on each cycle in fixed sequence [Dijkstra 1982].
This was extended by Roscoe and Dathi to allow sets of communications to be per-
formed in parallel, as with Welch’s rules. Here we generalise all these results to produce
a partial order based rule.

A cyclic-PO process is a process
�

with a finite set of communication channels
�

, which operates cyclically, communicating on each of its channels once per cycle.
The order of communication is governed by a strict partial order � � ��) � , whereby

�
becomes ready to communicate on a channel � for the � th time, once it has completed

2.1. CYCLIC PROCESSES 39

Figure 2.2: LATCH: a Composite I/O-PAR Process

NAND
(I/O-PAR) (I/O-SEQ)

DELTA

NAND
(I/O-PAR) (I/O-SEQ)

DELTA

LATCH

its � � � � � th cycle, and has communicated on all the channels below � by) on its � th
cycle. This can be defined formally as follows.

CYCLIC-PO � � ��) �
 ��� � � ��������)��
��� � � � DONE ��) ��
 �	� � � ��������)��
 DONE
 ���+�
 �mins ����� DONE ������� � ��� � � � DONE "�� � ����) �

! CYCLIC-PO � � ��) �
 �

Where mins ��� ��)�� is defined as the minimal elements of subset � of
�

, given by

mins ��� ��) �
���� �!� �#" $�%&�'� � �)(%)�
Now we consider a network of cyclic-PO processes, �
 � � � ��� �+*�	 , where

� �
 CYCLIC-PO � ! � � ��) � �
The set of communication channels of the network as a whole, ,

*�.- � ! � � , is called ! � .
We use symbol / to represent the aggregate of the various partial orderings,) � , i.e.

� � / � ��0 $21&� � �)43 � �
The direction of data-flow along communication channels, if any, is irrelevant to

the deadlock properties of cyclic-PO networks. Sometimes it is meaningless to assign

40 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

any direction to a channel. For this reason we shall here consider the connection graph
of a network rather than the connection digraph. This is constructed in the same way
except that it is undirected.

An undirected, closed trail of dependent channels is a sequence of channels of ! � ,� � � ��� ��� 	 , which forms a closed trail in the connection graph of � (see appendix B for
definitions), and satisfies

� � / ��� / ��� / ��� / � �
Theorem 7 A connected network of cyclic-PO processes is deadlock-free if, and only
if, it has no undirected, closed trail of dependent channels.

Proof. Suppose there exists an undirected, closed trail of dependent channels, such that

� � / ��� / ��� / ��� / � �
No communication can ever take place on any of these channels, so the processes they
are connected to will never complete their first I/O cycle. No cyclic-PO process can
ever have advanced more than one I/O cycle beyond its neighbours in the connection
graph of � , so there is a limit to the number of events that any component process can
execute. Hence deadlock will eventually ensue.

Now suppose instead that we have arrived at a deadlock state � of � . Every process
is unable to proceed, and has at least one ungranted request (with respect to

�
).

Consider any ungranted request
����� ��� �� �

�����
, where

�����
wants to communicate on

some channel � � for the �
�
th time, but

��� �
is refusing to participate. Either

��� �
and

��� �
have both completed the same number of I/O cycles, but

� � �
has not yet communicated

on all its channels below � � by / on the current cycle, or
��� �

has completed one less
I/O cycle than

� � �
. It follows that

� � �
is waiting to communicate on some channel � �

for the �	� th time, where either � �
�
 �
� ��� � � � / ��� � or �

�) �
� .
We can repeat this argument to construct an arbitrarily long sequence of pairs

� � � � �
� � � � � � � � � � � � ��
�� �

 � ���

Where ��� � � � �
�
 �

��� � ��� � � � / � ��� � � ��� � �
�) �

��� � �
The channels of this sequence correspond to a walk in the underlying graph of � .

The decreasing sequence �
� � � � � �

��� must have a limit, i.e.

$�� � ��� $�� � � �
 ���
Hence � � / � � � � / � � � � / ���

As ! � is finite, this sequence must eventually repeat a term, i.e.

$��,��� � � � � � / � � � �!� � / ��� / � � �"�#�%$
 � � �"�
where �&� �"� ������� �&� �"�#�%$ � � are all distinct.

2.1. CYCLIC PROCESSES 41

This sequence is represented by a closed trail in the connection graph of � +
This theorem describes the deadlock properties of networks of cyclic processes in

general. If each process can complete its first I/O cycle the network will never deadlock.
It is worth mentioning a special case of cyclic-PO processes. We define a cyclic-

LOP process to be a cyclic-PO process where � ! � ��)�� takes the form of a linearly
ordered partition. This means that ! � is partitioned into subsets � � ��������� � such that

� � ��� � � � � � � � � � � ��� � � � � � � � � �) � �) ���) � �
� � � � � ����� ��� � � � � � � � � � � � �) � �

The I/O-PAR and I/O-SEQ cyclic processes, defined by Welch, both have cyclic-LOP
communication patterns. The) relation is empty for an I/O-PAR process. For an I/O-
SEQ process, � �) � � if and only if � � is an output channel and � � is an input channel. For
a network, � , of cyclic-LOP processes we can derive a result with a simpler topological
requirement than for cyclic-PO processes. This is a slight extension of a theorem due
to Roscoe and Dathi.

