
Chapter 3

A Tool for Proving Deadlock-Freedom

Introduction

This chapter describes the development of Deadlock Checker, a tool which checks for
adherence to the various design rules. It provides a vital safeguard against human error
in their application.

As computer programs become increasingly vast and complex and are used for more
and more safety-critical applications the use of formal mathematical methods in their
development is becoming crucial. Lives may depend on it. However there are two
important barriers to overcome. Firstly the large amount of work required in apply-
ing rigorous formal methods might seem infeasible. Secondly, computer programmers
come from diverse backgrounds, and the level of mathematics involved will be off-
putting to many, and also increase the chance of error.

An important feature of the design rules of the previous chapter is that they are easy
to describe in an informal, intuitive manner as well as having precise, formal state-
ments. The algorithms employed by Deadlock Checker, described below, scale effi-
ciently to networks of arbitrary size. The combination of simple design rules and effi-
cient machine verification would seem to be a powerful weapon against deadlock. It
offers a solution to both the problems described above in the specific context of build-
ing deadlock-free concurrent systems.

Deadlock Checker operates by testing properties of individual CSP processes, or
pairs of processes, within a network. This is done using normal form transition sys-
tems, which were devised by Roscoe for use in the refinement checking program FDR.
The act of normalising a transition system is described below. A method of checking
failures specifications for individual processes and pairs of processes, using normalised
transition systems, is then developed. This technique enables the automatic verification
of adherence to the design rules of the previous chapter.

Deadlock Checker also implements a more general deadlock analysis algorithm. A
network’s state dependence digraph is defined where each vertex corresponds to a state
of an individual process, and each arc represents a potential ungranted request between

62

3.1. NORMAL FORM TRANSITION SYSTEMS 63

processes. It is shown that if the state dependence digraph is circuit-free then the net-
work is deadlock-free. This can be used to prove many useful networks deadlock-free,
going beyond the bounds of the design rules. The programmer is allowed to be more
adventurous and perhaps to bend the rules. The drawback with this approach is that
diagnostic messages are less informative.

3.1 Normal Form Transition Systems

The design rules which Deadlock Checker understands are defined by specifications in
the failures-divergences model of CSP. The processes to be analysed are non-terminat-
ing, which means that they have failures sets of infinite size. These are clearly unwieldy
objects to use for machine verification. Fortunately Roscoe has developed a method
for forming a unique finite representation of any process which has a finite number of
operational states [Roscoe 1994]. This is basically a hybrid form of its operational and
denotational representations which is called a normal form transition system. It is a
digraph where each arc represents an event, and each vertex a composite state, labelled
with either a set of minimal acceptance sets or a flag

�
to symbolise divergence.

Rather than offering a precise description, we shall outline the process of normalis-
ation with the aid of a worked example. Consider a process � defined by the mutually
recursive CSP equations

� � ��� ��� �
	��
� �
� � ��� ��� ��	��
� �

This process description is somewhat over-complicated for the behaviour it describes,
as we shall soon see.

First the syntax is parsed into a tree of operators acting on processes or pairs of
processes. This in turn is converted into a state transition system using the inference
rules for operational semantics. (See section 1.3 for a description of this procedure.)
Figure 3.1 illustrates the transition system for � . Recall that � represents an internal
decision – this is to cater for nondeterminism. States which have no � transition event
are described as stable, as no further internal activity is possible in those states.

Normalisation of a transition system is performed in three stages. Firstly a search is
made for states from which an infinite series of hidden events is immediately possible,
(i.e. states from which an indefinitely long walk of � -labelled arcs can be constructed).
Any such state is divergent and is labelled with

�
. In our example � is found to have

no divergent state.
The second stage, called pre-normalisation, involves the elimination of � arcs from

the transition system, and also results in a unique event labelling of arcs originating
from any node.

First the initial state is grouped together with any state that is reachable from there
by performing a sequence of � events. This group of states, which we shall call ��� ,is

64 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Figure 3.1: Transition System Resulting from Compilation

T

P

a b Q

c P

b Q

Q

a b P

b P

a

b

a

b

c
a b Q c P

a b P c P

T

T
T

T

T

3.1. NORMAL FORM TRANSITION SYSTEMS 65

collectively mapped to the initial state of the pre-normal state-transition system. Fig-
ure 3.2 shows how the initial state in the transition system for � (itself labelled �) is
grouped with states labelled ��� � � �
	��
� � , ��� ��� � and �
� � .

If � � contains any divergent state then the new state is also labelled as divergent.
Otherwise the new state is labelled with a list of minimal acceptance sets. (Minimal
acceptance sets are the complement of maximal refusal sets. Acceptance sets are used
here only because they typically smaller than refusal sets. The information carried is the
same.) This is constructed by looking at all the stable states within � � and, for each one,
the set of initial events that it offers. In figure 3.2 the state labelled ��� � � � offers� ��� and the state labelled � � � offers

� ��� , so the initial state in the new transition
system is labelled with minimal acceptance sets

��� ����� � ����� .
For each initial event � that is offered by states of � � , apart from � , a single tran-

sition is formed in the pre-normal transition system, leading to a new state constructed
from the group of states reachable from states within ��� by performing event � possi-
bly followed by a sequence of � events. The new state is labelled using the technique
described above. Each time that a new group of states is formed a check is made to see
whether it has already been discovered. The activity terminates once there are no more
new state groupings to be found. Figure 3.2 illustrates the entire pre-normalisation pro-
cedure for process � .

Figure 3.2: Pre-normalisation

}Acceptance set: b

State 1

{ } { }Acceptance sets: a c,

State 0

{ {} }Acceptance sets: a c,

State 2

Acceptance set: b { }

State 3

b

a

b

c

a

c

{

T

P

a b Q

c P

b Q

Q

a b P

b P

a

b

a

b

c
a b Q c P

a b P c P

T

T

T

T

T

In the third stage any states which are indistinguishable in terms of subsequent be-
haviour are combined to form a unique compact normal form. Those states to be iden-
tified together are determined by first marking each state with either

�
if it is divergent,

or its initial actions and minimal acceptance sets, and then computing the fixed point
of the following sequence of equivalence relations:

66 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

������� � ��� if, and only if, they have the same marking.

��� � �
	�� � � ��
�� � � � ��	�� ������� ���� � ������ � � ���� ���� � � � �� ���� � � ���� �
	����� �
In our example � � partitions the states of the pre-normal form into

���"! ��# ��� ��$ �&% ��� .
This partition is preserved by �'� , and so it represents the fixed point of � 	 . This gives
us the unique representation of � of figure 3.3. Given that the initial state of this system
is
!

it is simple to calculate the failures and divergences of � from this representation
(by walking around the digraph).

Figure 3.3: Normal Form Transition System

}Acceptance set: b

State 1

{ } { }Acceptance sets: a c

{

,

b

State 0

a

c

Let us be more precise about the relationship between the failures and divergences
of a general process � and its normalised transition system ((if one exists). For every
minimal divergent trace) of � there will be a unique walk from the initial state * �
of (to a divergent state, with the transitions labelled according to) . Conversely the
labels of any walk from * � to a divergent state of (form a minimal divergence of � .
For every maximal failure �)��,+ � of � , such that) is not a divergence of � , there will
be a unique walk labelled as) , going from * � to a non-divergent state * , which has a
minimal acceptance set -/.�+ . Conversely, for every walk labelled) from * � to a non-
divergent state * , � has maximal failures �)��0-1.32 �4� ��� �)��5-6.3287 � where 2 � �9� 2:7
are the minimal acceptance sets of state * .

FDR uses normal form transition systems to check for the refinement relation ;
between two processes � and � . By stepping through the states of the two processes
simultaneously, it is checked whether every possible behaviour of � is permitted by �
[Roscoe 1994]. In particular, FDR is often used to prove deadlock freedom by check-
ing for refinement against the worst possible deadlock-free process of a given alphabet.
Full details of how it is used are given in [Formal Systems 1993]. It is a very general
tool but it runs into problems with large networks because of the exponential network
state explosion as the number of processes increases.

3.2 Deadlock Checker

Deadlock Checker is implemented on top of FDR version 1.4, using the powerful func-
tional programming language ML. (An excellent introduction is given to ML in [Paul-

3.2. DEADLOCK CHECKER 67

Table 3.1: Machine Readable CSP
Typeset CSP ASCII CSP

STOP STOP

SKIP SKIP� � � e -> P

� � � � � c!x -> P

����� � � c?y -> P

���	�,2
����
�� � P [A||B] Q

������� � P ||| Q

��	�� P |˜| Q

��� � P [] Q

����� � � ��� � [] i:A @ P(i)

���
2 P \ A

��� ��� �! �#" � if i == n then P else Q

son 1991].) It takes a network of CSP programs as input, in the machine-readable syn-
tax of Scattergood [Scattergood 1992]. FDR is used to compile the network into a set of
individual normal form transition systems – one for each process. These are then used
for performing the local checks required to guarantee adherence to the various design
paradigms and prove deadlock-freedom. In this way networks with very large numbers
of states may rapidly be proven deadlock-free.

The main difference between machine readable CSP and the algebraic form is that,
in the former, the type of communication channels has to be explicitly defined using
a pragma statement. The representation of various CSP operators in ASCII format is
given in table 3.1.

Comment lines beginning with --+ are used to specify to Deadlock Checker exactly
which processes constitute the network to be analysed. There is no need to define the
alphabets of these processes as the compiler calculates them automatically (as being
exactly those events that each process may ever perform). However, there are circum-
stances where one might wish explicitly to define the process alphabets, and this feature
could be included in a future version of the program. Dijkstra’s classic Dining Philoso-
phers network may be defined as follows.

--- CSP process definitions

PHILNAMES = {0,1,2,3,4}
FORKNAMES = {0,1,2,3,4}
pragma channel eats:PHILNAMES
pragma channel takes,drops:PHILNAMES.FORKNAMES

PHIL(i) = takes.i.i -> takes.i.((i-1)%5) -> eats.i ->
drops.i.((i-1)%5) -> drops.i.i -> PHIL(i)

FORK(i) = takes.i.i -> drops.i.i -> FORK(i) []

68 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

takes.((i+1)%5).i -> drops.((i+1)%5).i -> FORK(i)

--- Define network for Deadlock Checker

--+ PHIL(0),PHIL(1),PHIL(2),PHIL(3),PHIL(4)
--+ FORK(0),FORK(1),FORK(2),FORK(3),FORK(4)

This file, which is called phils.csp is processed by Deadlock Checker into a file
phils.net containing a set of normalised transition systems - one for each process in
the network, by starting up the program and typing the following command.

compile ”phils.csp” ”phils.net”;

Figure 3.4 illustrates the normal form transition systems for the Dining Philosophers
network.

