
Introduction

The Deadlock Problem

Throughout our lives we take for granted the safety of complex structures that surround
us. We live and work in buildings with scant regard for the lethal currents of electricity
and flammable gas coarsing through their veins. We cross high bridges with little fear
of them crumbling into the depths below. We are secure in the knowledge that these
objects have been constructed using sound engineering principles.

Now, increasingly, we are putting our lives into the hands of complex computer pro-
grams. One could cite aircraft control systems, railway signalling systems, and medical
databases as examples. But whereas the disciplines of electrical and mechanical engi-
neering have long been well understood, software engineering is in its infancy. Unlike
other fields, there is no generally accepted certification of competence for its practition-
ers.

Formal scientific methods for reliable software production have been developed,
but these tend to require a level of mathematical knowledge beyond that of most pro-
grammers. Engineers, in general, are usually more concerned with practical issues than
with the underlying scientific theory of their particular discipline. They want to get on
with the business of building powerful systems. They rely on scientists to provide them
with safety rules which they can incorporate into their designs. For instance, a bridge
designer needs to know certain formulae to calculate how wide to set the span of an
arch – he does not need to know why the formulae work. Software engineering is in
need of a battery of similar rules to provide a bridge between theory and practice.

The demand for increasing amounts of computing power makes parallel program-
ming very appealing. However additional dangers lurk in this exciting field. In this
thesis we explore ways to circumvent one particularly dramatic problem – deadlock.
This is a state where none of the constituent processes of a system can agree on how
to proceed, so nothing ever happens. Clearly we would desire that any sensible system
we construct could never arrive at such a state, but what can we do to ensure that this
is indeed the case?

We might think to use a computer to check every possible state of the system. But,
given that the number of states of a parallel system usually grows exponentially with the
number of processes, we would most likely find the task too great. Perhaps we would
conduct experimental tests to try to induce deadlock. This approach would reveal any

1



2 INTRODUCTION

obvious problems, but there might be deadlocks that require many years of running time
to appear which we would never detect. We could attempt to construct a mathemati-
cal proof of deadlock-freedom, but we would soon discover that, even for small pro-
grams, this is often extremely difficult and time-consuming. The problem with all these
approaches is that the deadlock issue has been left to the end of the software develop-
ment process, when it is really too late. Design rules are needed, which may be applied
á priori: rules which guarantee deadlock-freedom, are not too restrictive, and are easy
to follow.

Early work in concurrency was framed in the context of multitasking operating sys-
tems. The idea was to share an expensive collection of hardware resources between a
number of user processes. The classic illustration of the risk of deadlock in this situa-
tion is the Dining Philosophers of E. W. Dijkstra (described in [Hoare 1985]).

Five philosophers sit around a table. Each has a fork to his left. An everlasting bowl
of spaghetti is placed in the middle of the table. A philosopher spends most of his time
thinking, but whenever he is hungry he picks up the fork to his left and plunges it into
the bowl. As the spaghetti is very long and tangled he requires another fork to carry
it to his mouth, so he picks up the fork to his right as well. If, on attempting to pick
up either fork, he should find that it is already in use he simply waits until it becomes
available again. When he has finished eating he puts down both forks and continues to
think.

There is a serious flaw in this system, which is only revealed when all the philoso-
phers become hungry at the same time. They each pick up their left-hand fork and then
reach out for their right hand fork, which is not there – a clear case of deadlock.

Figure 0.1: Deadlocked Dining Philosophers

4

0

1

2 3

Rules of varying complexity have been devised to tackle this problem. The simplest is



INTRODUCTION 3

to allocate to each resource a unique integer priority. Then deadlock may be avoided by
ensuring that no user process ever tries to acquire a resource with higher priority than
one it already holds. In the case of the Dining Philosophers we could label the forks
from zero to four, clockwise around the table. Four out of the five philosophers would
then have a fork of higher priority to their left than their right, and so their behaviour
would conform to the rule. The fifth, however, would have fork number zero to his left
and fork number four to his right, so he would break the rule. If he were to modify his
behaviour to always pick up the fork to his right first, the risk of deadlock would be
removed. This example illustrates the power of using design rules to prevent patholog-
ical behaviour. The theory behind this particular rule is described in Chapter 2.

As computer hardware becomes more abundant, the main issue in concurrency is
no longer how to share out sparse resources between multiple tasks, but rather how
best to spread a single task over multiple resources, in order to improve performance.
Here a task is decomposed into processes which communicate with each other, and it
is these communications which pose the threat of deadlock. Concurrent programming
languages provide little safeguard against this demon. Deadlock is also a potential haz-
ard in naturally distributed systems, such as telephone networks and control programs
for complex machines. Imagine a control program for the cooling system of a nuclear
reactor. The program might run smoothly for many years without problem. Unless rig-
orous methods had been used throughout to guarantee that the program was free from
deadlock there would be no way of knowing for sure whether a particular set of con-
ditions could one day arise that would cause it to deadlock, perhaps resulting in melt-
down.

Summary

The intention of this thesis is to provide a rigorous means of engineering deadlock-free
concurrent systems of arbitrary size. The approach taken is to provide a collection of
design rules which may be used to guarantee freedom from deadlock. These rules are
by no means complete but do offer sufficient flexibility to be applicable to a wide range
of problems. A welcome bonus is that their use often leads to algorithms which are
more structured and elegant than those developed by ‘trial and error’.

Most programmers are to some extent error-prone. With this in mind a tool has
been developed to check for conformance to the design rules. It will be shown how the
combined weapons of design rules and automatic verification provide a vital defence
against the patient and cunning foe that is deadlock.

Chapter 1 outlines the algebraic language of CSP which is used for specifying sys-
tems of communicating processes. A summary of existing techniques for deadlock
analysis using this model is provided.

Chapter 2 introduces some design rules for avoiding deadlock. These are formalised
in CSP. It is shown how they may be generalised and combined to provide a coherent
strategy for the design of deadlock-free systems.



4 INTRODUCTION

Chapter 3 describes the development of a software engineering tool for deadlock
analysis: Deadlock Checker. This is based on the results of the preceding chapters.

Chapter 4 comprises several interesting case studies of constructing deadlock-free
concurrent systems with the occam programming language, using design rules.

We conclude with a discussion of how the design approach might be extended to a
wider domain of correctness issues.

A certain amount of mathematical terminology and notation is employed, deriving
from Set Theory and Logic, Partial Orders and Graph Theory. In the interests of self-
containment, and also due to a lack of consistency in the literature, the basics of the
latter two fields are summarised in appendices A and B.