An undirected, circuit of dependent channels is a sequence of channels of ! � , � � � ���
��� 	 , which forms a circuit in the connection graph of � , and satisfies

� � / � � / ��� / � � / � �
Theorem 8 A connected network consisting of cyclic-LOP processes is free of dead-
lock if, and only if, it has no undirected circuit of dependent channels

This is proved in virtually the same manner as Welch’s rules. In a deadlock state of
a network of cyclic-LOP processes, there must be a cycle of ungranted requests where
each process has performed the same number of I/O cycles. The crucial observation
is that if

���
has an ungranted request to

� � , trying to perform some event � and both
processes have performed the same number of I/O cycles then every event that

� � is
ready to perform is beneath � in the partial ordering)�� +

The result that Roscoe and Dathi proved was the same as this except that it enforced
the extra restriction that at most one channel be permitted between any two processes

These theorems may be too complicated to be considered design rules in their own
right, however a suite of design rules for computationally intensive parallel systems
can be derived. For instance Welch’s rules drop out as simple corollaries. Here is an
example of a new design rule.

Rule 5 A connected network of cyclic-PO processes is deadlock-free if, and only if,
there exists a labelling of the connection graph, given by � � ! � � N, which satisfies

� � / � �
! � � � � ��)�� � � � �

42 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Proof. We use the technique of reductio ad absurdum. Suppose the conditions of the
rule hold, and yet � can deadlock. Then, by theorem 7, there is a sequence of channels
satisfying

� � / ��� / ��� / ��� / � �

! � � � � ��)�� � ��� ��) ��� � � ���$�) � � � � �

! � � � � ��)�� � � � � �

Conversely if V is deadlock-free, by the nature of its construction it must have a trace� of finite length which includes every element of ! � . We label each element of ! �
according to the position of its first appearance in � to derive a labelling which satisfies
the conditions of the theorem. This completes the proof +

To design a network using this rule, we first draw a connection graph (or digraph
if we prefer) and label each channel with a numeric value, representing a logical order.
Then if each process is implemented as a cyclic-PO process, capable of communicat-
ing on its channels in order of increasing value, the network is deadlock-free. (When
a process has more than one channel of the same value, it should be implemented to
communicate in parallel on those channels.)

Example – A Toroidal Cellular Automaton

To demonstrate this approach, we consider a ����� cellular automaton program, where
each cell compares its state with those of its four neighbours in strict, clockwise order.
This is based on a program described in [Dewdney 1989]. The idea is that each cell
maintains an integer state and whenever it finds that its state is exactly one less than
that of a neighbour, it changes state to match. (All comparisons are done using modulo
arithmetic.). When a large grid is used some interesting patterns evolve.

Blind to the risk of deadlock we might give each cell process an identical commu-
nication pattern, such as defined by the following processes where each cell communi-
cates with its neighbours in the order left, up, right, then down.

CELL � � � �+�
 LEFT � � � �'�
LEFT � � � �+�
 ���
��� � ��� left � SKIP ������� ��� � � � � � ��� right � SKIP � � UP � � � �'�

UP � � � �+�
 ���
��� � ��� up � SKIP �������
��� ����� � � ��� down � SKIP �)� RIGHT � � � �'�
RIGHT � � � �'�
 ���
��� � � � right � SKIP �������
��� �
	 � ��� � � left � SKIP �)� DOWN � � � �'�
DOWN � � � �'�
 ���
��� � � � down � SKIP �������
��� ������	 � ��� up � SKIP � � LEFT � � � �+�
! CELL � � � �+�

� � � � � � � left � �
��� � � � � � right � �
��� � ��� up � � � � � � � � � down�
��� � ��� right � �
���
	 � � ��� left � � � � � � � down � � � � � ��	 � � up �

2.1. CYCLIC PROCESSES 43

In this process definition all integer arithmetic is modulo 4. The network is given
by � CELL ��� ��� � ����� � CELL ��� ��� � ����� � CELL ������� � ����� � CELL ������� � 	

This arrangement leads to immediate deadlock because there exist many undirected,
closed trails of dependent channels. We tackle this problem by labelling each channel
of the network, and then recoding each process to communicate on its channels accord-
ing to the ascending order of its labels. The labelling scheme shown in figure 2.3 allows
each component to communicate in strict clockwise order as required. But cells alter-
nate as to whether to start by communicating on the left or on the right. This gives us
a new definition for CELL as follows

CELL � � � �'�$
 LEFT � � � �'�
 � � � 	 �+� modulo
�
�� � � RIGHT � � � �+�

An implementation of this network, programmed in occam2, is given in [Martin
et al 1994].

In practice it would be desirable to add extra channels to this network to monitor the
state of each cell, and reset the system when required. Use of the cyclic-PO paradigm
would require that each channel be used on every I/O cycle, which might be unneces-
sary. In the next section theorem 7 will be extended to allow processes to communicate
on a subset of their channels on any given I/O cycle (as long as neighbouring processes
are in agreement as to which channels are to be used), and also to allow the channel
ordering to be changed between successive cycles.