The interactive analysis may now proceed. First we must type a command to put
Deadlock Checker into interactive mode.

teletype ();

Welcome to Deadlock Checker

Command (h for help, q to quit):

Typing h summons the following menu of commands.

h - help: display this menu

l <file> - load network file

n - display list of networks in memory

s <name> - select network

c - display currently selected network

p - display list of processes in current network

d - decompose network analysis

v - check for acyclic deadlock freedom

(SDD algorithm)

x - check for acyclic deadlock freedom

(CSDD algorithm)

o - check for deadlock in cyclic-po network

w - check for deadlock in client-server network

a - check for resource allocation protocol

r - restrict network to its vocabulary

t - test for livelock-freedom (Roscoe’s rule)

We load the compiled network definition as follows.

Command (h for help, q to quit):l phils.net

3.2. DEADLOCK CHECKER 69

Figure 3.4: Normal Form Transition Systems for Dining Philosophers

State 0

State 1

State 2 State 3

State 4

takes.1.1

eats.0

takes.1.0 drops.1.0

drops.1.1

State 0

State 1 State 2

takes.1.1

drops.1.1
drops.2.1

takes.2.1

State 0

State 1

State 2 State 3

State 4

takes.2.2

takes.2.1 drops.2.1

drops.2.2

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

takes.2.2

drops.2.2
drops.3.2

takes.3.2

takes.3.3

takes.3.2 drops.3.2

drops.3.3

State 0

State 1 State 2

takes.3.3

drops.3.3
drops.4.3

takes.4.3

State 0

State 1

State 2 State 3

State 4

takes.4.4

takes.4.3 drops.4.3

drops.4.4

State 0

State 1 State 2

takes.4.4

drops.4.4
drops.0.4

takes.0.4

State 0

State 1 State 2

takes.1.0

drops.1.0
drops.0.0

takes.0.0

State 0

State 1

State 2 State 3

State 4

drops.0.4

drops.0.0takes.0.0

takes.0.4

PHIL(2)

FORK(1)

FORK(2)

PHIL(3)

FORK(3)

PHIL(4)

FORK(4)

PHIL(0)

FORK(0)

PHIL(1)

eats.1

eats.2

eats.3

eats.4

70 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Then we instruct Deadlock Checker to check for adherence to the Resource Allocation
Protocol.

Command (h for help, q to quit):a

Network phils.net is busy

Network phils.net is triple-disjoint

Process FORK(4) acts as a resource

Process FORK(3) acts as a resource

Process FORK(2) acts as a resource

Process FORK(1) acts as a resource

Process FORK(0) acts as a resource

Process PHIL(4) is not a resource

User process PHIL(4) obeys resource allocation protocol

User process PHIL(3) obeys resource allocation protocol

User process PHIL(2) obeys resource allocation protocol

User process PHIL(1) obeys resource allocation protocol

User process PHIL(0) claims resource FORK(4) still holding FORK(0)

This network is not deadlock-free, and Deadlock Checker reveals the problem. The
techniques used by Deadlock Checker to perform this analysis, and the other commands,
will now be explained in detail. Further details are also to be found in [Martin 1995].

3.3 Checking Adherence to Design Rules

In this section we shall give details of the various algorithms employed by Deadlock
Checker to test adherence to design rules. These algorithms will be illustrated with
examples. We shall also estimate their time complexity as a function of , where
is the number of processes in the network, unless otherwise stated.

Checking Network Prerequisites

Recall that our networks must be triple-disjoint, meaning that no event may be shared
by more than two processes, and busy, meaning that each process must be deadlock-
free, divergence-free and non-terminating. The property of triple-disjointedness can
be established by the following algorithm

1. Assume that the events in the network � � � � ��� � � 	�� are numbered from
$

to � (we
use the integer keys that FDR assigns to each event during compilation). Set up
two arrays, first and second, with dimension � which are initially “undefined”.

2. Scan the alphabet of each process � � in turn. For each event ����� � � , if first � � �
is undefined then set

first � � �	� � �

3.3. CHECKING ADHERENCE TO DESIGN RULES 71

otherwise if second � � � is undefined then set

second � � � � � �

otherwise halt, because event � lies in the alphabet of three processes, and so the
network is not triple-disjoint.

If we assume that the average number of events in the alphabet of each process
remains fixed as the number of processes in the network, , increases then the time
complexity is

� � �
‘Business’ is also checked in

� � � time, if we assume that the average number of
states of each process remains roughly constant as increases. We simply check every
state of every process to make sure that it is not labelled as divergent and also does not
have the empty set as a minimal acceptance set.

The prototype version of Deadlock Checker is programmed using only the standard
core of ML. As this has no imperative arrays, the program does not achieve the theo-
retical efficiency of certain algorithms that it implements.

Checking Trace and Refusal Specifications

Any information about failures and divergences of a process may be extracted from its
normalised transition system. Specifications on refusal sets are easy to check because
all the required information may be deduced from the list of minimal acceptance sets
stored at each vertex, and each vertex only needs to be looked at once. However a trace
specification could potentially lead to an infinite search if not carefully stated.

Consider the specification

�) � traces � � � � �)�� ����� �	� # �)
� � ���)�� �
Starting at the initial state of � we might search through the transition digraph, keeping
a record of the current trace, and checking every possible trace for)���� and)�� � . This
search might never terminate for a component of a busy network.

There is a much better approach to this problem, as follows. We write our specifi-
cation like this �) � traces � � � � � � # �)
� � � .)�� � � !
Then we define an incremental trace function � as follows

� � � � � � !

� �)�
 � � � � �
� � �) � �3# if � � �� �) � . $ if � � �� �) � otherwise

It is clear that � �) � � # �)
� � � .3)�� �

72 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

We start an exhaustive search through the transition system for pairs of the form� * ��� � , where * is a state and � is a possible value of � �) � at that state. The search
terminates either when there are no new such pairs to be found, or if we find a pair for
which � � � � � � ! � .

There are two reasons why this approach is better. Firstly we have defined our vari-
ant function, � , in an incremental way, which means that we do not need to store any
information about traces. The value of � �) � at each point in the search can be calculated
purely from the information stored at the previous point. Secondly we have converted
an endless search into one that is guaranteed to terminate, due to the bounds placed on
the range of � .

This technique can be extended to a network of two processes � � � � � , and a speci-
fication on network states �)�� � +�� � +�� � � . We assume that the specification is expressed
as a predicate

PRED � � ���) � � �9� � � 	 �) � � +�� �,+�� �
involving a number of incremental trace functions � � and maximal refusal sets + � and
+ � of � and � .

Two sets of records are maintained: pending and done. Each record is of the form� * � �,* � ��� � � ��� ��� 	 � , where � * � �,* � � is a pair of normal form states in which � and �
may simultaneously rest, and each � � is the value of � � �) � for a corresponding trace) .
The algorithm proceeds as follows.

1. Initially pending consists of a single record corresponding to the original state of
the system, and done is empty.

pending � � � � ! � ! � � � � � � � � ��� � � 	 � � � � � �
done � � � �

2. Take a new record from pending to be processed.

	 � � � *
� �,*�� ��� � � �9� ��� 	 � � pending

pending � � pending . � 	 �

3. Now check whether record 	 satisfies the specification. Suppose that * � has a
set 2 of minimal acceptance sets and *�� has a set � of minimal acceptance sets.

If
 � � 2 � � � � � � PRED � � � � �9� ��� 	 � � ��. � � � �3.
� � then halt. (The specifi-
cation is not satisfied). Otherwise

done � � done �
� 	 �

4. Now construct the set new of successor records of 	 , by considering every tran-
sition that is possible for PAR � � � � � � � from state pair � *�� �,*�� � . Assume that 	

3.3. CHECKING ADHERENCE TO DESIGN RULES 73

corresponds to some trace) of PAR � � � � � � � . Then

new � �

� � * � � � * � � � � �)�
 � � � � � �9� � � 	 �)�
 � � � � � �
� � � � . � � � * � �� * � �

�

�
� � * � � * � � � � ���)
 � � � � � �9� � � 	 �)
 � � � � � �

� � � ��. � � � * � �� * � �

�

�
� � * �� �,* � � � � �)
 � � � � � �9� � � 	 �)
 � � � � � �

� � � ��� � � � * � �� * �� � * � �� * � �
�

Although we have not stored any record of a value of) that corresponds to 	 , it is
not actually required in order to perform this calculation due to the incremental
method of defining the various trace functions.

5. Now we eliminate records from new that have already been processed and merge
the remainder into pending.

pending � � pending � � new . done �

6. If pending � � � then halt. (The specification is satisfied.) Otherwise return to
step 2.

This algorithm is not certain to terminate for every given set of incremental trace
functions � � and predicate PRED. But if there is a finite range of values for each � � out-
side which satisfaction of PRED is impossible then termination is guaranteed for any
network � � � � � .

The following example is included in order to illustrate this technique. Consider
the network � � � LEFT � RIGHT � with the following process definitions.

LEFT � in � mid � LEFT
� LEFT � �

in,mid �

RIGHT � mid � out � RIGHT
� RIGHT � �

mid,out �
Suppose we wish to prove that the following trace specification is satisfied by PAR � � � .

�)�� in .)�� out � !
� is an abstract representation of a double buffer, which inputs information on channel
in and outputs it on channel out. The specification simply states that the number of
messages held in the buffer at any given time lies between nought and two inclusive.

We proceed by defining an incremental trace function � as follows

� � � � � � !

� �)
 � � � � �
� � �) � � $ if � � in� �) � . $ if � � out� �) � otherwise

74 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

It is clear that � �) � �)
� in .3)�� out

In this case our predicate function PRED is given by

PRED � � �) � � � � # � � �) ��� ! �
Normal form state transition systems for the network � are shown in figure 3.5. We
now proceed to form an exhaustive set of records of the form

� * LEFT � * RIGHT � val �

consisting of a state of process LEFT, a corresponding state of process RIGHT and a
possible value for � �) � when the processes are in those states.

Figure 3.5: Normal Form Transition Systems for Two-Place Buffer

State 0

Acceptance set: mid

LEFT

State 0

RIGHT

Acceptance set: mid

Acceptance set: out

mid

State 1

outin mid

Acceptance set: in{

{

{

{

}

}

}

}

State 1

The search proceeds as follows. First we have

pending � � � ! � ! � ! � ��� done � � �
Check � ! � ! � ! � ; possible transition is in; leads to record: � $ � ! � $ � . Now we have

pending � � � $ � ! � $ � � � done � � � ! � ! � ! � �
Check � $ � ! � $ � ; possible transition is mid; leads to record: � ! � $ � $ � . Now we have

pending � � � ! � $ � $ � ��� done � � � ! � ! � ! � � � $ � ! � $ � �
Check � ! � $ � $ � ; possible transitions are in, out; lead to records: � $ � $ ��# � , � ! � ! � ! � .
Now we have

pending � � � $ � $ ��# � ��� done � � � ! � ! � ! � � � $ � ! � $ � � � ! � $ � $ � �

3.3. CHECKING ADHERENCE TO DESIGN RULES 75

Check � $ � $ ��# � ; possible transition is out; leads to record: � $ � ! � $ � . Now we have

pending � � ��� done � � � ! � ! � ! � � � $ � ! � $ � � � ! � $ � $ � � � $ � $ ��# � �
The search is now complete. Every record that was found satisfies the original specifi-
cation, and we shall conclude that it is satisfied by PAR � � � . This is rather a bold claim
given that the set of traces of PAR � � � is infinite and we have only examined four cases.
But it may be justified by using induction on traces, as follows.

Every trace) of PAR � � � corresponds to a unique pair of normal-form states
� * LEFT �,* RIGHT

�
These are found by constructing the unique walk in the normal-form transition system
of LEFT with labels)��� � LEFT, and the unique walk in the normal-form transition
system of RIGHT with labels)��� � RIGHT. We shall call this state pair

� * LEFT
�) � �,* RIGHT

�) � �
Now suppose that for a certain trace

�
, we know that record

� * LEFT
� � � � * RIGHT

� � � � � � � � �
lies in set done, constructed above. Now consider a trace

�
 � � � of � . This corre-
sponds to a state pair � * LEFT

� �
 � � � � �,* RIGHT
� �
 � � � � �

which must be reachable from � * LEFT �,* RIGHT
� by one or both of the processes perform-

ing event � . It follows that record
� * LEFT

� �
 � � � � � * RIGHT
� �
 � � � � � � � �
 � � � � �

must also lie in set done, due to the incremental way in which this set was constructed.
We actually know that

� * LEFT
� � � � �,* RIGHT

� � � � � � � � � � � � � ! � ! � ! � � done

because this is the record that was used to start the search. Hence, by induction, every
trace) of � is represented in done by a record of the form

� * LEFT
�) � � * RIGHT

�) � � � �) � �
So we conclude that the original specification is satisfied by all traces of PAR � � � .

Although this proof technique is tedious for humans it is very easy to automate on
a computer. It would be feasible to extend the technique to networks of more than
two processes, but due to the exponential state explosion as networks grow larger, this
would have limited potential in practice.

Note that, for individual processes, it is often feasible to perform this kind of spec-
ification check using FDR directly. In order to prove that a process � satisfies some
specification one constructs a process � that is the worst possible process that satisfies
the specification and then shows that ��� � . However specifications of networks of
two processes which involve the refusal sets of individual processes, such as the formal
statement of conflict-freedom, cannot be checked directly using FDR.

76 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Resource Allocation Protocol

Deadlock Checker includes a check for adherence to the Extended Resource Alloca-
tion Protocol. This depends on the processes which constitute the network being pre-
sented in a particular order. The network is assumed to consist of a sequence of user
processes ��� � � ��� ��� � followed by an ordered sequence of resource processes ��� � �9�
��� � . Observe that in the example of the Dining Philosophers network (page 67) the
processes are presented in the following order (which conforms to this requirement)

--+ PHIL(0),PHIL(1),PHIL(2),PHIL(3),PHIL(4)
--+ FORK(0),FORK(1),FORK(2),FORK(3),FORK(4)

The analysis proceeds in two stages. The first stage is to start from the end of the
list and work backwards to see how many processes behave as resources.

Checking that a process � behaves as a resource relies on the fact that the normal-
form transition system of a resource process has a very specific form. Consider a gen-
eral resource process

� � � 7�	� � ��� � 	 � � �
The normal-form transition system for this process is shown in figure 3.6. It has an
initial state representing the situation where the resource has not been ‘claimed’, plus
one state for each claim channel � � , representing the state of having been claimed on
that channel.

Figure 3.6: Normal Form Transition System for General Resource Process

State 0

Acceptance Set:

c c c{ }, , ...
1 2 k

r
1

c
1 k

State 1

Acceptance Set:

r{ }
1

Acceptance Set:

r{ }

Acceptance Set:

r{ }

State 2 State k

2 k

c
r

c
r

2
2

k

To establish whether a given process � is of this form involves firstly attempting to
split its alphabet into a set of claim-release pairs

� � � � � 	0� � � ��� � � 7 � 	 7 � � . The initial state
of � should have a single minimal acceptance set

� � � � ��� � �,7 � equal to the set of initial

3.3. CHECKING ADHERENCE TO DESIGN RULES 77

events of � . Then for each � � there should be a transition to a state � � with a single
minimal acceptance set

� 	 � � and a single transition back to the initial state of � . Each
of the 	 � must be distinct and different from all the � � .

If this splitting of � � proves successful, it must then be checked that each of the
claim-release pairs consists of events from the alphabet of a process before � in the
network list. Also no two event pairs should match the same process. If this is so �
is taken to be a valid resource process. At the same time a list of claim-release pairs,
cr list � � � , is constructed for each user process � , consisting of records of the form� � � � 	 � � � , where � � � 	 � is a claim-release pair and is a resource number (taken as the
numeric order of the resource in the network). (Note that we have relaxed the condition
that each resource needs to make itself available to every user process. A resource may
be private to a particular subset of users.)

Performing this check on the normal-form transition system for process FORK � � �
(see figure 3.4) results in splitting up its alphabet into two pairs

� � takes � � � � � drops � � � � � � � takes � ! � � � drops � ! � � � �
It is then found that

�
takes � � � � � drops � � � � � � � PHIL � � ��
takes � ! � � � drops � ! � � � � � PHIL � ! �

So it is concluded that FORK � � � is a resource.
As soon as a process is discovered which does not behave as a resource it is taken

to be a user process, along with all the processes which precede it in the network order-
ing. In the case of the Dining Philosophers, the first non-resource process discovered
is PHIL � � � . Each user process must then be checked for adherence to the Extended
Resource Allocation protocol. This protocol was defined formally using failures speci-
fications on page 58. We need to check that each user process � communicates with its
resources in alternating sequence on each � � � 	 � pair in cr list � � � . Also that it attempts
only to claim resources ordered below those that it already holds, and never attempts to
communicate with another user while holding a resource. This is achieved by casting
the specification in terms of incremental trace functions and then using the technique
described on page 71, as follows.

Let
cr list � � � � � � � � � � 	 �4� � � � � �9� � � � � 7 � 	 7 � � 7 � �

Then, for each � � ��$ � ��� ��� � define

��� �) � �)������ .)�� 	 �
Incrementally, this is written

��� � � � � � !

� � �)
 � � � � �
� � � �) � � $ if � � � ���� �) � . $ if � � 	 �� � �) � otherwise

78 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Function ��� �) � should take the value
$

whenever user � is holding resource � and oth-
erwise take the value

!
. In this case, rather than examining the minimal acceptance sets

of � after trace) , we need to look at its initial events � . These are available as the tran-
sition events that are possible from the normal form state of � that corresponds to) .
We define

PRED � � � �) � � ��� � � 7 �) � ��� � � ��� ��� � ��$ � �9� ��� � � � $ � ��� �) ��� ! � �	
� � �) � � $ � � 	 � � � � � � � � � � ��
 �� � �� � � ��
� � � � � � � � � � � ����������

If this specification check succeeds for each user process then the deadlock analysis
is reduced to the subnetwork � � � � ��� � � � which must be analysed by other means. It
may well be that the user processes have disjoint alphabets, in which case no further
analysis is required.

It is important to note a minor flaw in the part of the algorithm which identifies
resource processes. It is possible that a network could contain one or more processes
which are intended to be treated as users, but which never actually use any resources
and appear to behave like resources themselves. These could be identified as such in the
searching process described above, which could then lead to a valid deadlock-free net-
work being rejected. This is very unlikely to occur in practice. The problem could be
avoided by modifying Deadlock Checker to insist that resource processes be explicitly
labelled as such, but as this would cause unnecessary inconvenience in the vast majority
of cases it has not been done.

Complexity

We shall continue to assume that as the number of processes in a network, , increases,
the number of states and events of each process remains approximately fixed. This
means that the time taken to perform any local analysis of an individual process, or
pairs of neighbouring processes, can be assumed to be independent of the size of the
network.

Let us consider the algorithm for checking the Resource Allocation Protocol. We
assume that the proportion of user processes to resource processes remains fixed as
grows. Starting at the end of the network list, the claim-release channels pairs for each
resource process discovered need to be matched with the alphabet of a process which
precedes it. Each matching operation can be done in constant time by making use of
the two arrays first and second, indexed by events in � � , which were set up in order to
verify triple-disjointedness (page 70). So the entire matching process is

� � � . All the
other checking performed is local to a process, and so

� � � for the network as a whole
(by the above assumptions). This gives us an overall complexity of

� � � .

3.3. CHECKING ADHERENCE TO DESIGN RULES 79

Cyclic Processes

To analyse a network purporting to be cyclic-PO, we need to check that each process
communicates cyclically on its channels according to some partial order, for which we
construct the Hasse digraph. This is the minimal representation of a partial order; it
has a vertex for each element of the partial order and an arc ��� whenever element � is
directly below � , i.e.

���!� �

�� � ������� �
Then, in order to prove deadlock-freedom, we must show that the union of the Hasse
digraphs, which we call the channel dependence digraph, contains no circuit.

Recall that we formally defined the cyclic-po process CYCLIC-PO � + ��� � , which
communicates on the set of channels + , partially ordered by � , as follows.

CYCLIC-PO � + ��� � � � # � + � � � ��� �
� # � X � DONE �	� � � � # � X � � ���	� �

 DONE � +��
� � � mins
���� DONE ����� � � � # � + � DONE �

� � ���	� �

Where mins ��� �	� � is defined as the minimal elements of subset � of + , given by

mins ��� ��� � � � � � � �

�� � � � �������

It can be shown that this definition is unchanged when � + ��� � is replaced with its
Hasse digraph.