Multi-phase Communication Patterns

A multi-phase-PO process is a deadlock-free process,
�

, with a set of communication
channels, ! � , which operates cyclically, communicating once on a predefined subset
of its channels on each cycle. On its 1 th cycle,

�
communicates according to a partial

order
� ! � 3 � � ��) � 3 � �

where ! � 3 � � � ! � :
�

communicates on channel � on its 1 th cycle if and only if
� � ! � 3 � � , in which case it becomes ready to do so once it has completed its � 1 � � � th
cycle, and has communicated on all the channels of ! � 3 � � below � by) � 3 � on its 1 th
cycle +

We say that a network of multi-phase-PO processes, �
 � � � ��� � * 	 , is concordant
if neighbouring processes agree on which subset of channels to use on each I/O cycle:

� 1 � N � �����
� ��� � � � ��� � � �����
	 �
� ! � 3 � ����� ! � �
 ! ���
� ! � 3 � � �

44 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.3: Connection Digraph with Channel Labelling

2

0

0

2

2

0

0

2

e.(i+1).j.left

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

0

0

2

2

3 1 1 3 3 1 1

1 3 3 1 1 3 3

3 3 11

3

1

1 1 3 3 1 1 3 3

3 3 1 1

e.i.j.left

e.(i-1).j.right

e.i.j.up e.i.(j-1).down

e.i.j.right

e.i.(j+1).up e.i.j.down

2.2. CLIENT-SERVER PROTOCOL 45

Theorem 9 A connected, concordant network of multi-phase-PO processes is free of
deadlock if, and only if, � 1 �

N � ���#� there is no undirected, closed trail of / � 3 � -
dependent channels +
The proof of this is virtually identical to that of theorem 7, and we can derive a similar
design rule.

Rule 6 If there exists a partial labelling of the channels of a network of multi-phase-
PO processes, for every I/O cycle, given by the partial functions � 3 � ! ���� N, which
satisfies

� � / � 3 � � �
! � 3 � � � ��)�� 3 � � � �
� � � � � ����� � 	 �
� ! ���
� domain � � 3 �
 ! � 3 � ���

then the network is deadlock-free +
Figure 2.4 illustrates how this rule may be used to add a control process to the toroid-

al cellular automaton. In this design each cell communicates bidirectionally with the
control process after the completion of every fourth cycle of communication with its
neighbours.

2.2 Client-Server Protocol

The cyclic paradigm may be used effectively to solve many common problems in par-
allel computing. However for certain problems it is too restrictive in the respect that it
enforces a pre-determined communication pattern. In practice, we often need to allow
the communication patterns of processes to vary according to external requirements. A
more flexible design rule from this perspective is the Client-Server Protocol. This was
originally formulated by P. Brinch Hansen in the context of operating systems [Brinch
Hansen 1973]. It has since been adapted by Welch, G. R. R. Justo and C. J. Willcock as a
means of designing deadlock-free concurrent systems using occam [Welch et al 1993].
The version of the protocol presented here is a formal adaptation and extension of the
ideas of these authors, which were stated informally.

The main requirement is that processes communicate on each one of their channels
either as a client or as a server, according to a strict protocol. A network of client-server
processes is deadlock-free if it has no cycle of client-server relationships.

A basic client-server CSP process
�

has a finite set of external channels partitioned
into separate bundles, each of which has a type, in relation to

�
, which is either client or

server. Each channel bundle consists of either a pair of channels, a requisition and an
acknowledgement, �&� ��� 	 , or a single channel (which we call a drip) � � 	 . (This allows
client-server conversations to be either one way or two way). We write the set of client
bundles of

�
as clients � � � , and the server bundles as servers � � � .

In the subsequent analysis, the event of communication on a channel is again rep-
resented purely by the channel name, ignoring any data that is passed. The purpose of

46 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.4: Multi-phase Channel Labelling

1

CONTROL

k= 5,10,15,...

1

0

0

1

CONTROL

k= 1,2,3,4,

 6,7,8,9,

...
 11,12,13,14,

0

3 3

2

0

1

0 2

2

1

0

3

1 1

0

2

3 3

2

0

1

0

33

1 1

2

2

1

0

33 1

0

1 3

2

1

2

3

2

3 1

0

1

0

2

3

2

3 1

0

0

3

0

0

1

2

2

3

0

0

1

2

2

0

1

2.2. CLIENT-SERVER PROTOCOL 47

this is clarity and simplicity. Following this convention, a basic client-server process,�
, must obey the following rules

(a)
�

is divergence-free, deadlock-free and non-terminating.

� ��� ��
 � � failures � � ���
 "
 �
(b) When

�
is in a stable state (no internal activity possible), either it is ready to

communicate on all its requisition and drip server channels or it is ready to com-
municate on none of them. In CSP terms this means that maximal refusal sets of�

include either all the requisition and drip server channels or none of them, i.e.

� ������
 � � failures � � � �
 maximal
! �
� � � � 	 � servers � � � � � "�
 � �
� ���&� ��� 	 � servers � � � � � "�
 � � ��
� � � � 	 � servers � � � � � �
 � �
� ���&� ��� 	 � servers � � � � � �
 � �

(c)
�

always communicates on any bundle pair � � � � 	 , in the sequence � ���+� � ���+����� ,
i.e.

� � � ��� 	 � clients � � �'" servers � � � � � � � traces � � � � � $ �*��� � � ��� � � $ �

(d) When
�

communicates on a client requisition channel, it must guarantee to accept
the corresponding acknowledgement, i.e.

� � � � � 	 � clients � � � � �)�*� ��
 � � failures � � � � ��� �) ��� �
! � � "�
 �
When we construct a client-server network � from a set of client-server processes� � � ����� � * 	 , each client bundle of a process must either be a server bundle of exactly

one other process, or consist of channels external to the network. Similarly each server
bundle of any process must either be a client bundle of exactly one other process or be
external to the network. No other communication between processes is permitted, i.e.