For verifying that a process � is cyclic and extracting its Hasse channel ordering
a two pass algorithm is employed as follows. The first pass tries to extract a Hasse
digraph on the assumption that the process is indeed cyclic. In each state) of the nor-
mal form transition system of � we look at every transition � � �5) � � that does not take us
back to the the initial state of � . If an event � � is possible in state) � that was not pos-
sible in state) we assume that � � � � . When this first stage is complete we will have
constructed a relation � on the channels of � . If � is cyclic-PO this will actually be the
Hasse digraph of its channel ordering. This is because whenever a cyclic-PO process
performs an event � and then immediately becomes ready to perform event � � , without
having completed a cycle, �9� must be directly above � in the channel ordering. If � is
not cyclic-po the relation that we have constructed will be meaningless.

If the � relation contains a cycle � � � ��� � � 7 � � � we can eliminate � straight
away. Otherwise we must now check whether the behaviour of � adheres exactly to
CYCLIC-PO � � � �	� � . This relies on the normal-form transition system of the latter
having a very specific form. Each state corresponds to the process � # � � � � DONE ��� �
for a particular set of events DONE. We perform the check using a depth-first search
(see appendix B) starting from the initial state of � . For each state of � that we visit we
maintain a record of the events that have been performed to arrive there, and call this
set DONE. We then check that the immediate behaviour at each state, as given by its

80 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

acceptance sets and transition events, conforms to that of � # � X � DONE �	� � . We also
check that DONE is consistent when a state is visited more than once. Whenever the
initial state is revisited, DONE should be equal to � � . This second pass can only suc-
ceed if � is cyclic-PO with ordering � .

If every process in the network is found to be cyclic-PO, the Hasse digraphs of their
channel orderings are aggregated into a global channel dependence digraph. We know
from theorem 7, page 40, that the network is deadlock-free if, and only if, there is no
circuit in the " relation

� � " � � " ��� " ��� " � �

Now " is the union of the full channel orderings of each process in the network and
so the channel dependency digraph is a subset of " . However it is a subset which car-
ries all the vital information and it may easily be shown that the channel dependency
digraph contains a circuit if, and only if, " contains a cycle. It follows that the network
is deadlock-free if, and only if, there is no circuit in the channel dependency digraph.
This is checked using the DFS algorithm.

To demonstrate the use of this tool we recall the toroidal cellular array. This is coded
in machine-readable CSP as follows.

n=4
indices = {0,1,2,3}
pragma channel e:indices.indices.{left,up,right,down}

CELL(i,j) = if ((i+j)%2==0) then LEFT(i,j) else RIGHT(i,j)

LEFT(i,j) = e.i.j.left -> e.((i-1)%n).j.right -> UP(i,j) []
e.((i-1)%n).j.right -> e.i.j.left -> UP(i,j)

UP(i,j) = e.i.j.up -> e.i.((j-1)%n).down -> RIGHT(i,j) []
e.i.((j-1)%n).down -> e.i.j.up -> RIGHT(i,j)

RIGHT(i,j) = e.i.j.right -> e.((i+1)%n).j.left -> DOWN(i,j) []
e.((i+1)%n).j.left -> e.i.j.right -> DOWN(i,j)

DOWN(i,j) = e.i.j.down -> e.i.((j+1)%n).up -> LEFT(i,j) []
e.i.((j+1)%n).up -> e.i.j.down -> LEFT(i,j)

--+ CELL(0,0),CELL(1,0),CELL(2,0),CELL(3,0)
--+ CELL(0,1),CELL(1,1),CELL(2,1),CELL(3,1)
--+ CELL(0,2),CELL(1,2),CELL(2,2),CELL(3,2)
--+ CELL(0,3),CELL(1,3),CELL(2,3),CELL(3,3)

Each process is cyclic and communicates with each of its neighbours in turn. (Note that
the interleaving construct has been algebraically transformed into external choice. This
is due to a syntax restriction placed on CSP by FDR 1.4.) Deadlock should be avoided
because alternate cells commence with different orientations. The Hasse digraph and
normal-form state transition system for process CELL � ! � ! � are illustrated in figure 3.7.

3.3. CHECKING ADHERENCE TO DESIGN RULES 81

Figure 3.7: Hasse Digraph and Normal Form Transition System for CELL � ! � ! �

e.3.0.right

e.0.3.down

e.0.0.right

e.0.0.down

e.0.0.left

e.0.0.up

e.1.0.left

e.0.1.up

Hasse Digraph

Acceptance set:

Acceptance set:
{ }

Acceptance set:

Acceptance set:

Acceptance set:
{ }

Normal Form Transition System

Acceptance set:

Acceptance set:

Acceptance set:
{ }

Acceptance set:

e.0.0.left e.3.0.right

e.3.0.right e.0.0.left

Acceptance set:

State 0:
Acceptance set:
e.0.0.left, e.3.0.right{ }

Acceptance set:
State 1: State 2:

State 3:

e.0.0.up, e.0.3.down

e.0.0.up e.0.3.down

State 4: State 5:

e.0.3.down e.0.0.up

State 6:

e.0.0.right,e.1.0.left

e.0.0.right e.1.0.left

State 7: State 8:

State 9:

e.1.0.left e.0.0.right

e.0.0.down, e.0.1.up

e.0.0.down e.0.1.up

e.0.1.up e.0.0.down

e.3.0.right{ } e.0.0.left{ }

e.0.3.down{ } e.0.0.up{ }

e.1.0.left{ } e.0.0.right{ }

e.0.1.up{ } e.0.0.down{ }

State 10: State 11:

82 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

We load the compiled network definitions, and check for adherence to the cyclic-PO
protocol.

Command (h for help, q to quit):l torus.net

Command (h for help, q to quit):o

For each process in the network a report like this one is returned

Process CELL(0,0) is cyclic-po:

(e.0.0.up > e.3.0.right), (e.0.3.down > e.3.0.right),

(e.0.0.up > e.0.0.left), (e.0.3.down > e.0.0.left),

(e.0.0.right > e.0.3.down), (e.1.0.left > e.0.3.down),

(e.0.0.right > e.0.0.up), (e.1.0.left > e.0.0.up),

(e.0.0.down > e.1.0.left), (e.0.1.up > e.1.0.left),

(e.0.0.down > e.0.0.right), (e.0.1.up > e.0.0.right)

The program then checks for circuits in the channel dependency digraph, and finding
none reports

Network torus.net is deadlock-free

If we change the dimensions of the toroidal array to
�����

, it turns out that the
network will deadlock, as is revealed by Deadlock Checker in the following way.

Found closed trail of dependent channels:

<e.4.4.right,e.4.4.up,e.4.3.right,e.0.4.up,e.4.4.right>

Network torus5.net deadlocks

When deadlock has been identified the reason behind it is always reported.
The algorithm for checking cyclic-PO networks involves local checking of each

process to establish its channel ordering, which is
� � � , plus a check for circuits in the

channel dependence digraph. We can assume that the number of edges in this graph
grows proportionally to by taking the number of edges in the Hasse digraph of each
process to be independent of . Checking for circuits can be performed in linear time
with the DFS algorithm. So the cyclic-PO network check can be done with

� � � com-
plexity.

Client-Server Protocol

Deadlock Checker contains a tool for verifying that a network has been implemented
according to the basic client-server protocol (described on page 45). There are two
phases to the method employed. Firstly the program attempts to identify the client and

3.3. CHECKING ADHERENCE TO DESIGN RULES 83

server channels bundles of each process in the network. For this to be feasible, the order
in which the processes are supplied in the network is significant. A process should com-
municate with those before it as a server and those after it as a client. This would guar-
antee that the client-server digraph would be free of circuits. Secondly the program
checks for conformance to the basic CSP specifications using the channel bundles that
have just been calculated.

The first part of the algorithm, that which calculates the channel bundles of each
process, has limitations. It will not succeed in correctly identifying client and server
channel bundles for certain valid basic client-server networks. There are two possi-
ble reasons for this. The first is that it is assumed that there is no polling on client or
server channels. (By polling we mean a process communicating on a channel when
in an unstable state, for instance if it is waiting for some concealed time-out event.)
The second, which is less important, is only likely to arise due to a coding error and is
described below.

However the method for verifying that a process with given client and server chan-
nel bundles obeys the basic protocol is precise, and will work for any basic client-server
network. It is a simple application of the specification checking technique described on
page 71.

To assist with explaining this algorithm, we shall consider its application to the sim-
ple process farm described in chapter 2. The machine readable description of this net-
work is as follows.

iset = {0,1,2,3,4}
jset = {0,1,2}
pragma channel a,b: iset.jset
pragma channel c,d: iset

WORKER(i,j) = a.i.j -> b.i.j -> WORKER(i,j)

FOREMAN(i) = [] j:jset @ (a.i.j -> c.i ->
d.i -> b.i.j -> FOREMAN(i))

FARMER = [] i:iset @ (c.i -> d.i -> FARMER)

--+ WORKER(0,0),WORKER(0,1),WORKER(0,2),
--+ WORKER(1,0),WORKER(1,1),WORKER(1,2),
--+ WORKER(2,0),WORKER(2,1),WORKER(2,2),
--+ WORKER(3,0),WORKER(3,1),WORKER(3,2),
--+ WORKER(4,0),WORKER(4,1),WORKER(4,2),
--+ FOREMAN(0),FOREMAN(1),FOREMAN(2),FOREMAN(3),FOREMAN(4)
--+ FARMER

The normal form transition system for process FOREMAN � ! � is illustrated in figure
3.8.

In order to try to establish the client and server bundles of a network the following
steps are performed

84 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Figure 3.8: Normal Form Transition System for FOREMAN � ! �

Acceptance set:
State 0:

{ }a.0.0,a.0.1,a.0.2

Acceptance set:

Acceptance set:

Acceptance set:Acceptance set:

Acceptance set:

Acceptance set:

Acceptance set:

Acceptance set:

Acceptance set:
State 1: State 2:

a.0.2

State 3:

State 4: State 5: State 6:

State 7: State 8: State 9:

c.0 c.0 c.0

d.0d.0d.0

b.0.0 b.0.1 b.0.2

{ } { } { }

{ } { } { }

}{ { } { }

c.0 c.0 c.0

d.0 d.0 d.0

b.0.0 b.0.1 b.0.2

a.0.0 a.0.1

3.3. CHECKING ADHERENCE TO DESIGN RULES 85

1. For each process � in the network list, the set of channels which it uses to com-
municate with predecessors in the list is compiled: � � � � . This should represent
the union of channels in � ’s server bundles, which must be disjoint, i.e. there is
no channel shared by two server bundles.

For process FOREMAN � ! � we find that

� � FOREMAN � ! � � � � � � ! � ! � � � ! � ! � � � ! � $ � � � ! � $ � � � ! � # � � � ! � # �

2. For each process � , we start at its initial state and perform a depth-first search
until we find a state � where � can accept communication on a server channel,
i.e. there is a minimal acceptance set 2 which intersects with � � � � . By rule
(b) of the basic client-server definition, 2 � � � � � should consist of all the server
requisition and drip channels of � . (This assumes that there is no communication
by polling, in which case a server requisition or drip might have already occurred
without having appeared in a minimal acceptance set.)

Process FOREMAN � ! � accepts communication on server channels while in its
initial state, where it has a minimal acceptance set 2 � � � � ! � ! � � � ! � $ � � � ! � # � .

3. For each channel � in 2 � � � � � we take the corresponding transition from state� to a new state ��� . We then construct a server bundle from � by performing
a DFS, rooted at ��� , to find a successor state where � has a transition on some
server channel � � . If � � lies in 2 � � � � � , i.e it is a requisition or a drip, then � must
be a drip, otherwise � � � � � � is a requisition-acknowledge bundle. If, however, the
DFS terminates without finding another communication on a server channel it
means that the process might never be able to communicate on a server channel
again after performing event � . In this case we take � to be a drip channel. It
is theoretically possible that this is incorrect and that � is actually a requisition
channel, but in practice this is most likely to be a coding error in process � .

Applying this step to FOREMAN � ! � involves performing DFS searches rooted
at states 1, 2, and 3 to find the next state where a server event may be performed.
In each case a new server event is discovered (in states 7, 8 and 9 respectively)
which results in the construction of three requisition-acknowledge bundles for
the process, as follows:

servers � FOREMAN � ! � � � � � � � ! � ! � � � ! � ! � � � � � ! � $ � � � ! � $ � � � � � ! � # � � � ! � # � �

4. Having calculated the server channel bundles of a process � , we must check that
they are disjoint, and that their union is � � � � . Both these properties are clearly
satisfied for FOREMAN � ! � .

86 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

5. The next step is to assign each server bundle of � to another process as a client
bundle. This is done by checking that the channels which form each server bun-
dle belong to the alphabet of some preceding process in the list. If there is any
server bundle which cannot be matched in this way then something is wrong with
the network being checked. The three server bundles of FOREMAN � ! � are allo-
cated as client bundles to WORKER � ! � ! � , WORKER � ! � $ � and WORKER � ! ��# �
respectively.

If each stage has been successful, then we shall have calculated a set of client and server
bundles for each process, which can now be checked against the basic protocol. How-
ever it is possible that this procedure might have failed even if the processes were valid,
for the two reasons given above. It is important to make clear that this limitation could
never result in Deadlock Checker passing a network as being deadlock-free when it
actually deadlocks. The restriction could easily be overcome by requiring the client and
server bundles to be explicitly defined in the original CSP network script, although this
would be inconvenient to the user. Perhaps both options should be offered in a future
version of Deadlock Checker. (However the more general SDD algorithm, which will
be described below, can correctly identify deadlock-freedom for any basic client-server
network, regardless of the order in which the processes are supplied.)

The second phase, which is checking that each process obeys the basic client-server
protocol, is a straightforward application of the CSP specification checking technique
described on page 71, using the formal definition of the rules of the basic client-server
protocol, recast in terms of incremental trace functions.

To demonstrate the tool in action again, here is the analysis of the simple process
farm.

Command (h for help, q to quit):l farm.net

Command (h for help, q to quit):w

For each process in the network a report of the following form is returned

Process FOREMAN(0) obeys client-server protocol:

clients(FOREMAN(0)) = {<c.0,d.0>}

servers(FOREMAN(0)) = {<a.0.0,b.0.0>,<a.0.1,b.0.1>,<a.0.2,b.0.2>}

As each process satisfies the protocol the program concludes that the network will never
deadlock.

Network farm.net is deadlock-free

We shall now estimate the complexity of the algorithm for checking adherence to
the basic client-server protocol with the usual assumptions about the number of states
and events of each process. Calculating the set of server channels, � � � � � , for each

3.3. CHECKING ADHERENCE TO DESIGN RULES 87

process � � , can be done in constant time, by making use of arrays first and second that
were set up in the course of testing for triple-disjointedness (page 70). Once this set has
been separated into server bundles for � � , by local analysis, these may each be matched
up with a preceding process in the network in the same manner. The act of checking
each process for conformance to the protocol, is again purely local to each process and
so
� � � . Hence the overall complexity is

� � � .
Network Decomposition

Deadlock Checker implements the method for factorising deadlock analysis of Brookes
and Roscoe (theorem 6, page 32). This involves finding all the disconnecting edges of
the network communication graph. Any such edge that is shown to be conflict-free may
be removed. Deadlock analysis is then reduced to checking that each of the remain-
ing network fragments (essential components) is deadlock-free. First we need to con-
struct the communication graph for the network, and calculate its vocabulary � . This
is straightforward given the alphabet of each process, which is calculated at the com-
pilation stage.

Finding the disconnecting edges of the graph can be done in linear time, using a
variant of the DFS algorithm. This is described in appendix B. It is then required to
check that the pair of processes � � � � � which constitutes each disconnecting edge is
conflict-free. This is done by checking that for every state * of the subnetwork � � � � �
the following condition holds.

� � ��� � �� � � � ��� � �� � � �

The specification checking technique described on page 71 is applied here. Any dis-
connecting edge which is found to be conflict-free is removed from the communica-
tion graph. When this phase is finished the DFS algorithm is employed once again to
assemble the residual components.

The subnetwork that each essential component represents is then assigned a name,
and placed on a ‘stack’ of networks. It may then be analysed by other methods. Dead-
lock Checker maintains a tree-structure on this stack for hierarchical proofs. So, if and
when deadlock-freedom has been established for each essential component, the original
network will be reported as being deadlock-free.

The following example demonstrates the construction of a hierarchical proof using
Deadlock Checker. Consider the Telephoning, Arm-Wrestling, Dining Philosophers.
This is a system constructed from two tables of arm-wrestling philosophers, with a tele-
phone link added between the two most senior philosophers. The CSP code is as fol-
lows

PHILNAMES= {0,1,2,3,4}
FORKNAMES = {0,1,2,3,4}
TABLENAMES = {A,B}

88 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

pragma channel eats:TABLENAMES.PHILNAMES
pragma channel takes,drops:TABLENAMES.PHILNAMES.FORKNAMES
pragma channel wrestles:TABLENAMES.PHILNAMES.PHILNAMES
pragma channel phone

-- Junior philosopher: may challenge any of his seniors to an
-- arm-wrestling contest, between meals. He is left handed for
-- adherence to Resource Allocation Protocol.

JPHIL(x) = takes.x.0.4 -> takes.x.0.0 -> eats.x.0 ->
drops.x.0.0 -> drops.x.0.4 -> JPHIL(x) |˜|
(|˜| j:{j | j <- PHILNAMES, 0<j} @ wrestles.x.0.j ->
JPHIL(x))

-- Intermediate philosopher: may challenge any of his seniors to
-- an arm-wrestling contest or accept a challenge from a junior,
-- between meals.

PHIL(i,x) = (takes.x.i.i -> takes.x.i.((i-1)%5) -> eats.x.i ->
drops.x.i.((i-1)%5) -> drops.x.i.i -> PHIL(i,x) |˜|
(|˜| j:{j | j <- PHILNAMES, i<j} @ wrestles.x.i.j ->

PHIL(i,x))) []
([] j:{j | j <- PHILNAMES, j<i} @ wrestles.x.j.i ->
PHIL(i,x))

-- Senior philosopher: accepts arm-wrestling challenges from his
-- juniors between meals; may also telephone senior philosopher
-- on other table or accept a call from him between meals.

SPHIL(x) = (takes.x.4.4 -> takes.x.4.3 -> eats.x.4 ->
drops.x.4.3 -> drops.x.4.4 -> SPHIL(x)) []

phone -> SPHIL(x) []
([] j:{j | j <- PHILNAMES, j<4} @ wrestles.x.j.4 ->
SPHIL(x))

FORK(i,x) = takes.x.i.i -> drops.x.i.i -> FORK(i,x) []
takes.x.((i+1)%5).i -> drops.x.((i+1)%5).i -> FORK(i,x)

--+ JPHIL(A),PHIL(1,A),PHIL(2,A),PHIL(3,A),SPHIL(A)
--+ JPHIL(B),PHIL(1,B),PHIL(2,B),PHIL(3,B),SPHIL(B)
--+ FORK(0,A),FORK(1,A),FORK(2,A),FORK(3,A),FORK(4,A)
--+ FORK(0,B),FORK(1,B),FORK(2,B),FORK(3,B),FORK(4,B)

The first stage of proving this network deadlock-free is to separate it into essential
components (which in this case are the two tables of philosophers and forks).

Command (h for help, q to quit):l armphonephils.net

Command (h for help, q to quit):d

Network armphonephils.net is triple-disjoint

3.3. CHECKING ADHERENCE TO DESIGN RULES 89

Network armphonephils.net is busy

SPHIL(A) and SPHIL(B) are conflict-free wrt vocab

Deadlock analysis reduced to:

<JPHIL(A), PHIL(1,A), PHIL(2,A), PHIL(3,A), SPHIL(A),

FORK(0,A), FORK(1,A), FORK(2,A), FORK(3,A), FORK(4,A)>

<JPHIL(B), PHIL(1,B), PHIL(2,B), PHIL(3,B), SPHIL(B),

FORK(0,B), FORK(1,B), FORK(2,B), FORK(3,B), FORK(4,B)>

The two new subnetworks will have now been added to the stack. One of these is
selected and then analysed first as a user resource network, and then as a client-server
network once its resources have been stripped away.

Command (h for help, q to quit):n (list networks)

armphonephils.net (unresolved)

armphonephils.net_0 (unresolved) essential component

armphonephils.net_1 (unresolved) essential component

Command (h for help, q to quit):s armphonephils.net 0

Command (h for help, q to quit):a

Network armphonephils.net_0 is busy

Network armphonephils.net_0 is triple-disjoint

Process FORK(4,A) acts as a resource

...

Process SPHIL(A) is not a resource

User process SPHIL(A) obeys resource allocation protocol

...

Deadlock analysis reduces to:

<JPHIL(A), PHIL(1,A), PHIL(2,A), PHIL(3,A), SPHIL(A)>

Command (h for help, q to quit):n

armphonephils.net (unresolved)

armphonephils.net_0 (unresolved)

armphonephils.net_1 (unresolved)

armphonephils.net_0_3 (unresolved) resources stripped

Command (h for help, q to quit):c (display current network)

armphonephils.net_0_3

Command (h for help, q to quit):w

Network armphonephils.net_0_3 is busy

Network armphonephils.net_0_3 is triple-disjoint

Process JPHIL(A) obeys client-server protocol

clients(JPHIL(A)) =

{<wrestles.A.0.4>, <wrestles.A.0.3>,

<wrestles.A.0.2>, <wrestles.A.0.1>}

90 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

servers(JPHIL(A)) = {}

...