� � � � � �����
	 � � � � � clients � ��� �
Either $�� ��� � "
 ��� � � servers � � � �

Or let �
 ��� � �������'� 3 	 then � � � ��������� 3 � � �
����
� � � � � �����
	 � � � � � servers � ��� �

Either $�� ��� � "
 ��� � � clients � � � �
Or let �
 ��� � �������'� 3 	 then � � � ��������� 3 � � �
����

� "
 �
(Let � clients
� � �

servers
� � � "�� clients

� � � servers
� � �

� � � � � � ��������� � � 3 � 	 ����������� � � � ��������� � � 3
	 	 �
Then ! � � � ! � �
 � � � � � �������'� � � 3 � �������'� � � � ��������� � � 3�	 �

48 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

The client-server digraph of a client-server network consists of a vertex represent-
ing every process, and, an arc representing each shared bundle, directed from the proc-
ess for which it is of type client, towards that for which it is of type server.

Rule 7 (Client-Server Theorem) A client-server network, composed from basic proc-
esses, which has a circuit-free client-server digraph, is deadlock-free.

Proof. First we observe that the matching requirements for client and server bundles
within a network enforce triple-disjointedness within a client-server network. Rule (a)
ensures that basic client-server networks are also busy.

Let � be a client-server network, composed from basic processes, the client-server
digraph of which contains no circuit. Suppose it has a deadlock state � . There must
be a cycle of ungranted requests in state � by theorem 1 (page 29). Because the client-
server digraph is circuit-free this cycle of ungranted requests cannot consist entirely of
requests from client to server or vice-versa. It must contain a subsequence

� ����� �� �
� � ��� �� �

� 3
where

���
communicates with

� � as client to server and
� � communicates with

� 3 as
server to client. (Note that if the cycle of ungranted requests has length only two then���

and
� 3 are the same process.)

We shall now show that the basic client-server protocol renders this situation impos-
sible. First we note that by rules (c) and (d)

� � can only be waiting to communicate
with

� 3 on a server requisition or drip channel; an acknowledgement is never refused.
Hence

� � is ready to communicate on all its server requisition and drip channels by rule
(b). So

���
must be waiting for an acknowledgement from

� � . However, by rule (c),
� �

must have already acknowledged every previous requisition event in order to be ready
to communicate on all its requisition channels. So

� �
cannot have an ungranted request

to
� � after all. This contradiction proves that the system has no deadlock state + .

Example – A Simple Process Farm

We consider an application where computing-intensive tasks are performed in parallel
using a standard farm network configuration. A farmer employs � foremen each of
whom is responsible for � workers. When a worker process becomes idle it reports
the result of any work done to its foreman, using channel � � � � � , where � denotes worker
and � denotes foreman. The foreman reports this on channel � ��� to the farmer who, in
turn, replies with a new task using channel � ��� , The foreman then assigns the new task
to the worker with channel � � � � � . Here the relationship between worker and foreman
and the relationship between foreman and farmer are both client to server.

The CSP communication patterns of the component processes are given as follows.

FARMER
 + � � �� -�� � � � � �(��� � FARMER

2.2. CLIENT-SERVER PROTOCOL 49

clients � FARMER ��
 � �
servers � FARMER ��
 � � � � � � �(� � 	 ����� ��� � ��� � � � � � � ��� � � � � 	 �

! FARMER
 �'� � � ����� � � ��� � � � � � �(� � ����� � � ��� � � � � 	 �
FOREMAN � �&�
 + � � �� -�� � � � � � � � � � � � � � � � ��� � � � FOREMAN � �*�

clients � FOREMAN � �&� �
 � � � � � � � � � 	 �
servers � FOREMAN � �&� �
 � � � � � � � � � ��� � � 	 ����� � � � � � ��� � � � � � � � � ��� � � � � 	 �

! FOREMAN � �&�
 � � ��� � � ����� � � ��� ��� � � � � � � � � � � ����� � � ��� ��� � � � � � � � � � � � � �
WORKER � � � �+�
 � � � � � � � � � � � � WORKER � � � �'�

clients � WORKER � � � �'� �
 � � � � � � � � � � � � � 	 �
servers � WORKER � � � �'� �
 � �

! WORKER � � � �+�
 � � ��� � ��� � ��� � � �
It is straightforward to verify that each process obeys the basic client-server proto-

col. The client-server digraph is illustrated in figure 2.5. It has no circuits hence the
network is guaranteed deadlock-free.

Polling on a Channel

The technique of polling on a channel is a means by which a process can attempt to
communicate on a channel without the risk of becoming blocked. In high level imple-
mentation languages this is achieved by the use of time-outs, possibly of zero dura-
tion. The version of CSP that we are using is untimed so there is no direct equivalent
to this. However polling may still be represented using the available syntax. Consider
the process

� in � � + timeout � � ��� timeout

This process cannot become blocked trying to communicate on channel in, because it
is always able to perform the internal event timeout.

While a process is attempting to poll a channel its state is unstable. Note that rule
(b) of the basic client-server definition only applies to stable states. This means that the
restriction that a process must either offer its services to all its clients or none of them at
a given time may be overcome if polling is used. (However one has to be very careful in
order to avoid introducing divergence.) An example of using polling in a client-server
network is given in [Martin and Welch 1996].