Network armphonephils.net_0_3 is deadlock-free

Network armphonephils.net_0 is deadlock_free

To complete the deadlock analysis the other essential component is analysed in the
same manner

Command (h for help, q to quit):s armphonephils.net 1

Command (h for help, q to quit):a

...

Command (h for help, q to quit):w

...

Network armphonephils.net_1_4 is deadlock-free

Network armphonephils.net_1 is deadlock_free

Network armphonephils.net is deadlock_free

The proof of deadlock-freedom for the network of Telephoning, Arm-wrestling,
Dining Philosophers has now been completed.

The algorithm for network decomposition requires the construction of the network
communication graph and vocabulary. Using the following algorithm, it is possible to
do this with complexity

� � log � � � .

1. Start with the two arrays, first and second, that were constructed in order to estab-
lish triple disjointedness. Scan the two arrays to construct the list of pairs of the
form � first � � � � second � � � � such that both elements of the pair have been defined.
This list will contain all the edges of the communication graph, but some of them
may be duplicated. The set of values of � which contribute to this list is the vocab-
ulary of the network.

2. Purge duplicate pairs from the list by performing a merge-sort (as described in
[Paulson 1991]). This will result in a list of the edges in the communication graph.

The first step of this algorithm has complexity
� � � , where is now taken as the num-

ber of edges in the communication graph; the second, which involves performing a
merge-sort, has complexity

� � log � � � .
To complete the network decomposition, local checks of process pairs remain to be

done, which is
� � � , and also some global graph operations, which can also be done in� � � using the DFS. So network decomposition can be done with overall complexity� � log � � � .

3.3. CHECKING ADHERENCE TO DESIGN RULES 91

Restricting a Network to its Vocabulary

Deadlock Checker also has a feature to restrict a network to its vocabulary (only shared
events visible). By lemma 5 (page 32) we know that if a network transformed in this
way is deadlock-free then so must have been the original network. This is useful, for
instance, in the case of a network containing a cyclic-PO essential component, where
some of the processes have had extra channels added for communication with processes
in other essential components, which are not used according to the cyclic-PO paradigm.

However it is possible for the act of hiding these extra channels to introduce diver-
gence, which renders the resulting network unsuitable for deadlock analysis by our
methods. This only happens when an arbitrarily long sequence of communications on
the external channels is possible.

The technique that we use to restrict a network to its vocabulary comprises the fol-
lowing steps

1. The vocabulary of the network � is calculated (those events which occur in the
alphabet of two processes).

2. For each process � � all events in � ��. � are hidden. In the normal-form transition
system for � this involves relabelling with � those transitions labelled with any
of these events and removing acceptance sets which include these events.

3. The resulting transition system then needs to be renormalised. This is performed
using Roscoe’s algorithm as described in section 3.1.

4. The transformed network is placed on Deadlock Checker’s network stack. If it
is subsequently proven deadlock-free then so must be the original network.

Checking for Livelock-Freedom

Deadlock Checker does not overlook the important property of livelock-freedom. We
implement the proof rule of Roscoe (theorem 5, page 31) which works in many cases.
The order in which the processes are supplied is significant here. The intention is to
establish divergence-freedom after all internal communications have been hidden. To
do this, we need to show that no process can communicate indefinitely with those before
it in the network list, as follows.

1. For each process � � we calculate the subset of its alphabet shared with predeces-
sors in the process list and call this (� .

2. We then consider the subgraph of the normal-form transition system of � � con-
taining only those arcs labelled with events which lie in (� .

3. If this subgraph contains no circuit then � � cannot communicate indefinitely with
its predecessors in the network list.

92 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

3.4 Towards a General Purpose Algorithm

The SDD algorithm

The tools described above are useful for proving deadlock-freedom for networks con-
structed according to rigid design rules. But they do not allow for any improvisation by
the creative programmer. The only scope for improvement is the addition of checking
code for extra design rules, as and when required.

Despite these limitations, the design rules that are understood by Deadlock Checker
enable the automatic proof of deadlock-freedom for networks of an unprecedented size.

In this section we shall describe the development of an alternative algorithm, which
has no knowledge of design rules, and yet turns out to be able to do much offered by
the above tools, and more besides. A characteristic of deadlock-states of busy, triple-
disjoint networks, is that they involve a cycle of ungranted requests (theorem 1, page
29). So if we can prove that a network can never have a cycle of ungranted requests,
then it is deadlock-free. This is the fundamental principle which underlies the proof
technique of variant functions (theorem 2, page 29).

We now present a closely related alternative to variants, the SDD algorithm. This
attempts to prove deadlock-freedom by forming a state-dependence digraph. This is
basically a kind of giant wait-for digraph which instead of having just a single vertex
to represent a process has a different vertex for each minimal acceptance set of each
normal-form state.

1. Starting with a network of normalised transition systems � � � � � � � � � � � � � we form
the communication graph � , and a digraph, SDD, which is initially empty.

2. For each edge � � � � � � of � we form the set
� � � � � � � of all normal-form state

pairs � � � � � � that processes � and � � can be in simultaneously.

3. For each pair � � � ��� � in each
� � � � � � � , for each minimal acceptance set 2 of �

and for each minimal acceptance set 2 � of � � , if � has an ungranted request to � � ,
with respect to � – the vocabulary of the network, add arc � � � � � �02 � � � � � � � � �52 � � �
to digraph SDD. And if � � has an ungranted request to � , with respect to � , add
arc � � � � � � � �02 � � � � � � � �52 � � .

4. We now have constructed a digraph, SDD. If this is circuit-free the network is
reported as being deadlock-free.

Theorem 10 A busy, triple-disjoint network, which has a circuit-free state dependence
digraph, is deadlock-free

Proof. Consider a busy, triple-disjoint network � � � � � � ��� � 	 � . Suppose that � has
a deadlock state

* � �)�� � + � � ��� + 	 � �

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 93

In this state there is a cycle of ungranted requests

� ��� � � �� � � ��� � � �� ��� � ��� � � �� � � ���
Where each process � ��� has performed trace) �� � � ��� , and is refusing set + ��� . Let
this trace and refusal set correspond to state and acceptance set � � � � �52 � � � of the normal
form transition system for � � � . As � � � has an ungranted request to � � ��� � in state * , the
analysis of the two processes will produce an arc from vertex � � � � � � � � �52 � � � to vertex� � � ��� � � � � ��� � �02 � ��� �

� in the state dependence digraph. Performing this analysis of each
pair of consecutive processes in the cycle of ungranted requests will result in a circuit
in the state dependence digraph.

So we have shown that if there is a deadlock-state of � , then there is a circuit in its
state dependence digraph. This completes the proof �

Here is what happens when we apply the SDD algorithm to the Dining Philosophers
network.

Command (h for help, q to quit):l phils.net

Command (h for help, q to quit):v

Network phils.net is triple-disjoint

Network phils.net is busy

Found possible cycle of ungranted requests:

FORK(0) ready to do drops.0.0 blocked by PHIL(0)

PHIL(0) ready to do takes.0.4 blocked by FORK(4)

FORK(4) ready to do drops.4.4 blocked by PHIL(4)

PHIL(4) ready to do takes.4.3 blocked by FORK(3)

FORK(3) ready to do drops.3.3 blocked by PHIL(3)

PHIL(3) ready to do takes.3.2 blocked by FORK(2)

FORK(2) ready to do drops.2.2 blocked by PHIL(2)

PHIL(2) ready to do takes.2.1 blocked by FORK(1)

FORK(1) ready to do drops.1.1 blocked by PHIL(1)

PHIL(1) ready to do takes.1.0 blocked by FORK(0)

The state dependence digraph for the Dining Philosophers is shown in figure 3.9,
constructed from the normal form transition systems shown in figure 3.4. (As each
process in the network is deterministic there is exactly one minimal acceptance set cor-
responding to each state. In the case of a non-deterministic system there would need to
be more than one vertex to represent certain states in the state-dependence digraph.) It
contains a single circuit, representing the situation where each philosopher has picked
up his left fork.

Although SDD works in many cases where the variant functions could have been
used, it is not quite so powerful, because of the fact that an arbitrary number of maximal
failures of a process can be mapped onto a single state in the normal form. One example
of this is that the SDD technique will often fail for networks of cyclic processes which

94 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Figure 3.9: Construction of SDD for Dining Philosophers

FORK(4)
State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

State 0

State 1 State 2

State 0

State 1 State 2

State 0

State 1

State 2 State 3

State 4

PHIL(0)

FORK(0)

PHIL(1)

FORK(1)

PHIL(2)

FORK(2)

PHIL(3)

FORK(3)

PHIL(4)

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 95

are amenable to variant function technique. It will sometimes find a ‘phantom’ cycle of
ungranted requests which cannot actually occur. For instance, consider what happens
when we apply the algorithm to the deadlock-free toroidal cellular array.

Command (h for help, q to quit):l torus.net

Command (h for help, q to quit):v

Found possible cycle of ungranted requests:

CELL(2,3) ready to do e.2.3.right e.3.3.left

blocked by CELL(3,3)

CELL(3,3) ready to do e.3.2.down e.3.3.up

blocked by CELL(3,2)

CELL(3,2) ready to do e.0.2.left e.3.2.right

blocked by CELL(0,2)

CELL(0,2) ready to do e.0.1.down e.0.2.up

blocked by CELL(0,1)

CELL(0,1) ready to do e.0.1.right e.1.1.left

blocked by CELL(1,1)

CELL(1,1) ready to do e.1.0.down e.1.1.up

blocked by CELL(1,0)

CELL(1,0) ready to do e.1.0.right e.2.0.left

blocked by CELL(2,0)

CELL(2,0) ready to do e.2.0.up e.2.3.down

blocked by CELL(2,3)

The cycle of ungranted requests that has been reported cannot actually occur. Proc-
ess CELL(2,3) can only have an ungranted request to CELL(3,3) if the latter has yet to
complete its previous communication cycle. Also no cyclic-PO process can ever have
an ungranted request to a another one that has completed more cycles. Following the
potential cycle of ungranted requests in this way actually takes us back to the original
process CELL(2,3) in the same state but on an earlier cycle. Clearly a process cannot be
on two I/O cycles simultaneously, so the potential cycle of ungranted requests is unreal.
What it actually represents is a spiral of ungranted requests backwards in time.

We shall address this problem by refining the algorithm later on, but first let us
explore the power of this prototype version in relation to some other design rules.

Applications of the SDD algorithm

Theorem 11 Any circuit-free client-server network composed from finite-state ‘basic’
processes has a circuit-free state dependence digraph

Proof. Consider a basic client-server network � � � � � � �9� � � 	 � , with a circuit-free
topology. This is deadlock-free by rule 7 (page 47). We shall show that the state depen-
dence digraph of � can never have a path of length 2, going through states of processes

96 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

� � � � � � � 7 , such that the relationship between � � and � � is client to server and the rela-
tionship between � � and � 7 is server to client. Then the circuit-freedom of the state
dependence digraph will follow as a direct consequence of the circuit-freedom of the
client-server digraph.

So first suppose that there is an arc in the state dependence digraph

� � � � � � � �02 � � � � � 7 � � 7 �02 7 � �
where � � communicates with � 7 as server to client. This arc represents a potential
ungranted request in the subnetwork

� � � � � 7 �
and we can deduce, from the definition of the basic client-server protocol, that this can
only occur when � � is waiting for � 7 to perform a requisition or drip event. It also fol-
lows from rule (b) that � � is ready to perform all its server requisition and drip events,
i.e they are all contained in 2 � .

Now suppose that there is another arc in the state dependence digraph

� � � � � � � �52 � � � � � � � � � �02 � � �
where � � communicates with � � as client to server. This arc represents an ungranted
request in the subnetwork

� � � � � � �
We already know that 2 � contains every server requisition and drip event of � � , so � �
must be waiting to communicate with � � on a client acknowledge channel. But this is
impossible by rule (c) of the protocol.

This contradiction means that there is no path in the state dependence digraph which
goes from client to server and then from server to client. Therefore, as the client-server
digraph is circuit-free, there can be no circuit in the state dependence digraph, so the
network will be reported as being deadlock-free by the SDD algorithm. �

The SDD algorithm is clearly more powerful than the tool for checking deadlock-
freedom in basic client-server networks. It will always work and does not require the
processes to be supplied in any particular order. However, as it has no intelligence reg-
arding the actual protocol, it will probably be less useful as a debugging aid, especially
for analysing networks constructed by teams rather than by individuals.

Theorem 12 Any finite-state user-resource network which obeys the Resource Alloca-
tion Protocol has a circuit-free state-dependence digraph.

Proof. Consider a finite-state user-resource network which adheres to the Resource
Allocation Protocol (page 56). Suppose that there is a circuit in its state-dependence

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 97

digraph. Due to the bipartite nature of the network, this circuit must run through a
sequence of vertices of the form

� � � � � � � � � �02 � � � � � � � � � � � � �52 � � � � ��� � � � � � � � � � � 2 � � � � � � � � � � � � �02 � � � �
A user process can only have an ungranted request to a resource when it is waiting to
claim it. We deduce that for each process � � � , state � � � is the normal-form state where
it is waiting to be released by the next process in the circuit, � � ��� � (addition modulo �),
which is in state � ����� � . (See figure 3.6.)

Now the arc � � � � � � � � � �02 � � � � � � � ��� � � � � ��� � �02 � ��� �
� � represents an actual ungranted

request within the subnetwork ��� � � � � � ��� �
� so it must be possible for � � ��� � to be holding

resource � � � in state � � ��� � . As it also tries to claim resource � � � � � from this state, it
follows that ��� � � ��� ��� � , by the terms of the protocol. Applying this result all the way
around the circuit leads to the following contradiction

��� � � ��� � � � �9� � ��� � � ��� � �

From this we conclude that the state-dependence digraph is actually circuit-free, and
the network will be reported as being free of deadlock by the SDD algorithm �

In practice, the SDD algorithm also seems to be a useful tool for analysing user-
resource networks, where the users communicate with each other, obeying the Extended
Resource Allocation Protocol. It has no trouble with proving the Arm-Wrestling Dining
Philosophers deadlock-free (or indeed the Telephoning Arm-Wrestling Dining Philoso-
phers). It would be nice if whenever the subnetwork of user processes could be proven
deadlock-free by the SDD algorithm so could be the whole network. However this is
not always the case, as the following example illustrates.

pragma channel a,b,c,c1,r1,c2,r2

U1 = (b -> U1 |˜| a -> U1) [] c1 -> r1 -> U1
U2 = (c -> U2 |˜| b -> U2) [] c2 -> r2 -> U2
U3 = a -> c -> U3
R = c1 -> r1 -> R [] c2 -> r2 -> R

--+ U1, U2, U3, R

Here network ��� $ � � # � ��% � is provably deadlock-free by the SDD algorithm, but
��� $ � � # � ��% � � � is not, even though it obeys the Extended Resource Allocation Pro-
tocol, and so is, in fact, deadlock-free. In the former case events � $, 	 $, �5# , and 	 # lie
outside the vocabulary, so there are no ungranted requests between �

$
and ��# with

respect to the vocabulary. But in the latter case the vocabulary includes all these events
and a potential cycle of ungranted requests is reported.

U2 ready to do b blocked by U1
U1 ready to do a blocked by U3
U3 ready to do c blocked by U2

98 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

Analysing Non-Standard Networks with SDD

Welch, Justo and Willcock consider an interesting example of client-server network
where the basic protocol has been slightly abused [Welch et al 1993]. The system com-
prises a USER process which is stimulated by regular ‘ticks’ from a CLOCK process.
The USER process may reset the interval between ticks by means of a reset channel.
Conceptually, process USER communicates as both a client and a server with process
CLOCK. In order to avoid a circuit of client-server relationships a ‘circuit-breaker’,
consisting of a one-place overwriting buffer OWB together with a prompter PROMPT,
is inserted along the reset channel. The client-server digraph of the resulting system is
shown in figure 3.10.

Figure 3.10: Client-Server Digraph for CLOCK Network

PROMPT

< tick >
CLOCK USER

OWB

< reset > < user_reset >

< req, ans >

The machine-readable CSP code for this network is as follows:

pragma channel tock,user_reset,req,ans,reset,time_out

USER = tock -> (USER |˜| user_reset -> USER)
PROMPT = req -> ans -> reset -> PROMPT
OWB = user_reset -> (req -> ans -> OWB [] OWB)
CLOCK = reset -> CLOCK [] time_out -> tock -> CLOCK

--+ PROMPT,CLOCK,USER,OWB

In this definition CLOCK has an internal event time out. This event represents a
signal from an internal timer process that it is time to send out the next tock. Each
process behaves according to the basic client-server protocol, apart from OWB. This
process will shut down service on channel req whenever its buffer is empty. This con-
travenes rule (b) of the protocol. Nonetheless Welch, Justo and Willcock claim that the
network is deadlock-free. This cannot be shown by the algorithm which tests adherence
to the basic client-server protocol, but it is no problem for the SDD algorithm.

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 99

Command (h for help, q to quit):l clock.net

Command (h for help, q to quit):v

Checking PROMPT with CLOCK

Checking PROMPT with OWB

Checking USER with CLOCK

Checking USER with OWB

Network clock.net is deadlock-free

This is a good example of a situation where a programmer’s intuition has been auto-
matically confirmed by SDD, avoiding the need for an analytic proof. As the system
was designed with an aircraft control system in mind, this could be useful.

Accommodating Cyclic Processes

In general, the SDD is unable to prove networks of cyclic processes deadlock-free.
However these are an important ingredient of many parallel algorithms. Fortunately
we can remedy the problem as follows. First of all we extend the network analysis to
produce a state-dependence digraph with coloured arcs.

Remember that arc � � � � � �02 � � � � � � ��� �52 � � � , represents an ungranted request from
process � in state � to process � � in state ��� . If this can occur only when � and � �
have each visited their initial state exactly the same number of times, we colour the arc
red. Alternatively if � must have visited its initial state more times than � � we colour
the arc green. Otherwise the arc is coloured blue to represent uncertainty.

The arc colouring is calculated in a similar way to the technique for specification
checking described on page 71. First we construct a set of records of the form

� * � � * ��� � count �

Each record contains a pair of states that � and � � may simultaneously be at together
with a numeric labelling: count. This represents the number of times that the initial
state of � has been ‘crossed’ minus the number of times that the initial state of � � has
been crossed. A process is said to have crossed its initial state whenever it performs an
event which returns it to its initial state. If the numeric labelling of state pairs is found
to be inconsistent, i.e two records are found � *�� � * ��� � count � and � * � � * ��� � count � � with
count
� count � , then all the numbering information regarding states of � � � � � � is dis-
carded. Any ungranted request found between the two processes is regarded as being
‘uncertain’ and coloured blue. If, however, a consistent numbering is discovered it may
be used to colour ungranted requests red, green or blue in the manner described above.

To illustrate how the coloured state dependence digraph is constructed, let us return
to the example of the two-place buffer from page 73. Recall that this was defined as
follows

LEFT � in � mid � LEFT

100 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

� LEFT � �
in,mid �

RIGHT � mid � out � RIGHT
� RIGHT � �

mid,out �

� � � LEFT � RIGHT �

The exhaustive search for records of the form � * LEFT � * RIGHT � count � proceeds as fol-
lows. First we have

pending � � � ! � ! � ! � � , done � � �
Check � ! � ! � ! � ; possible transition is in; neither initial state is crossed; leads to record:� $ � ! � ! � . Now we have

pending � � � $ � ! � ! � � , done � � � ! � ! � ! � �

Check � $ � ! � ! � ; possible transition is mid; initial state of LEFT is crossed; leads to
record: � ! � $ � $ � . Now we have

pending � � � ! � $ � $ � � , done � � � ! � ! � ! � � � $ � ! � ! � �

Check � ! � $ � $ � ; possible transitions are in and out; if in is performed neither initial
state is crossed but if out is performed initial state of RIGHT is crossed; lead to records� $ � $ � $ � and � ! � ! � ! � . Now we have

pending � � � $ � $ � $ � � , done � � � ! � ! � ! � � � $ � ! � ! � � � ! � $ � $ � �

Check � $ � $ � $ � ; possible transition is out; initial state of RIGHT is crossed; leads to
record � $ � ! � ! � . Now we have

pending � � � , done � � � ! � ! � ! � � � $ � ! � ! � � � ! � $ � $ � � � $ � $ � $ � �

Now we have discovered all the state pairs in which processes LEFT and RIGHT may
simultaneously rest. For each pair we have found an invariant property count which
represents the number of times that LEFT has visited its initial state more than RIGHT.