50 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.5: Client-Server Digraph for FARM

<a.(n-1).(m-1), b.(n-1).(m-1)>

FARMER

<c.0, d.0>

FOREMAN(n-1)

FOREMAN(0)

WORKER(n-1,0)

<a.0.0, b.0.0>

WORKER(n-1,m-1)

WORKER(0,m-1)

WORKER(0,0)

<a.0.(m-1), b.0.(m-1)>

<a.(n-1).0, b.(n-1).0>

<c.(n-1), d.(n-1)>

Composite Processes

A composite client-server process V is a client-server network � � � ������� � * 	 composed
solely from basic client-server processes, of which the client-server digraph contains
no circuits; we define

clients � �-��
 �� *��.- � clients � � � � � *�� - � servers � � � ����
servers � � ��
 �� *��.- � servers � � � � � *�� - � clients � � � ����

In other words the client and server bundles of � are those of the component processes� �
which are not paired off.
We represent a composite client-server process by a single vertex in a client-server

digraph. The following result shows that this is consistent with the composition rule
governing basic processes.

Rule 8 (Client-Server Closure) A client-server network, composed from composite
processes, with a circuit-free client-server digraph, is deadlock-free.

2.2. CLIENT-SERVER PROTOCOL 51

Proof. Starting with a network such as described in the statement of the theorem
with client-server digraph � , consider the client-server digraph �

�

of the network which
is derived when each composite process is separated back into its basic components.
Digraph � is a contraction of �

�

. Suppose that �
�

contains a circuit. By definition this
cannot be local to a single composite process, and so it must map onto a closed trail in
� . But as � has no circuit it has no closed trail either – a contradiction. So �

�

has no
circuit and the result follows from rule 7 +

It is important to note that any basic client-server process is itself composite client-
server (although the reverse is not true). Hence we can apply the result to mixtures
of composite and basic processes. This rule is clearly useful for designing networks
hierarchically. Complex subnetworks may be reused with ease. Black-box processes,
that have been shown to abide by the composite client-server specifications, may be
safely incorporated.

However the rule is too weak in some circumstances, as we shall demonstrate below.
We need to find a generalisation.

We define a dependence relationship � between server bundles and client bun-
dles of a composite client-server process � as follows: if � � servers � �	� and � �
clients � �	� then � � � means that there is a path from the process with server bundle
� to that with client bundle � , in the client-server digraph of � .

Figure 2.6: Composite Client-Server Process

ca

b

Figure 2.6 shows a hypothetical composite client-server process BLACKBOX, with
external client-server channel bundles � , � , and � . Here we have

servers � BLACKBOX �
 � �)�
clients � BLACKBOX �
 � � � � �

��� � � � � ��� � �

52 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

We construct an exploded client-server digraph of a network of composite processes
in the following way. The digraph contains a vertex for every client and server bundle
of each process. If � and �

�

are vertices representing bundles � and � �

of the same com-
posite process

���
we draw an arc from � to �

�

if, and only if, � � � �

in
�

. If � and �
�

represent bundles of different processes
�

and
� �

then we draw an arc from � to �
�

if,
and only if, both vertices represent the same channel bundle, � as a client bundle and

�
�

as a server bundle.
We can derive the following result from these definitions.

Rule 9 A client-server network, composed from composite client-server processes and
with a circuit-free exploded client-server digraph, is deadlock-free.

Proof. Starting with a network such as described in the statement of the theorem,
consider the client-server digraph �

�

of the network which is derived when each com-
posite process is separated back into its basic components. Suppose that this contains
a circuit. This must be of the form� � � � � � � � � � � � � ����� � � � � � � � �,� � � � � � � � � � ����� � � � � � ����� � �
� � � � � � � � � � ����� � � � � 	 	
where each subsequence � � 3 � � ����� � 3 � � �

	
corresponds to a path through the client-server

digraph of one of the original composite client-server processes, say
� 3 , and each arc

� 3 represents a channel bundle shared by two such composite processes
� 3 � � and

� 3
(where arithmetic is modulo �).

In the exploded client-server digraph of the original network, let each external chan-
nel bundle � of composite process

�
be represented by a vertex � � � . Then each bundle

� 3 is represented by two vertices, say � 3 � � 3 � � and � 3 � � 3 , because bundle � 3 is shared
by processes

� 3 � � and
� 3 . These two vertices will be joined by an arc. Now for each

pair of bundles � 3 , � 3 � � it is clear that � 3 � � 3 � � . Hence each pair of vertices � 3 � � 3 ,
� 3 � � � � 3 will also be joined by an arc. So the exploded client-server digraph must con-
tain a circuit�&� � � � ��� ��� � � ��� � � � � � � ��� � � � � � � � ������� � � � � ��� ��� � � ��� � � � � � � ��� � � � � ��� � 	
This is a contradiction so there is no circuit in �

�

and the result follows by rule 7 +
Figure 2.7 displays two representations of a network constructed from six copies

of BLACKBOX (with suitably relabelled channels): the client-server digraph, and an
exploded client-server digraph. The former contains a circuit, so we cannot use rule 8
to show that the network is deadlock-free. However the latter contains none. So the
network is deadlock-free by rule 9.

Note that when “exploding” a composite process, it is not always necessary to allo-
cate a new vertex to every client or server bundle. Sometimes we can use a single
node to represent several client or server bundles, without losing any information. This
depends on the structure of the relation � .

2.2. CLIENT-SERVER PROTOCOL 53

Figure 2.7: Client-Server Digraph and Exploded Client-Server Digraph

ca

b

ca

b

The benefit of rules 8 and 9 is that we avoid repeating superfluous information in
the diagrams we draw to design our programs. Instances of complex subnetworks are
reduced to single nodes (or simplified representations when rule 8 is too weak).

Adding a Client-Server Interface to an Arbitrary Network

Rules 8 and 9 make available a hierarchical approach to software construction, based on
multiple layers of the client-server model. It would also be nice to be able to use other
paradigms to design subnetworks, and then wrap them up with a client-server interface
for inclusion in a wider context.

Here we consider how to modify an arbitrary network, so that it appears as a single
basic client-server process to its environment.

We start with a deadlock-free network �
 � � � ������� � � 	 , where each process
���

is itself divergence-free, deadlock-free and non-terminating. We want to add external
communications to the components of this network to make it behave like a single basic
client-server process. The resulting network will be called� �
 � � � � ������� � � � 	
where each process

��� �

performs events in the alphabet of
���

and possibly additional
events, which are external to the network, i.e.

� "
 �
! � ! ��� � � ! ��� � � ! � � �
 ���
The basic rule of thumb is that we may freely add client connections to any com-

ponent process
���

, but we may add server connections to at most one such process.
Adherence to the following rules will guarantee that � �

will behave as a single basic
client-server process.

54 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

1. The additional channels of each process
��� �

are partitioned into client and server
bundles, and

� � �

must obey the basic client-server protocol on these bundles.

(The client-server bundles of � �

are taken to be the union of those of each com-
ponent, which will be disjoint. It is clear that � �

will adhere to rules (c) and (d)
of the basic client-server protocol if each process

��� �

does)

2. No more than one process
��� �

may have server connections.

(This is to ensure that � �

obeys rule (b) of the basic protocol. This restriction
may be avoided if polling is used)

3. The new connections added to each process
� �

must not interfere with its internal
behaviour, i.e. ��� � � � ! ��� � � ! ��� �
 ���
(By lemma 5 this condition guarantees that � �

is deadlock-free, divergence-free
and non-terminating – rule (a) of the basic client-server protocol.)

Example – Adding a Flexible Control Mechanism

In section 2.1 we designed a deadlock-free toroidal cellular array monitored by a control
process, to be constructed using the multi-phase-po protocol. That approach required
monitoring to be performed at fixed, predetermined intervals. A more flexible design is
to add client connections to each cell, served by the control process. The new version
looks like this.

CELL
� � � � �'�
 LEFT

� � � � �'�
 � � 	 �'� modulo
�
�� � RIGHT

� � � � �+�
CHAT � � � �'�
 SKIP

�
out ��� � � � in ��� � � � SKIP

LEFT
� � � � �'�
 ��� � � � � � left � SKIP ������� ��� � � � ��� � � right � SKIP � �

CHAT � � � �'� � UP
� � � � �+�

UP
� � � � �'�
 ��� � � � � � up � SKIP ������� � � ����� � � � � down � SKIP � �

CHAT � � � �'� � RIGHT
� � � � �'�

RIGHT
� � � � �'�
 ��� � � � � � right � SKIP ������� ��� �
	 � ��� � � left � SKIP �)�

CHAT � � � �'� � DOWN
� � � � �'�

DOWN
� � � � �'�
 ��� � � � � � down � SKIP �������
��� ������	 � ��� up � SKIP � �

CHAT � � � �'� � LEFT
� � � � �'�

! CELL
� � � � �'�

��� �� �
��� � ��� left � �
��� � � � � � right � � � � � ��� up � � � � � � � � � down� � � � ��� right � �
���
	 � � ��� left � � � � � ��� down � � � � � ��	 � � up
� � � � � � � ���	� � � � �

 ��
��

2.3. RESOURCE ALLOCATION PROTOCOL 55

After each interaction with a neighbour the cell may non-deterministically decide
to talk to a CONTROL process, implemented as follows.

CONTROL
 +
�.-�� +
� -�� out � � � � � in � � � � � CONTROL

We have added a client bundle of the form� out � � � ��� in ��� � � 	
to each cell. No server bundles have been added, and the additional channels do not
affect the internal working of each process, i.e.

CELL
� � � � �'� � � in � � � � � out � � � � �
 CELL � � � �'�

This may be proved using the algebraic laws of CSP. It follows that the complete cel-
lular array now appears as a single basic client-server process to its environment. The
client-server digraph which results is shown in figure 2.8. This contains no circuits so
the entire system is deadlock free. It is now a simple matter to build extra client-server
components onto the system, such as a user interface and a graphics handler.

Figure 2.8: Adding Client-Server Connections

CONTROLTORUS

2.3 Resource Allocation Protocol

The Resource Allocation Protocol was discussed briefly in the introduction. It will
now be formalised, based on the treatment given in [Roscoe and Dathi 1986]. Then
an extended version will be presented which allows resources to be built on to existing
deadlock-free networks.

A user-resource network consists of a set of user processes ��� � ��������� * � which
compete for a linearly ordered set of resource processes � ��� � ����������� ����) � which have
the following communication pattern.

� �
 + � � � � �
	
	 � *�� � claim
� � � release

� � � � � �

56 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Each resource � is initially ready to be claimed by any user process � using channel
claim

� � . Then once it has been claimed it waits to be released, on channel release
� � ,

before returning to its initial state. Note that in this abstract model any details of mes-
sage passing corresponding to the claim and release events are omitted.

Clearly the channels claim
� � and release

� � are only meant to be used by user process
� � , i.e.