Suppose that LEFT and RIGHT are embedded in some network � � which has a
vocabulary � containing events in and out. We find that state pair � ! � ! � involves an
ungranted request from RIGHT to LEFT with respect to � . This is represented as a red
arc in the coloured state dependence digraph because the value of count is always zero
for this state pair. We also find that state pair � $ � $ � involves an ungranted request from
LEFT to RIGHT with respect to � . This is represented as a green arc in the coloured
state dependence digraph because the value of count is always 1 for this state pair. The
other state pairs, � ! � $ � and � $ � ! � do not involve any ungranted requests.

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 101

So the analysis of LEFT and RIGHT would result in the addition of the following
arcs to the coloured state dependence digraph for � � .

Red arc:

��� ��� Process: RIGHT
State:

!
Acceptance set:

�
mid � � �� �

��� Process: LEFT
State:

!
Acceptance set:

�
in � � �� � ��

Green arc:

��� ��� Process: LEFT
State:

$
Acceptance set:

�
mid � ���� �

��� Process: RIGHT
State:

$
Acceptance set:

�
out � ���� ����

When the same analysis is applied to processes FORK � ! � and PHIL � ! � in the Din-
ing Philosophers network, inconsistencies are found in the count variable. This obvi-
ous by the fact that process FORK � ! � may cross its initial state any number of times,
by cycling on events takes � $ � ! and drops � $ � ! , before process FORK � ! � has performed
any event at all. In this case all the ungranted requests detected between the processes
would appear as blue arcs in the coloured state dependence digraph.

Any circuit in the coloured state-dependence digraph containing a blue arc remains
a potential cause of deadlock, so does any circuit which contains only red arcs. But a
circuit containing no blue arcs and at least one green arc does not represent a cycle of
ungranted requests in the network, for the ungranted requests cannot all occur simulta-
neously.

We check for deadlock-freedom as follows. First we use a variant of the DFS to
remove all those arcs from the digraph which do not lie on any circuit (described in
appendix B). If any blue arc remains then there is potential for deadlock. Otherwise
all the remaining arcs must be red or green. The only risk of deadlock in this case is if
there is a circuit consisting only of red arcs, so we remove all the greens arcs and then
see whether any circuit still remains.

Given that the motivation for the CSDD algorithm was to be able to handle cyclic
processes, the following result is not altogether surprising.

Theorem 13 Take a deadlock-free network of cyclic-LOP processes. Its coloured state-
dependence digraph contains neither a blue arc nor a circuit of red arcs.

Proof. Let ��� � � � � ��� � 	 � be a deadlock-free network of cyclic-LOP processes. Each
process is finite-state by definition. We observe that although a cyclic-LOP process
does not necessarily visit the same states on each cycle, its initial state is always crossed
between cycles. Between any two visits to a particular state, such a process performs
every event in its alphabet the same number of times, equal to the number of times that
it has crossed its initial state.

Consider a subnetwork of two communicating cyclic-LOP processes, � � � � � � � . Sup-
pose that these processes may simultaneously be in states * ��� and * ��� . Between two
particular visits to this state pair, suppose that � � performs � � cycles of events in � � �

102 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

and � � performs � � cycles of events in � � � . As the processes communicate with each
other we have � � � � � � �
� � �
Let � be an event from � � � � � � � . Between the two visits to the state pair, event �
has been performed � � times by � � and has also been performed � � times by � � . So
� � � � � ; in other words � � and � � must each cross their initial state the same number
of times between any two visits to a given pair of states.

This means that when the subnetwork � � � � � � � is analysed for records of the form

� * ��� � * ��� � count �

where count represents the number of times more that � � has crossed its initial state
than � � , we shall find that count is invariant for any pair of states.

A cyclic-LOP process can only have an ungranted request to another process which
has performed the same number of cycles or one less cycle. It follows that the coloured
state dependence digraph for � contains only red and green arcs, no blue arcs. Suppose
that a circuit of red arcs were found. This would correspond to a sequence of processes

� � � � � �9� � � � � � � � �

such that each process � ��� would have a state where it could perform some event ��� with
its successor in the sequence but not be able to to perform some other event ��� � � with
its predecessor in the sequence, despite having completed the same number of cycles.
This would imply the existence of a circuit in the " relation,

� � " �9� " � 7 " � �

which would contradict theorem 8 (page 41), so there can be no circuit of red arcs in the
coloured state dependence digraph for � . It follows that � will be passed as deadlock-
free by the CSDD algorithm �

Unlike the SDD algorithm, the CSDD algorithm has no problem with the toroidal
cellular array.

Command (h for help, q to quit):x

Network torus.net is deadlock-free

Although the new algorithm can handle cyclic-LOP networks it is not guaranteed
to be able to prove deadlock-freedom for cyclic-PO networks in general, as these may
have legitimate cycles of ungranted requests at times, despite being deadlock-free.

Note that when it is required to use CSDD to prove deadlock-freedom for hybrid
networks including cyclic subnetworks, one has to be careful that the extra communi-
cations added to the cyclic processes do not remove the property that they should each
cross their initial state exactly once after each cycle.

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 103

Each stage in the analysis has
� � � complexity (where is the number of edges

in the communication graph), given our usual assumptions about the number of states
and events of each process, except for the construction of the communication graph and
vocabulary, which we have shown to be feasible with

� � log � � � complexity. Thus
the CSDD algorithm can be performed with complexity

� � log � � � .

Allowing for Weak Conflict

Another useful way to extend the SDD algorithm is to incorporate theorem 3 (page 30).
Recall that if a network is shown to be free of strong conflict then any deadlock state
must contain a cycle of ungranted requests of length at least three. This means that if
the state dependence digraph of a strong conflict free network contains no circuits of
length three or more then the network is deadlock-free regardless of how many circuits
of length two are found.

The property of strong conflict freedom may be checked during the construction of
the state dependence digraph at virtually no extra cost. If a strong conflict is found then
it is reported and the algorithm terminates.

Searching for circuits of length three or more in a simple digraph may be performed
by the following algorithm. For each arc � � ��� � � of the digraph

� � � �52 � , use the DFS
to look for a path from � � to � in the digraph

� � � �023. � � � � ��� � � � . If no such path is
found then the digraph has no circuit of length three or more.

For our coloured digraph, we adapt this algorithm as follows. First we check that
there is no circuit of length at least three containing a blue arc. For each blue arc � � ��� � �
we use the DFS to look for a path from � � to � in the digraph

� � � �52 . � � � � ��� � � � . If
no such circuit is found then we remove all the blue and green arcs from the digraph
and search for a circuit of length three or more in the resulting red digraph. If none is
found we have proved deadlock-freedom.

In the prototype version of Deadlock Checker, this improvement has been included
as part of the CSDD test, but not the SDD test. Unfortunately the technique that we use
to check for circuits of length three or more, increases the complexity to

� � � � , as a
DFS search may now be required for each arc in the digraph. However, there may well
exist a more efficient technique than this.

Potential for Further Improvement

Despite the improvements that we have made to the original SDD algorithm, the possi-
bility remains of detecting bogus cycles of ungranted requests. One way in which this
has been observed in practice has been the detection of a circuit in the state dependence
digraph which crosses more than one state of the same process. It is clearly impossible
for a process to be in two states at the same time so such a circuit cannot represent a
real cycle of ungranted requests.

Suppose that we now colour the vertices of the state dependence digraph, where
each colour represents the states of a particular process. To avoid the problem described

104 CHAPTER 3. A TOOL FOR PROVING DEADLOCK-FREEDOM

above we are looking for an algorithm to determine whether this digraph contains a
circuit in which every vertex has a different colour. At the time of writing no efficient
algorithm has been found to decide this question in general (which may easily be shown
to belong to class NP). However even an inefficient algorithm would be useful in the
case where the state-dependence digraph contains only a small number of circuits.

A more promising approach involving this vertex colouring is based on the concept
of request selector functions[Dathi 1990, Roscoe 1995]. Suppose that there is some
vertex of the state dependence digraph, � � � � � � �02 � , which has outgoing arcs to
vertices which have several different colours. Now suppose that we choose one par-
ticular such colour � � � � and delete every outgoing arc from � that points to a vertex
with a different colour from � � � � . If the stripped down version of the state dependence
digraph which results contains no circuit then it is still the case that the network must
be deadlock-free. The result still holds no matter how many vertices � are treated in
this manner.

This may be informally justified as follows. What we have actually done is to choose
a particular process to which � has a request, when it is accepting the events of 2 in
state � , and to ignore requests to other processes. For any deadlock state of the net-
work, we could still find a cycle of ungranted requests corresponding to a circuit in the
stripped down state dependence digraph.

It is thought that this technique should be useful as follows. Suppose that a state-
dependence digraph has been constructed and is found to contain circuits. An algorithm
is envisaged which would attempt to find a sequence of vertex and colour selections
leading to the removal of sufficient arcs to render the digraph circuit-free, and hence
prove deadlock-freedom.

We could also extend the power of the checker to embrace the design rule of Brookes
and Roscoe (theorem 4, page 30). We might do this by adding an extra dimension to the
coloured state dependence digraph: arcs would either be ‘flashing’ or ‘non-flashing’.
An ungranted request from a state of process � to a state of process � would be set
to be flashing only if it had been shown that � must have communicated with � more
recently than with any other process in that situation. Then any circuit of flashing arcs,
of length greater than two, could not represent a real cycle of ungranted requests in the
network, as the ungranted requests could not occur simultaneously. This follows from
the reasoning we used to prove theorem 4.

It would also be relatively straightforward to allow for networks where the processes
can terminate. Dathi defines a network to be prudent if no process ever tries to com-
municate with one that is only willing to perform event

�
[Dathi 1990]. With a slight

adjustment to the definition of deadlock-freedom to allow for termination, the CSDD
algorithm could be implemented in exactly the same way for a network containing ter-
minating processes which had been shown to be prudent.

Due to the exponential state explosion as a network grows in size, it seems unlikely
that there is an algorithm for deciding deadlock-freedom for finite-state processes which
is both efficient and complete. There are certain networks for which deadlock-freedom
depends on some crucial property of global states. For instance the analysis of a ‘token-

3.4. TOWARDS A GENERAL PURPOSE ALGORITHM 105

ring’ system in [Brookes and Roscoe 1991] involves proving that there is exactly one
‘token’ present in any state of the system. The techniques described above, being based
on local analysis, would be inadequate for this particular task. However there is cer-
tainly much scope for automatic assistance in performing analyses of this nature. The
limitations of proving deadlock-freedom purely by local analysis are further discussed
in [Roscoe 1995].

There is clearly potential for expanding the armoury of efficient verification tech-
niques such as CSDD. If these are to be used in anything other than a trial and error
fashion they must be backed up with further design rules which will enable networks
to be built not only deadlock-free, but that may be easily verified so.