1 "
 �
! � claim
� � � release

� � � � ! � 3
����
We assume that each user process � � is deadlock-free and non-terminating. It never
tries to claim a resource that it already holds, nor to release one that it does not, i.e.

� � � traces ��� � � � � $ �*� � claim
� � � ��� release

� � ��$ �

Rule 10 (Resource Allocation Protocol) Consider a user-resource network � con-
structed from users ��� � ������� � * � and resources � � � � ��������� � �,��) � . Suppose that no
user process ever attempts to acquire a higher resource than any that it already holds,
i.e.

� � � traces ��� � ���
�*� � claim

� �) � � release
� ������� � 3) � � ��
! � � � claim

� 3 	 "� traces � � � �
and also that it never communicates with any other user process

� "
 �
! ! � ��� ! �
�
 � �
Then the network is deadlock-free.

Proof. Suppose the condition of the protocol is adhered to, yet there is a deadlock
state � . So there exists a cycle of ungranted requests by theorem 1 (page 29), which
must be of the following form due to the bipartite nature of the network.

� � � �� � � � � �� � � � � �� � � � � ��� � � �
�� � � � �

�� � � � �
Here user � � � wants to claim resource � � � , which is already held by user � � � , which

wants to claim resource � � � , etc. This implies the following contradiction

� � �) � � �) ���) � � �) � � � �
We conclude that the network can never deadlock +

The Dining Philosophers network can be modelled in CSP as follows:

2.3. RESOURCE ALLOCATION PROTOCOL 57

PHIL � �&�
 takes � � � � � takes � � ��� � � � � � eats � � �
drops ��� ��� � � � � � drops � � � � � PHIL � �&�

! PHIL � �&�
 � takes � � � � � takes ��� ��� � � � � � eats � � � drops ��� ��� � � � � � drops ��� � � �
FORK ���'��
 + � �.- � takes � � � � � drops � � � � � FORK ���+�
! FORK ���'��
 � takes � � � � � drops � � � ��������� takes � ��� ��� drops � ��� � �

�

�

PHIL � � � � PHIL � � � � PHIL � � � � PHIL ��� � � PHIL � � �
FORK � � � � FORK � � � � FORK � � � � FORK ��� � � FORK � � ���

where integer arithmetic is modulo 5.

Figure 2.9: Connection Graph for Dining Philosophers

FORK(2)

takes.0.4

PHIL(0)

FORK(1) FORK(3)

FORK(4)FORK(0)

PHIL(1)

PHIL(2) PHIL(3)

PHIL(4)

takes.3.3

takes.4.3drops.1.1

drops.1.0

takes.2.1

drops.2.1

takes.2.2

drops.2.2 drops.3.2

takes.3.2

drops.3.3

drops.4.3
takes.1.1

takes.1.0 drops.4.4 takes.4.4

takes.0.0

drops.0.0 drops.0.4

The connection graph of this network is displayed in figure 2.9. If we take the forks to
be the resource processes, ordered by

FORK � � ��) FORK ��� �) FORK � � �) FORK � � �) FORK � � �

58 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

and the philosophers to be the user processes, we see that the Resource Allocation Pro-
tocol is adhered to by all processes except PHIL � � � . As explained in the introduction,
deadlock is possible for this system, for instance after trace� takes � � � � � takes � � � � � takes � � � � � takes � ��� ��� takes � � � � 	
This is rectified by redefining PHIL ��� � to pick up his right-hand fork first.

PHIL ��� ��
 takes � � � � � takes � � � � � eats � � �
drops � � � � � drops � � � � � PHIL � � �

The resulting network is deadlock-free.

An Extended Protocol

The user processes will now be allowed to communicate with each other, so long as
they do not attempt to do so while they are still holding any resources. The following
result, inspired by an example from [Roscoe and Dathi 1986], will make it possible to
build resources onto an existing deadlock-free network, without introducing any risk
of deadlock.

Rule 11 (Extended Resource Allocation Protocol) Take a user-resource network �
constructed from users ��� � ������� � * � and resources � ��� � ������� ��� ����)�� . Suppose that no
user process ever attempts to acquire a higher resource than any it already holds, and
never attempts to communicate with another user process while holding a resource, i.e.

� � � traces � � � � �
����� claim

� �) ��� release
� � ��� � � 3) � � �
! � � � claim

� 3 	 "� traces ��� � �
� $ � � ��� claim

� �) ��� release
� � � � � "
 �
! � � � ! � �
� ! ��� �� � ��� 	 "� traces ��� � �

If the subnetwork of user processes ��� � ��������� * 	 is deadlock-free then the combined
network of user processes and resource processes ��� � ������� � * � � � ����������� 	

is also dead-
lock-free.

Proof. Suppose that the conditions of the protocol are adhered to and also that the
subnetwork of user processes ��� � ��������� * 	 is deadlock-free, yet there is a deadlock state� of the network. In this state every process is blocked. First we consider the possibility
that in state � no resource has been claimed, and therefore every resource is available
to be claimed by any user process. It follows that each user process is only waiting to
communicate with other user processes, i.e it is unable to perform any event outside the
vocabulary of the subnetwork of user processes. So the subnetwork ��� � ������� � * 	 itself
has a state, derived from � , in which every process is blocked. This is a deadlock state
which contradicts our hypothesis.

2.3. RESOURCE ALLOCATION PROTOCOL 59

So it must be the case that in state � at least one resource � � has been claimed. It is
therefore waiting to be released by some user process � � . Because � � is currently hold-
ing resource � � , it is not allowed to attempt communication with another user process
so it must be waiting to claim another resource. In this way we can proceed to con-
struct a cycle of ungranted requests, as was done in the proof of the basic Resource
Allocation Protocol, leading to the same contradiction. We conclude that the network
is deadlock-free + .

Example – The Arm-Wrestling Philosophers

To illustrate this we present a slight variation of the Dining Philosophers story, with
arm-wrestling contests introduced to relieve the tedium of endless spaghetti eating and
thinking. The philosophers are ranked according to seniority, given by

PHIL � � �) PHIL ��� ��) PHIL � � ��) PHIL � � �) PHIL ��� �

A philosopher may decide to eat some spaghetti or to challenge a senior philosopher to
an arm-wrestling bout. Between meals he is also prepared to accept a challenge from
any of his juniors. The new CSP definitions for the philosophers are given as follows.

PHIL ��� ��

�

takes � � � � � takes � � � � � eats � � �
drops � � � � � drops � � � � � PHIL � � ��� �� � � �.- �

wrestles � � ��� � PHIL � � ���
PHIL � �&��

���� �
takes � � ��� � takes � � ��� � � � � � eats � � �
drops � � ��� � � � � � drops ��� � � � PHIL � �&� � �� � � 3 - ��� � wrestles ��� � 1 � PHIL � �*� � ����� +

� + � � �3 -�� wrestles � 1 � � � PHIL � �&� � �
 � � � ���
PHIL � � ��
 �

takes � ��� � � takes � ��� � � eats � � �
drops � ��� � � drops � ��� � � PHIL � � � � +� +
3 -�� wrestles � 1 � � � PHIL � � � �

! PHIL � �&��
 � takes � � ��� � takes � � ��� � � � � � eats ��� � drops � � ��� � � � � � drops � � � � �
" � wrestles ��� � 1 � 1#) � � " � wrestles � 1 � � � 1�� � �

The subnetwork of philosophers is a simple example of a client-server network,
where each philosopher interacts with his juniors as a server and his seniors as a client.
It is easily shown to conform to the basic client-server protocol. Also the Extended
Resource Allocation Protocol is observed when it comes to the use of forks. Hence the
complete network of philosophers and forks is deadlock-free.

60 CHAPTER 2. DESIGN RULES FOR DEADLOCK FREEDOM

Figure 2.10: Arm-Wrestling Philosophers

FORK(2)

PHIL(0)

FORK(1) FORK(3)

FORK(4)

wrestles.1.4

FORK(0)

PHIL(1)

PHIL(2) PHIL(3)

PHIL(4)

takes.3.3
drops.2.1

takes.4.3drops.1.1

drops.1.0 takes.4.4

wrestles.2.3

wrestles.3.4

wrestles.0.4

takes.2.1

takes.2.2

drops.2.2 drops.3.2

takes.3.2

drops.3.3

drops.4.3
takes.1.1

takes.1.0
drops.4.4

drops.0.0

takes.0.0

drops.0.4

takes.0.4

wrestles.1.2

wrestles.0.1

wrestles.2.4

wrestles.1.3

wrestles.0.2

wrestles.0.3

Example – A Parallel Database

The Extended Resource Allocation Protocol is generally applicable to parallel algo-
rithms for manipulating and processing large datasets. For example, figure 2.11 illus-
trates a simple design for a bank database. Each account is modelled as a resource
process ACCOUNT� . The user processes are configured as a farm network (consisting
of a master and some slaves) to perform operations in parallel. Carrying out a trans-
action between two accounts requires that they be simultaneously held by a particu-
lar user process. There is clearly potential for deadlock here. Suppose that SLAVE �
is told to move some money from ACCOUNT

$
to ACCOUNT � , while at the same time

SLAVE
�

is told to move some money from ACCOUNT � to ACCOUNT
$
. If SLAVE� first

opens ACCOUNT
$

and SLAVE
�

first opens ACCOUNT � they will become involved in
a deadly embrace, which is likely to propagate throughout the system with disastrous
consequences. The worst thing about this kind of deadlock is that it may take months or
years of running time to appear, and so might not be revealed by testing. The possibil-
ity of deadlock in this situation could be removed through placement of an ordering on
the accounts (which may be arbitrary) followed by adherence to the Extended Resource
Allocation Protocol. The system might be generalised to a multi-user distributed data-
base, with more complicated transactions. As long as all the database records required
for a transaction are known in advance, the protocol is easily obeyed by claiming them

2.3. RESOURCE ALLOCATION PROTOCOL 61

in ascending order. A similar approach to this is described in [Wolfson 1987].
In practice, deadlock is found to be a significant problem in multi-user databases.

P. Marcino reports on an insurance database application which regularly experiences
over a hundred deadlocks in a single day [Marcino 1995]. He points out that the dead-
lock issue was ignored during the design phase, and only became apparent during ini-
tial testing. This is an all too common scenario. Much effort has been directed towards
deadlock-detection algorithms [Knapp 1987]. Once a deadlock has been detected steps
can then be taken to remove it by “rewinding” certain processes. It would seem to be
much better programming practice to prevent deadlock from arising in the first place.

Figure 2.11: Bank Database System

User Processes

SLAVE

SLAVE

1

n

MASTER

ACCOUNT1

ACCOUNT2

ACCOUNT3

4ACCOUNT

5ACCOUNT

ACCOUNTm

SLAVE2

Resource Processes

Transactions and enquiries

Information

